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Abstract 
The development of High-Performance Computing 
(HPC) programs is crucial to progress in many fields of 
scientific endeavor. We have run initial studies of the 
productivity of HPC developers and of techniques for 
improving that productivity, which have not previously 
been the subject of significant study. Because of key 
differences between development for HPC and for more 
conventional software engineering applications, this 
work has required the tailoring of experimental designs 
and protocols. 

A major contribution of our work is to begin to 
quantify the code development process in a specialized 
area that has previously not been extensively studied. 
Specifically, we present an analysis of the domain of 
High-Performance Computing for the aspects that 
would impact experimental design; show how those 
aspects are reflected in experimental design for this 
specific area; and demonstrate how we are using such 
experimental designs to build up a body of knowledge 
specific to the domain. Results to date build confidence 
in our approach by showing that there are no significant 
differences across studies comparing subjects with 
similar experience tackling similar problems, while 
there are significant differences in performance and 
effort among the different parallel models applied.  
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1. Introduction 

Within the field of software engineering, optimizing 
developer productivity has long been recognized as one 
of the primary motivating goals of research and practice. 
A significant portion of the literature consists of 
descriptions or evaluations of software development 
methods, practices, tools, etc., that are aimed at reducing 
the effort required to develop software, removing or 
avoiding defects and the rework they cause, quickly 
developing systems that respond better to customer 

requirements – in short, that are aimed at somehow 
improving productivity. 

Empirical study has been increasingly seen as a 
necessary approach for understanding software 
developer productivity and the factors that increase or 
reduce it. In a survey of software engineering 
publications, Zelkowitz and Wallace showed that the 
number of papers published with no empirical validation 
has been dropping from 36% in 1985 to 29% in 1990 to 
19% in 1995 [16]. A number of different empirical 
approaches have been developed and applied, each 
suited to different research hypotheses and types of 
environments, ranging from observational studies to case 
studies to controlled experiments. 

However, fields outside of software engineering 
represent a very different paradigm, and empirical 
studies of developer productivity for specialized 
computing systems have not been as common. In this 
paper, we present initial results from novel work in the 
application of empirical studies of development 
productivity in the area of High Performance Computing 
(HPC). The outputs of this work, presented in this paper, 
include: 
1. A set of lessons learned describing the similarities 

and differences between “typical” software 
development and the creation of specialized HPC 
codes (Section 2).  

2. A set of guidelines and a template for empirical 
studies in this area (Section 3). 

3. An overview of key quantitative results produced to 
date (Section 4).  

These results are indicative not only of the unique points 
of HPC but may also serve as a blueprint for adapting 
empirical study to other specialized areas of computer 
science. 

2. Overview of HPC software development 

An HPC program (usually referred to as a “code”) is a 
program which is written to run on parallel computers. 
The objective is to decompose the computation among 



multiple processors so that independent parts of the 
solution can be computed at the same time, thus 
returning a final answer in a fraction of the time required 
if all computation had to be done sequentially on a 
single processor. An HPC code will contain instructions 
pertaining not only to logic and control flow, but also to 
managing communication among the various processors. 

Different programming models are available which 
determine how this communication among processors is 
managed in the code. The most widely used 
programming model is known as message-passing, since 
it generally achieves the best performance on a wide 
range of HPC machines. Most message-passing 
programs are written using the MPI library (see section 
3.2). However, since it is believed to require a 
significant amount of effort to implement programs in 
MPI, there is an interest in alternative models. 

While software engineering studies have been 
applied to a wide variety of different development 
contexts, HPC development is a highly specialized niche 
with several important disparities to the usual range of 
assumptions concerning developer behavior.  

 
Who are the developers? The development of HPC 
codes is crucial to progress in many fields of scientific 
endeavor (e.g. climate science, astrophysics, molecular 
biology). Since development of such codes first and 
foremost requires an expertise in the scientific domain in 
which a solution is being sought, those domain experts 
are likely to be novice HPC programmers, at least when 
they are beginning their careers. 

Truly effective HPC programmers are rare because 
HPC code development requires individuals who are 
both experts in the domain and in the HPC architecture 
on which the code is being developed. These problems 
will only increase in the future as tougher problems are 
attacked and more powerful (yet likely more difficult to 
program) HPC machines are created. For this reason, we 
decided to emphasize in our initial studies the question 
of how novice programmers learn to effectively develop 
HPC codes. This research question would have 
important implications for expanding the base of 
effective HPC programmers. 

