

Towards Reusable Measurement Patterns

Mikael Lindvall2, Paolo Donzelli1, Sima Asgari1, Vic Basili1,2
{donzelli,basili,sima}@cs.umd.edu

mlindvall@fc-md.umd.edu

1Computer Science Department - University of Maryland
College Park, 20742 MD, USA

2Fraunhofer Center for Experimental Software Engineering,
College Park, 20742 MD, USA

Abstract
Software measurement programs can help

organizations make better decisions regarding their
software projects. However, creating and establishing
software measurement programs can be both costly
and difficult. This paper addresses the problem by
focusing on reusability of metrics for software
measurement programs through the identification of
measurement patterns. We illustrate our work with
identifying measurement patterns by providing an
extensive and detailed measurement example that is
broken down into interdependent building blocks and
activities.

1. Introduction

Creating software measurement programs from

scratch requires a great deal of time and is too costly
for most organizations. We believe identifying and
defining measurement patterns is the key in order to
reduce both time and cost because measurement
patterns will make it easier for organizations to
develop their own measurement programs without
having to start from scratch each time. In this paper
we describe our work with identifying and defining
goal-based measurement patterns.

The patterns are based on the Goal Question
Metrics approach (GQM) [1,2]. GQM is commonly
used to define measurement programs [2], however
we have identified that GQM is relatively open for
interpretation and is often used differently depending
on who applies it. The drawbacks are that not only it
is harder than necessary for someone not used to
GQM to apply it, but it is also difficult to reuse and
compare measurement programs, and it is difficult to
aggregate and generalize measurement results.

In order to illustrate the work on identifying
patterns, we provide a detailed and extensive example

of a GQM application in which we systematically
identify the emerging pattern components and their
interdependencies. Once the building blocks are
identified, a general pattern emerges that can be
reused to address similar goals.

The paper is organized as follows. Section 2
briefly describes GQM and introduces a goal
hierarchy that can support pattern building and
selection. Section 3 introduces the general idea of
measurement patterns, borrowing from the software
design domain. Section 4 shows how a measurement
pattern can be identified through an extensive
example. Finally, conclusions are given in Section 5.

2. GQM and relationship among GQM goals

GQM is a systematic approach for building,

tailoring, and selecting models of and metrics for
software processes, products and quality properties in
order to address specific goals of software projects of
an organization.

In GQM, a goal is operationalized by refining it
into a set of quantifiable questions that are used to
identify which data need to be collected to support the
decision-making process. The required data provide
guidance in building and selecting appropriate
metrics and models. In addition, the questions provide
a framework for interpretation of the collected data.

Goals may be defined for any object, for a variety
of reasons, with respect to these quality attributes,
from various points of view, relative to any particular
environment. A GQM goal is thus defined by filling
in a set of values for various parameters in a template:
The study object, the purpose, the quality focus, the
point of view, and the context.

Typically, the GQM process is described as Goals
generate Questions, and Questions generate Metrics.
We have, however, discovered that questions from

higher-level goals do not naturally generate metrics;
rather they lead to the identification of lower-level
goals.

As a matter of fact, GQM goals can be naturally
seen as “acting” at different levels of complexity,
with higher-level goals that may generate lower-level
goals as part of the goal definition process. The goal
attribute that determines its level of sophistication is
the purpose, which can have five different values:

1. Characterize. This is the most basic

measurement purpose; it involves describing
and differentiating software processes and
products

2. Understand. This measurement purpose
mainly involves explaining associations,
dependencies, and casual relationships
between processes and products

3. Evaluate. Evaluation involves assessing the
achievement of software project goals (e.g.
reaching a certain quality level, being more
productive, producing to less cost,
conforming to a defined process), or the
impact of a technology/process on products
for some goals. It usually involves
characterizing or understanding a situation.

4. Predict. Prediction is similar to evaluation,
but slightly more sophisticated. While
evaluation typically uses a model based on
the characteristics of one set of objects,
prediction builds a model based on the
characteristics and correlation of data-pairs
distributed over two sets of objects.

5. Improve. This is the most sophisticated
measurement purpose; it usually involves
evaluating or predicting in order to identify
the actions necessary in order to improve a
process or a product.

3. Measurement patterns

We borrowed the idea of measurement patterns

from design patterns [3]. Design patterns
methodically name, explain, and evaluate important
and frequent designs in object-oriented systems.
Design patterns solve specific design problems and
make object-oriented designs more flexible and
elegant, and ultimately reusable. They help designers
reuse successful designs by basing new designs on
prior experience. A designer who is familiar with
such patterns can apply them immediately to design
problems without having to rediscover them. In each
system, several design patterns can be used, and they
can coexist with each other [3].