Both because of this focus on learning HPC 
programming, and to help debug our experimental 
protocols in a more controlled setting, we focused first 
on classroom studies. Still, as classes require access to 
specialized machines and are only taught at the graduate 
level, the pool of such courses and the number of 
subjects in each course were both much smaller than is 
typically expected of software engineering classes. This 
also had important implications for our study design 
(namely, results need to be abstracted from across 
multiple classes rather than from within a single class). 

 

How important is hardware? In a “typical” software 
engineering study, the computing hardware is likely to 
merit only a brief mention along with the operating 
system (e.g. programming was done on a Unix 
workstation or a Windows PC), since modern compilers 
isolate programmers from the details of a particular 
machine architecture. Most software development 
studies place a higher importance on the programming 
language used, since this is assumed to have a much 
higher correlation with programmers’ strategies for 
decomposing the problem and hence with overall 
development effectiveness. 

In contrast, HPC machines vary considerably in 
their architectures [13]. Machine architectures have 
substantial effects on the effectiveness of different 
algorithms and programming models, since the way in 
which the processors are connected in the hardware 
needs to be reflected directly in the software which is 
written to take advantage of them, and may be more or 
less suitable to the ways in which various problems can 
be decomposed. To date, there are no HPC compilers 
that can shield the programmers from such details and 
still achieve acceptable performance. Thus, effective 
HPC development requires appropriate matches between 
the type of problem, the programming approach, and the 
underlying hardware architecture. In empirical study, 
then, reporting as much detail as possible about the 
hardware platform, and controlling for this source of 
variation, becomes extremely important. 

 
What is optimized during development? As in other 
types of software development, the usual goal of 
developing HPC codes is to arrive at the solution of a 
problem with minimal effort and time. Thus, an 
important metric for evaluating various approaches to 
code development in HPC is “time to solution,” 
encompassing both the effort required to understand and 
develop a solution as well as the amount of computer 
time it takes to execute that solution and arrive at an 
answer. Unlike most other software applications, the 
time to execute the implemented solution can be quite 
high. Hence the time to execute the code is a non-trivial 
part of the above equation. 

The activities required to actually develop HPC 
code differ significantly from what would be expected 
on a development project outside of the HPC domain. 
While only a small subset of software development 
projects require significant effort to be spent on 
tweaking the code to improve performance, in HPC code 
development a large percentage of the effort is always 
expected to be spent on optimizing the code. This 
optimization is necessary to take advantage of the 
underlying hardware architecture and hence improve 
performance. Many HPC codes are designed for very 
specific problems. Those codes are typically run only 



once, with a significant running time. In this case, the 
time taken to do these optimizations is expected to pay 
off with a measurable decrease in execution time. 

Within the HPC community, metrics and even 
predictive models have already been developed for 
measuring the final code performance, under various 
constraints (e.g. [12, 5]). However, little empirical work 
has been done to date to study the human effort required 
in the development of those solutions. There has been 
for example no investigation of what percentage of the 
total development effort is spent on optimizing code as 
opposed to developing it in the first place, and how 
much the effort spent on optimization improves the final 
execution time. However, development decisions are 
being made based on beliefs about how much 
improvement is likely to be obtained from effort spent 
on optimizing code performance. 

 
How is quality assured? Although the issue of cost-
effective software testing and quality assurance is an 
entire research area unto itself, for the vast majority of 
applications the general testing strategy is understood: a 
number of representative test cases are selected and the 
software product is executed under those conditions, so 
that the actual behavior can be compared to the 
expected. A discrepancy between the two points to a 
defect in the software. 

The issue is much more complicated for many HPC 
codes, which are developed to help expand the 
understanding in a given field of science, usually by 
simulating complex physical phenomena (such as 
climate change) where experimental validation is 
impractical or impossible. That is, these codes are 
developed to tackle exactly those problems for which 
there is no “expected” answer. The code is developed to 
produce a result that would have been impossible to 
ascertain without it, not to automate an already well-
understood task. For this reason, extensive checking of 
the code and domain models occurs during development. 

 
Because of these differences, traditional approaches 

for measuring and improving productivity cannot be 
applied without modifications in the HPC domain. We 
therefore faced some difficulty when we were 
approached by DARPA to design and conduct studies of 
HPC development productivity. Despite years of running 
software productivity studies, we had little intuition 
about how to adapt our knowledge to run studies in this 
context.  

To obtain the understanding necessary to run 
effective studies, we proceeded iteratively. We began 
with very informal, subjective data collection, the results 
of which we encoded as heuristics. These heuristics were 
used to suggest an initial set of feasible and testable 
hypotheses, which were then tested via an initial set of 

pilot studies. The results of the pilot studies were used 
both to evolve the hypotheses and further evolve our 
experimental protocols.    

3. Implications for HPC study design 

The above lessons point to a large number of variables 
that can affect the productivity of developing HPC 
solutions. This would imply the need for a large number 
of studies to compare and contrast them appropriately, 
especially when the number of problem domains that 
could be addressed are taken into consideration.  

For these reasons, our solution has been to define 
the parameters of a family of related experiments that 
would help us to understand how to best leverage the 
results of the studies that we can collect. Such a family 
also addresses the need discussed in Section 2 to 
combine subjects from multiple classroom environments 
to build up a sufficiently large sample size. Applying an 
over-arching framework to the problem space also 
allows us to collect data opportunistically (depending on 
the specific circumstances and interests of the educators 
with whom we are working) while still providing overall 
guidance and direction (e.g. we can see for what 
combinations of variables we have so far achieved little 
coverage). 

Since the studies within the family have to be 
comparable, in order for each to contribute to the overall 
body of knowledge, we first define a common set of 
dependent and independent variables, then show 
experimental designs that permit the capture of the 
required information. The overall family of studies is 
summarized in Table 1. 

3.1. Dependent variables 

We define the following as the variables of interest for 
describing the outcome of an HPC code development: 
• A primary measure of the quality of the HPC 

solution is the speedup achieved, that is, the relative 
execution time of a program running on a multi-
processor system compared to a uniprocessor 
system. The speedup measured for a given HPC 
implementation can be assessed in comparison to 
the number of processors on which the code is run: 
Running on 8 processors, a hypothetical ideal HPC 
version of a functionally equivalent serial program 
can achieve a speedup of up to 8 times. In practice, 
HPC implementations are not expected to exhibit 
this idealized behavior, but it does provide a useful 
way of understanding the level of improvement that 
is achieved. (In this paper, all values reported for 
speedup were measured when the application was 
run on 8 parallel processors, as this was the largest 



number of processors that was feasible for use in 
our classroom environments.) 

• A primary measure of cost is the amount of effort 
required to develop the final solution, for a given 
problem and given approach. The effort undertaken 
to develop a serial solution includes the following 
activities: thinking/planning the solution, 
coding/debugging, and testing. In comparison, the 
effort undertaken to develop a parallel solution 
includes all of the above as well as tuning the 
parallel code (i.e. improving performance through 
optimizing the parallel instructions). It is necessary 
to break effort measures down at this level of detail 
in order to understand the tradeoffs with the code 
performance achieved; it is not sufficient to know 
which model required more effort, but rather what 
degree of better performance was achieved for the 
extra effort. Our mechanisms (both automated and 
manual) for measuring subjects’ effort are described 
in much more detail in a separate paper [1]. (In this 
paper, HPC development was always done with 
subjects producing a serial version first and then 
developing a parallel version from that. Whether 
this is an effective way for parallel development to 
be done, or whether developers should start from 
scratch and think from the beginning in a parallel 
computing paradigm, is a question of current debate 
in the HPC community. But, measures of effort thus 
have to include the effort for both versions.)  

• In comparing various parallel programming models, 
an important description of the solution is captured 
by the code expansion factor of the final code. In 
order to take full advantage of the parallel 
processors, HPC codes can be expected to include 
many more lines of code (LOC) than serial 
solutions. For example, certain parallel 
programming models require a significant amount 
of code to deal with communication across different 
nodes. The expansion factor is the ratio of LOC in 
an HPC solution to LOC in a baseline serial solution 
of the same problem. 