Our approach is to apply the idea of patterns to
measurement in general and to GQM in particular.
Thus, we say that measurement patterns solve
specific measurement problems and make solutions
reusable. They help analysts quickly identify and
deploy solutions to address similar problems already
addressed in the same organization or in different
organizations. Measurement patters greatly support
knowledge packaging and transfer within and
between organizations in the same way as design
patterns do.

In the following, we develop a detailed example
to show how a measurement pattern can be identified
while developing a measurement program. Then we
will show how the same pattern can support design of
similar solutions. In other terms, once the analyst has
formalized the GQM goal, the analyst can use the
pattern to rapidly identify the metrics to be collected.

4. Building a Measurement Pattern

In this section we illustrate how to identify

measurement patterns. By developing a complete
(and typical) GQM application, we highlight how
GQM questions from higher-level goals may lead to
lower level goals (and not to metrics directly), and
show how the emerging goal structure can be turned
into a reusable measurement pattern.

Consider the following situation: The quality
manager of an organization that develops software
has decided that its customers are reporting too many
failures and that most of these problems should have
been caught during system test. In order to reduce the
number of failures, the quality manager is
considering adopting a new testing process. To make
an informed decision, the quality manager first wants
to apply the new test process to a pilot project and to
compare the performance of the new process with the
performance of the current test process through
measurement.

In GQM terms, this leads to a goal structured as
follows:

o The object of study is the new testing process
because the quality manager needs to decide
whether or not it should replace the current
process.

o The purpose is “evaluation” because it
involves comparing two or more objects in
order to rank-order them according to some
criteria. The quality manager determines that
the evaluation should be in comparison with
historical data even though he does not know
yet how much historical data actually exist.

o The quality focus is the performance of the
new process because the final decision is

going to depend on whether the performance
of the new process is better than the current
process.

o The point of view is the quality manager
because it is the one interested in the
performance of the new process when
applied to a representative project as
compared to similar projects conducted in the
past.

o The context is the software development unit
(the environment in which the process is
studied) and the assumptions (the
requirements for which we say that the
process is used in a correct way) are that the
new testing process is followed and that the
team that applies the new process has a good
understanding of the domain.

In order to achieve this goal, on the basis of his

experience, the quality manager recognizes that there
are three main issues he needs to focus on. These can
be synthesized in the following three questions:

o Q1: Is the domain understood? One needs to

make sure that the people who applied the
new testing process are indeed a
representative sample of the people in his
organization as regards domain
understanding. A process conducted by an
experienced (or inexperienced) team does not
produce the same results as a process
conducted by an average team.

o Q2: Is the process applied correctly? In order
to make a decision regarding the
performance of a process, it is not enough to
state that the new process is followed; one
needs to make sure that the applied process
does indeed follow the prescription for the
new process.

o Q3: Is the performance of the new process
better? In order to evaluate the performance
of the process, one needs to create an
evaluation model to which the performance
of the new process can be compared. In this
case, the model will be based on the
performance of the current process.

These three questions that typically occur in the

application of GQM [2] will usually lead to a sub-set
of more focused questions, refining and enriching the
initial ones. In other terms, we could say that the
initial three questions identify main areas to focus on.
We claim that this process can be made more efficient
if we recognize that each of these questions leads to a

sub-ordinate goal: a more elementary GQM goal
necessary to achieve the initial one.

Thus, the question Q1 “Is the domain
understood?” indicates that it is necessary to evaluate
the level of domain understanding of the team
applying the new test process. This leads to the first
derived goal, as illustrated in Figure 1, and forms a
new evaluation goal: the study object is the team; the
purpose is evaluation; the quality factor is domain
understanding; the point of view is the quality
manager and the context is the software development
unit.

Similarly, the question Q2 “Is the process applied
correctly?” leads the second derived evaluation goal
(Figure 1). The study object is the new process
because one needs to determine whether or not it was
actually applied. This is an evaluation goal: the study
object is the new testing process; the purpose is
evaluation because it is necessary to compare the
actual process to the prescribed process; the quality
focus is process conformance; the point of view is the
quality manager and the context is the software
development unit.

Finally, the question Q3 “Is the new process
better?” leads to the third derived goal (Figure 1).
This is also an evaluation goal: the study object is the
new testing process; the purpose is evaluation
because it is necessary to compare the new testing
process to the old one; the quality focus is process
performance; the point of view is the quality manager
and the context is the software development unit.