• Another metric that assists in comparing the effects 
of different HPC programming approaches is the 
cost per LOC of the final codes. This value is 
another measure (in person-hours) of the relative 
cost of producing code in each of the HPC 
approaches. It is relevant for an investigation of 
HPC development since LOC has been used by the 
HPC community in the past as a proxy for effort 
[e.g. 3, 14]. It is important for our empirical work to 
validate whether LOC does indeed meaningfully 
correlate to effort across various models. 

3.2. Independent variables 

We identify the following variables which can influence 
the outcome (costs and benefits) of an HPC code 
development, and hence which needed to be controlled 
or monitored in productivity studies: 

 
Problem type: Because the scientific applications 
implemented on HPC machines vary so widely, it is 
important to investigate whether the results observed 
vary from one problem to the next or, more interestingly, 
from one class of problem to another.  

As examples, the assignments used in our studies to 
date can be grouped into four distinct problem types. 
Problems categorized as “nearest neighbor” are those in 
which the problem space can be subdivided into regions, 
with each processor assigned to a region. Two 
processors only need to communicate with each other if 
their regions are adjacent in order to obtain a solution 
[12]. In contrast, “embarrassingly parallel” problems 
rely on computations that can easily be broken into 
mostly independent components, requiring almost no 
communication among nodes. The analysis discussed in 
this paper makes use of data concerning both of those 
problem types. 

There are other problem types possible; for 
example, “broadcast” problems, which require that one 
processor communicates with all others, or “all-to-all” 
problems, in which each node must communicate with 
all others. As we accumulate more data, we will be able 
to investigate whether there are characteristic patterns 
observable within and among the various problem types. 

The data sets described in this paper were generated 
for two specific applications: The “game of life” posits a 
two-dimensional grid where every cell can be either on 
or off; over a series of turns the grid evolves with the 
behavior of each cell determined according to a set of 
rules about the state of the cells surrounding it. The 
Buffon-Laplace needle problem posits a grid of evenly 
spaced parallel lines, where each square on the grid is of 
size a by b. If a needle of length l is dropped onto this 
grid, it will land on at least one grid line with probability 
(2*l*(a+b)-l2)/(pi*a*b). Running Monte Carlo 
simulations of various numbers of pin drops is then used 
to approximate pi. 

The names of the other specific applications are 
included just to give a flavor of the range of problems 
being addressed. However, a full treatment of these 
problem types is outside the scope of this paper. 

 
HPC parallel programming model: A second key 
factor that will affect the outcome of a development 
effort is the parallel programming model, which 



describes how components of the code running on 
different processors communicate with one another. 

The two instances of parallel programming models 
about which we have collected the most data are MPI 
and OpenMP. These approaches are mature and are used 
in industry. MPI [10] is a portable, scalable 
programming approach that can be used on both 
distributed-memory multicomputers and shared-memory 
multiprocessors. All communication is explicitly 
managed by the programmer, who must call “send” and 
“receive” functions to communicate messages between 
processes. MPI is implemented as a library and requires 
no special compiler support [5]. 

OpenMP [11] is a shared-memory programming 
model. OpenMP takes advantage of the ability to 
directly access shared memory throughout the system 
along with fast shared-memory locks to improve on the 
complexity of the MPI approach. OpenMP is meant to 
be useful for quickly parallelizing existing code and for 
developing a broad set of new applications. It is 
commonly used to achieve “loop-level parallelism”: the 
programmer annotates loops with special compiler 

directives, and the compiler distributes the iterations of 
the loop across multiple processors. OpenMP is 
implemented as an extension of C and Fortran and 
requires support from the compiler [4].  

Some of the researchers whose classes we observed 
are also using new HPC approaches which they have 
developed. These include StarP, a parallel extension to 
the Matlab environment [8], and Explicit Multi-
Threading (XMT), a conceptual framework with 
language extensions to C that implement parallel 
random-access algorithms [15].  

We also use the value “serial” to represent the 
decision to use no parallel programming model at all 
(i.e. to create a non-HPC baseline). 

 
Developer experience: In the studies reported here, 

the majority of subjects were novices in the area of HPC 
development (not surprisingly, as the studies were run in 
a classroom environment). Such a student population is 
highly relevant to our work, since one of our key 
research areas is how people learn to program HPC 
codes effectively. Also, as mentioned in Section 2, many 

 Serial MPI OpenMP StarP XMT 

Nearest-Neighbor Type Problems 

GoL (Game of Life) C3A3 C3A3 
C0A1; C1A1 

C3A3   

GoR (Grid of Resistors) C2A2 C2A2 C2A2 C2A2  

LE (Laplace’s Eq.)  C2A3  C2A3  

SWIM   C0A2   

Sharks & Fishes C6A2 C6A2 C6A2   

Broadcast Type Problems 

LU Decomposition   C4A1   

Parallel Matvec    C3A4  

Embarrassingly Parallel Type Problems 

Buffon-Laplace Needle  C2A1;  C3A1 C2A1;  C3A1 C2A1;  C3A1  

(Miscellaneous Problem Types) 

Parallel Sorting  C3A2 C3A2 C3A2  

Array Compaction     C5A1 

Randomized Selection     C5A2 

Matrix power computation  C8A1 C8A1   

Parallel sums C6A1 C6A1 C6A1   

Sparse matrix multiply     C7A1 

Dense matrix multiply C6A1 C6A1 C6A1   
 

Table 1: Matrix describing the problem space of HPC studies being run. Each study is indicated with a label CxAy, 
identifying the participating class (C) and the assignment (A). Results discussed in this paper are grey-shaded. 



of the likely users of HPC computers in government and 
industrial contexts, who are researchers and domain 
experts in other, unrelated fields, are likely to be 
classified as novice users of many HPC approaches 
themselves.  

3.3. A framework for a family of studies 

Our current framework is illustrated in Table 1. It helps 
organize studies according to two major variables: The 
problem being solved and the parallel programming 
model that was applied to create the solution. These 
make natural axes for this matrix since the problem type 
is of primary importance for our work: We are hoping to 
uncover basic phenomena in HPC studies by 
understanding which types of problems seem to respond 
best to similar solutions, and why. Since the 
programming model is one of the basic choice points for 
a code developer, we hope to be able to provide useful 
decision support on this issue by understanding under 
what contexts the various approaches lead to the most 
effective solutions. 

By labeling each dataset according to the class and 
assignment, we show which data came from the same 
subjects and hence where dependencies are. The 
assignment number conveys some information about the 
order in which assignments were done; since our 
subjects were in a learning environment, it may be the 
case that they were more effective at doing later 
assignments than earlier ones. 

One piece of information missing from this view is 
the machine type/platform on which the solutions were 
developed. We do not have enough data yet across 
different platforms in order to contrast results under 
different circumstances. Eventually, we hope to have 
enough data within each cell of the matrix that we can 
evaluate whether there are differences among solutions 
developed using the same approach but on different 
platforms. 

3.4. A design for HPC productivity studies 

The following designs were created to be used in a 
number of different environments, with minimal further 
tailoring. Through our connection with HPC classroom 
environments we have discovered that there are two 
approaches to a graduate class curriculum in HPC 
development: 

 
Introduction to multiple HPC approaches, one at a 
time. In this approach to structuring the class, multiple 
programming models are introduced one at a time and 
discussed in-depth. For the sake of simplicity, let us 
assume two different models are to be introduced and 

refer to these as mod1 and mod2. Subjects will be asked 
to apply each model to a given problem, in order to gain 
experience with its use. A study design that fits into such 
a class is described in Table 2. It requires randomly 
dividing the class into two groups. This design also 
requires two different problems, prob1 and prob2, which 
will be implemented by the groups in varying order. 

 

 
By switching documents between the two groups, 

we allow the techniques to be taught in sequence but 
allow the interaction between the problems and the HPC 
approaches to be understood. If desired, this design can 
accommodate each group implementing the given 
problems in serial code, or can allow developers to work 
only in HPC versions. This design does however still 
suffer from the threat to validity concerning maturation, 
i.e. results may be biased in favor of mod2 since it is not 
taught until later in the semester, and some skill 
development in general HPC programming may have 
occurred. 

The design can of course be easily extended to 
include additional HPC models that might be taught over 
the course of the semester, if the class is divided into an 
additional group, so that the same algorithm for varying 
documents could be followed. 

 
Introduction to multiple HPC models at once, with a 
large assignment to compare and contrast.  An 
alternate approach to the class is to introduce students to 
multiple HPC models at the same time. A single problem 
to be solved is then taught and students are expected to 
solve the problem using all of the HPC models taught in 
order to compare and contrast them.  