The result of this analysis is show in Figure 1. In
this way we have seen how GQM goals may in fact
generate lower level goals. Having this set of new
goals, our analysis has to focus on these.

A closer look at these evaluation goals (Figure 1),
reveals that each of them lead to a set of
characterization activities. For example, in order to
evaluate the level of domain understanding among the
team in the pilot project, one needs to characterize
domain understanding. Similarly, in order to evaluate
whether the applied process conforms to the
prescribed process, one needs to describe the process’
main characteristics, which is called characterization
using GQM terminology. Then, to evaluate the
performance of the new testing process, one needs to
characterize process performance. In addition, once
the actual and prescribed process, the common and
the pilot teams’ domain understanding, and the
common and pilot team’s testing process performance
have been characterized, each of them has to be
evaluated. In other terms, each of these evaluations
requires an evaluation model.

For evaluating domain understanding, a model
that compares the pilot teams’ domain understanding

with the common domain understanding has to be
developed. For evaluating process conformance, a
model has to be developed to compare the actual
process characteristics with the prescribed, and to
determine whether the process was conforming or
not. For evaluating process performance, a model has
to be developed to compare the pilot process’
performance with the common performance.

As illustrated in Figure 1, therefore, each
evaluation goal leads to a GQM characterization goal,
from which a characterization model will be obtained
(e.g. to characterize process performance), and to an
evaluation formula, to compare the results of the
applications of the characterization model (e.g., to
compare the performance of the new process against
the performance of the old one).

Figure 1. The breakdown of the overall GQM goal into smaller sub goals

The emerging characterization goals constitute the

most basic GQM goals and will thus not lead to other
goals. The characterization goals will instead lead to a
set of metrics, according to the classical Goal-
Question-Metric process.

The evaluation formulas, of course, are highly
dependent on these questions and metrics and need to
be defined contextually. In the following tables (from
Table 1 to Table 3) we report the set of questions and
the underlying hypothesis that lead to the
identification of a specific set of metrics
(characterization model) for each characterization
goal and to the corresponding examples of evaluation
formula:

o Table 1 shows the questions (Q) and the
hypothesis leading to the metrics (M)
representing the Domain Understanding
characterization model (DU), and the
corresponding evaluation formula;

o Table 2 shows the questions (Q) and the
hypothesis leading to the metrics (M)
representing the Process Conformance
characterization model (PC), and the
corresponding evaluation formula;

o Table 3 shows the questions (Q) and the
hypothesis leading to the metrics (M)
representing the Process Performance
characterization model (PP), and the
corresponding evaluation formula.

Is the domain
understood? Is the

process
applied

correctly?

evaluation
formula

Is the new
process
better?

evaluation
formula

evaluation
formula

Metrics

Domain Understanding (DU)
Characterization Model

Metrics Metrics

Process Conformance (PC)
Characterization Model

Process Performance (PP)
Characterization Model

evaluation
formula

E
OBJ: Team
QF: Domain
U d diVIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

OBJ: New Testing process
QF: Process Conformance
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

E E
OBJ: New Testing Process
QF: Process Performance (compared with past
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

C C
OBJ: New Testing Process
QF: Process Performance
VIEW: Quality manager
CONTEXT:
Environment - SW Development

OBJ: Team
QF: Domain
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

C
OBJ: New Testing process
QF: Process Conformance
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

E
OBJ: New Testing Process
QF: Process Performance (compared with past
d)VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit
Requirements - good understanding,

 - good process

Table 1. Questions, Metrics, Hypothesis, and Evaluation Formula for Domain Understanding
Q1 - What is the experience of each single member of the team?

M11 – Questionnaire for each team member to complete:
How familiar are you with the problem domain?

 0 – The problem domain is new to me
 1 – I have attended a course on the problem domain
 2 – I have been working in this domain for 2 or more years

Hypothesis: Work experience is better than having had a course on the subject
Q2 - What is the experience of the team?

M21 – Percentage of team members with M11=0
M22 – Percentage of team members with M11=1
M23 – Percentage of team members with M11=2

Hypothesis: Team experience is related to team member experience

Evaluation Formula (example)
Hypothesis: No more than 30% of the team members can be novices
Formula: If (M21/(M21+M22+M23) ≤ 30%) then Domain Understanding is sufficient (DU=Yes) else (DU = No)

Table 2. Questions, Metrics, Hypothesis, and Evaluation Formula for Process Conformance
Q1 – Which are the main steps that describe the process?