Step Group 1 Group 2 
1 Instruction in HPC model1 (mod1) 

2 Treatment1 
(optional): 
serial version of 
prob1 

Treatment1 (optional): 
serial version of prob2 

3 Treatment2: 
mod1 applied to 
prob1 

Treatment2: 
mod1 applied to prob2 

4 Instruction in HPC model 2 (mod2) 

5 Treatment3 
(optional): 
serial version of 
prob2 

Treatment3 (optional): 
serial version of prob1 

6 Treatment4: 
mod2 applied to 
prob2 

Treatment4: 
mod2 applied to prob1 

Table 2: Design variant 1 for HPC classroom studies. 



As in the previous case, this design allows the use of 
multiple HPC models, generically referred to as mod1 
and mod2, applied to different problems to be solved, 
prob1 and prob2. This design is illustrated in Table 3. 
 

 
This design removes the threat of the maturation 

effect; all HPC models are applied both early and late in 
the semester. It does require students to conform to an 
order in which they apply the various HPC models to the 
given problem; we are solving this by giving out each 
portion of the assignment individually and setting a due 
date for each treatment. Once we have finished piloting 
this design in the current semester’s classes we will have 
some feedback as to whether this way of imposing an 
ordering on the assignment is comfortable for student 
subjects. 

4. Example results to date 

To verify that our framework is a meaningful way of 
combining families of studies, we need to show that data 
collected within a cell is more highly correlated than 
data across cells. Said another way, we are concerned 
with verifying that our identified variables of the 
computing problem and the HPC approach are in fact 
important factors for predicting the outcome of a 
development effort. 

To carry out this verification, and as examples of 
the kinds of analyses that our framework was intended to 
support, we compare data for the same problem but 
different models, and for the same model but different 
problems. For the statistical tests run in this paper, we 
used an alpha-value of 0.05 in all cases. (It should be 
noted that, since our experimental design has been 
evolving over time, some of these studies were 

conducted using an experimental design that is similar to 
the one in Table 2 but with only one group of subjects, 
that is, with all subjects applying the same activities at 
the same time. New data is being collected using the 
design as it is found in Table 2.) 

Studies included in this analysis were: 
• C0A1. This data was collected in Fall 2003, from a 

graduate-level course with 16 students. Subjects 
were asked to implement the Game of Life program 
in C on a cluster of PCs, first using a serial solution 
and then parallelizing the solution with MPI. In this 
class, 56% of subjects had no experience in HPC 
development; 33% had previous class experience; 
and 11% had some industrial experience. 

• C1A1. This data was from a replication of the 
C0A1 assignment in a different graduate-level 
course at the same university in Spring 2004. 10 
subjects participated. In this class, 63% of subjects 
had no experience in HPC development; and 37% 
had previous class experience. 

• C2A1. This data was collected in Spring 2004, from 
a graduate-level course with 26 students. Subjects 
were asked to implement the Game of Life and 
Buffon-Laplace problems in C on a cluster of PCs, 
first as a serial and then as an MPI and OpenMP 
version. 100% of the students had no previous 
experience with HPC development. 

• C3A{1,3}. This data was collected in Spring 2004, 
from a graduate-level course with 20 students. 
Subjects were asked to implement the Game of Life 
and Buffon-Laplace problems in C on a cluster of 
PCs, first as a serial and then as an MPI and 
OpenMP version. In this class, 50% of subjects had 
no experience in HPC development while 50% had 
previous class experience. 

4.1. Analyzing differences among problem 
types 

One research question of interest is whether different 
problems have different, characteristic levels of 
improvement that can be achieved by using an HPC 
approach to implementing the solution. To validate our 
research framework, we would also like to test the 
related question of whether, regardless of the class 
implementing the solution, the codes developed for the 
same problem and using the same programming model 
exhibit similar behaviors. 

 To address this, we analyzed the four 
independent datasets summarized in Table 4. 