M11 – Main process steps
Hypothesis: It is possible to describe the process through main steps

Q2 - Did each member of the team follow the process?
M21 – Questionnaire for each team member:
Did you follow the process steps described by M11?

 0 – no
 1 – yes, but only partly
 2 – yes, all of them
Q3 - Did the team follow the process?

M31 – Percentage of team members with M21=0
M32 – Percentage of team members with M21=1
M33 – Percentage of team members with M21=2

Evaluation Formula (example)
Hypothesis: At least 80% of the team should have followed (at least partly) the process
Formula: If (M31/(M31+M32+M33)≤ 20%) then Process Conformance is sufficient (PC=Yes) Else (PC = No)

Table 3. Questions, Metrics, Hypothesis, and Evaluation Formula for Process Performance
Q1 – What is the percentage of defects found by the testing process with respect to the total of the defects found

during testing and during the α and β releases?
M11 – Defects found during testing
M12 – Defects found during α release
M13 – Defects found during β release

Q2 - What is the average cost for finding a defect during the testing?
M21 – Cost of testing (USD)
(M11 – Defects found during testing)

Q3 - What is the average time for finding a defect during testing?
M31 - Testing time
(M11 – Defects found during testing)

Evaluation Formula (example)
Hypothesis
 New Testing Process P significantly better than current process if
 It finds 30% more defects
 The average cost is 30% lower
 The Average time is 10% lower
Formula:
If (M11/(M11+M12+M13))[P] / (M11/(M11+M12+M13))[Historical Data] >= 1.3 AND
(M21/M11)[P] / (M21/M11)[Historical Data] <= 0.7 AND
(M31/M11)[P] / (M31/M11)[Historical Data] <= 0.9 Then (QF = Yes) Else (QF=No)

Once all metrics have been defined, the quality

manager starts measuring. Activities involve applying
the characterization model in order to characterize the
team’s level of domain understanding and applying
the evaluation model in order to determine whether
the domain understanding is indeed acceptable. In
order to characterize the level of domain
understanding, he hands out a survey to each of the
team’s members. The survey has the questions
defined in table 1. In order to evaluate the team’s
level of domain understanding, he tallies the results
from the surveys and compares the aggregated result
to the evaluation formula. If less than 30% of the
team members are novices then the team is
considered having sufficient domain understanding,
otherwise not. The result from this evaluation serves
as input to the top-level evaluation goal. Figure 2
provides the dynamic view of this process. In this
figure, hexagons represent activities as part of
achieving measurement goals. Dashed arrows
represent how output from the determination of one
measurement goal serves as input to another.

E OBJ: Team
QF: Domain Understanding
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

DU
yes/no

characterization
model

Apply
evaluation

formula
e valuation

formula

Metrics

Domain Understanding (DU)
Characterization Model

Apply
Character.

Model

Is the domain
understood?

E
OBJ: New Testing Process
QF: Process Performance (compared with historical behavior)
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit
Requirements - good domain understanding,

 - good process conformance

C
OBJ: Team
QF: Domain Understanding
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

evaluation
formula

Figure 2. The dynamic view of the GQM
application – Domain Understanding

A similar procedure is conducted in order to

determine the level of process conformance in
accordance with Table 3. Process performance
involves more steps because it takes historical
performance into account. The characterization model
is first applied to the historical data. In essence, a

model of the historical performance based on
historical data has to be developed. The simplest
possible model is one that is based on the average
number of defects found in testing as compared to the
average number of defects found by users of α and β
versions of the software. More sophisticated
statistical model can be developed, but is outside of
the scope of this paper. When a model of the
historical performance has been developed, the
characterization model is applied to the pilot project.
This means that the number of defects found in
testing is compared to how many defects were found
by the pilot’s α and β users. When all the data is
collected, the evaluation formula can be applied and
the quality manager can determine whether the result
was better or worse than historical performance. This
results serves as input to the top-level evaluation goal.
Figure 3 shows the dynamic view of this process.

C
OBJ: New Testing Process
QF: Historical Performance
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

evaluation
formula

Metrics

Process Performance (PP)
Characterization Model

Apply
Character.
Model to

Pilot Project

Apply
Character.
Model to
Historical

data

Apply
evaluation

formula

characterization
model

PP
yes/no

Is the new
process
better?

E

OBJ: New Testing Process
QF: Process Performance (compared with historical behavior)
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit
Requirements - good domain understanding,

 - good process conformance

E
OBJ: New Testing Process
QF: Performance (compared with historical behavior)
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

evaluation
formula

Figure 3. The dynamic view of the GQM
application – Process Performance

When all results are fed back to the top-level goal,

it is time to apply the top-level evaluation formula.
All the results can be compiled into a table with a row
for each of the quality factor (QF), the process
conformance (PC) and domain understanding (DU).
Different combinations of results are possible, but
only when process conformance and domain
understanding are both acceptable can the quality
manager determine whether the new process is indeed

better than historically. Figure 4 illustrates the whole
process including the static and dynamic activities.

IF QF=yes then
 IF C = yes then

 IF DU = yes then
 <process ok>

 else
 <......>

Is the new process
better?DU

yes/no PC
yes/no

PP
yes/no

Metrics

Domain Understanding (DU)
Characterization Model

Metrics Metrics

Process Conformance (PC)
Characterization Model

Process Performance (PP)
Characterization Model

Apply
evaluation

formula
e valuation

formula Apply
Character.

Model
Apply

evaluation
formula

evaluation
formula Apply

Character.
Model

characterization
model characterization

model characterization
model

evaluation
formula Apply

Character.
Model to

Pilot Study

Apply
Character.
Model to
Historical

data

Apply
evaluation

formula

E
OBJ: New Testing Process
QF: Performance (compared with historical behavior)
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit
Requirements - good domain understanding,

 - good process conformance

E
OBJ: Personnel
QF: Domain Understanding
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

OBJ: New Testing process
QF: Conformance
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

E E
OBJ: New Testing Process
QF: Performance (compared with historical behavior)
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

C C
OBJ: Testing Process
QF: Process Performance
VIEW: Quality manager
CONTEXT: SW Develop Unit
Environment - SW Development Unit

OBJ: Personnel
QF: Domain Understanding
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit C

OBJ: New Testing process
QF: Process Conformance
VIEW: Quality manager
CONTEXT:
Environment - SW Develop Unit

Is the domain
understood?

Is the
process
applied

correctly?

PC

DU

PP no no no no

no no no no

no no no no

yes yes yes yes
yes yes
yes yes

yes yes

yesyes

evaluation
formula

Apply
evaluation

formula

Figure 4. Full view of GQM application

In the previous example, we have seen how a top-

level process evaluation goal was systematically
broken down into a set of evaluation sub goals, and
characterization sub goals, evaluation formulas,
activities, and final decision table, as well as the flow
(dynamics) between the entities. We believe this is a
pattern that is commonly occurring and that the
process can be generalized into a general pattern that
can be reused in different contexts. Figure 4 illustrate
the general pattern and indicate the different steps
that are necessary in order to define and apply an
evaluation of a process. Also notice that some of the
information in the top-level goal is inherited (in bold)
to the sub and sub sub goals. We believe there are
similar processes for other objects such as software
artifacts, as well as for other purposes, such as
prediction and understanding.

5. Concluding Remarks

In order to avoid starting each measurement

program from scratch, we have started the
identification of measurement patterns that will help
us define high-level patterns that can be applied in

different contexts. We illustrated with an extensive
example how the work of identifying patterns is
conducted. The example we used, the evaluation of a
new process, is commonly occurring and we expect to
be able to reuse this pattern for similar situations. By
identifying all the steps, activities, and building
blocks that are necessary to empirically evaluate a
new process, we described all the concepts necessary
to define measurement patterns based on GQM. As
new patterns are identified, they will be stored in an
experience base together with lessons learned and
frequently asked questions to allow for efficient
implementation.

Measurement patterns do not only allow reducing
a complex problem into a set of smaller ones (sub-
ordinate more elementary GQM goals), but they also
greatly improve reuse of available knowledge in a
more focused way. Detailed Questions, Hypotheses,
Formulas and Metrics developed for elementary
GQM goals (e.g., characterization goals) can be more
easily re-applied for two different reasons: first,
because the analyst will be dealing with similar goals
(characterization), then because the specific

characterization goals are in a similar context (e.g.,
evaluation goal).

6. References

[1] V. Basili, G. Caldiera and D. H. Rombach, The Goal
Question Metric Paradigm, Encyclopedia of Software
Engineering - 2 Volume Set, pp 528-532, John Wiley &
Sons, Inc., 1994.
[2] R. van Solingen and E. Berghout, The Goal/Question/
Metric Method, McGraw-Hill, New York, 1999.
[3] E.Gamma, R.Helm, R. Johnson, and J.Vlissides,
Design Patterns Elements of Reusable Object-Oriented
Software. Addison Wesley, 1994.

Acknowledgements

The authors wish to thank Jennifer Dix for proof-
reading this paper.