Step Group 1 Group 2 
1 Treatment1 (optional): serial version of prob1 

2 Treatment2: 
mod1 applied to 
prob1 

Treatment2: 
mod2 applied to prob1 

3 Treatment3: 
mod2 applied to 
prob1 

Treatment3: 
mod1 applied to prob1 

4 Treatment4 (optional): serial version of prob2 

5 Treatment5: 
mod2 applied to 
prob2 

Treatment5: 
mod1 applied to prob2 

6 Treatment6: 
mod1 applied to 
prob2 

Treatment6: 
mod2 applied to prob2 

Table 3: Design variant 2 for HPC classroom studies. 



 
We first test for similarities within the same 

problem type. We used a t-test to test the hypothesis that 
the mean speedup achieved by C0A1 for the game of life 
is different from the mean achieved by C1A1. With a p-
value of 0.96, we cannot conclude that the results for the 
two classes were different. Similarly, a test for 
differences between C2A1 and C3A1 on the Buffon-
Laplace needle problem yields a p-value of 0.07, so we 
cannot conclude that these two classes were different. 
Thus there are no significant differences in the 
performance achieved for classes for either of our two 
problems. 

Comparing across problems, we therefore combine 
datasets and run a t-test on the hypothesis that the mean 
speedup achieved for the game of life (regardless of 
class) is significantly different than the speedup 
achieved for Buffon-Laplace (regardless of class). The 
resulting p-value, 0.006, shows that there is in fact a 
statistically significant difference in the speedup 
achieved using the MPI model for these two problems. 

4.2. Analyzing differences among parallel 
programming models 

A second question of importance to HPC research is, 
what are the strengths and weaknesses of the various 
parallel programming models? That is, what are the 
tradeoffs between cost and benefits of the available 
parallel programming models? 

Two datasets had sufficient number of subjects to 
enable a meaningful within-subjects comparison of 
effects: C3A3, applying the MPI and OpenMP models to 
the Game of Life problem, and C3A1, applying the same 
two models to the Buffon-Laplace needle problem. We 
investigated whether the two models required a different 
amount of effort for implementing the solution and thus 
a different final cost. (Unfortunately, since students were 
instructed to execute their Game of Life solution on 8 
processors and their Buffon-Laplace solution on 2 
processors, we could not meaningfully compare the 
speedup achieved on the two models.) Recall that the 
HPC effort here represents the effort needed to produce 

first a serial version and from that develop a parallel 
version. The effort/LOC metric is thus computed as total 
effort over total LOC for both serial and parallel 
versions. 

Since the same individuals implemented versions of 
the same problem using different models, we rely on the 
paired t-test to test the differences in mean values for 
statistical significance. 

Regarding the effort required to implement a 
solution using the two parallel programming models, the 
data show an interesting pattern, as shown in Table 5. 
For the Buffon-Laplace problem, OpenMP required 
significantly greater effort than MPI (p=0.02). However, 
for the Game of Life problem the relationship was also 
significant (p=0.01) but in the opposite direction. When 
the total implementation effort is normalized by the 
number of LOC written, as in Table 6, the mean value of 
this metric is also significantly different from one 
approach to the other (p=0.01 for the Buffon-Laplace 
problem and p=0.02 for the game of life). 

 

 

 
As a result of the above analysis, we conclude that 

the number of LOC in a code is not a good proxy for 
developer effort. This has important implications for 

Data 
set 

Problem Speedup 

C0A1 Game of life mean 4.86, sd 2.4, n=14 
C1A1 Game of life mean 4.81, sd 1.7, n=5 
C2A1 Buff.-Lap.  mean 2.01, sd 1.0, n=8 
C3A1 Buff.-Lap. mean 3.73, sd 2.1, n=8 
Table 4: Mean, standard deviation, and number of 
subjects for computing speedup achieved on 
different problems. All values were recorded for 
solutions using the MPI parallel programming 
model in C. 

Data 
set 

Prob. Prog. 
model 

Effort (person-hrs) 

C3A1 BL MPI mean 1.4, sd 1.1, n=20 
C3A1 BL OpenMP mean 2.5, sd 2.0, n=20 
C3A3 GoL MPI mean 9.1, sd 4.3, n=15 
C3A3 GoL OpenMP mean 4.3, sd 3.6, n=15 
Table 5: Mean, standard deviation, and number of 
subjects for computing the effort required for 
implementing the solution.  Data is from two 
different programming models applied to the 
Buffon-Laplace needle (BL) or the Game of Life 
(GoL) problems. 

Data 
set 

Prob. Prog. 
model 

Effort (person 
minutes/LOC) 

C3A1 BL MPI 
mean 0.02, sd 0.02, 
n=15 

C3A1 BL OpenMP 
mean 0.05, sd 0.04, 
n=15 

C3A3 GoL MPI 
mean 0.04, sd 0.03, 
n=13 

C3A3 GoL OpenMP 
mean 0.03, sd 0.01, 
n=13 

Table 6: Mean, standard deviation, and number of 
subjects for computing effort per line of code.  
Data is from two different programming models 
applied to the Buffon-Laplace needle (BL) or the 
Game of Life (GoL) problems. 



attempts to build predictive models, or at least define 
easy-to-measure proxies for the phenomena of interest. 

4.3. Threats to validity 

The fact that these studies were run, not only in a 
classroom environment, but across several classroom 
environments, means that there are threats to the validity 
of our conclusions that should be kept in mind when 
interpreting the results. There is a threat to external 
validity in that our studies involved two-week 
assignments run on a small number of processors, while 
“real” HPC programs may take years of development 
and run on hundreds of thousands of processors.  

One possible threat to internal validity resulting 
from the classroom environment is that we have to deal 
with problems of incomplete data, e.g. subjects not 
filling out their logs, or subjects creating implementing 
serial versions on non-instrumented machines or not 
submitting the serial version of their code. We have not 
observed any systematic bias in which subjects have 
omitted data. However, we do report the total number of 
students in each class and the size of the subset that was 
able to be included in each analysis. 

We have already characterized the major context 
variables that may vary from one classroom environment 
to another, such as the programming language being 
used or the specific application assigned to the students. 
We argue that the experience level of subjects, as 
described in Section 4, is similar enough to be compared 
across studies: Nearly all of the students had either no 
experience or only classroom experience in parallel 
programming. 

We used performance data that was reported by the 
subjects. This represents an internal threat to validity 
since the students may not have reported their data 
truthfully. They may have also made errors while 
recording execution time data (e.g. recording execution 
time when the machine is heavily loaded).  

All effort data was collected through instrumenting 
the compiler and batch scheduler on the development 
machines. Our analyses show that there are some 
discrepancies between these measures and the self-
reported logs that subjects also kept, although the results 
point to the instrumented data as being the more 
accurate source. Our analysis and process for reconciling 
these differences has been described in some detail 
elsewhere [7].  

Finally, there is the possibility that students 
experienced a learning effect, i.e. that they might have 
become simply better HPC programmers over the course 
of multiple assignments, regardless of the HPC approach 
being used.  

5. Future work 

In order to facilitate the running of more studies that can 
contribute to this analysis framework, we have put effort 
into designing web-based lab packages that organize all 
the resources necessary for educators to implement the 
studies in their own courses. By making a library of 
predetermined choices available for each field of the 
template, we hope to show educators a range of choices 
that can meet their classroom conditions while 
maintaining the ability to compare between studies.  

We have made available the instrumentation along 
with installation instructions for setting up automated 
data collection. Packets are available for batch 
processors and compilers on most HPC machines. We 
are currently working with HackyStat [9] and Eclipse [6] 
to create plugins for most common editors, which will 
eventually be available for downloading as well. 

Our work has shown that the variables we have 
identified as of primary importance (namely, the type of 
problem implemented and the parallel programming 
model used) do have a measurable impact on the results 
of HPC development. As we collect more data and 
populate the matrix, we will build more sophisticated 
models of cause and effect, for example by investigating 
the role played by developer experience and whether its 
effect varies for different models. We will also explore 
additional research questions; for example, an important 
topic is whether a developer’s workflow (the overall 
strategy used at the individual level in order to solve the 
problem) has an effect on development success. One of 
our long-term goals in this work is to investigate which 
types of developer behaviors have the best correlation 
with improved outcomes, e.g. when developing a 
parallel solution to a problem, is it always a good idea to 
create a serial version of the solution first, or is it better 
to begin programming directly on the parallel 
architecture? Such questions can be addressed once we 
have the solid baseline of data for addressing variations 
in problems and HPC programming models, which we 
are building in this work. 

6. Conclusions 

In this paper we have described a research program 
aimed at conducting empirical studies of a specialized 
type of software development. We have so far been 
successful at forging collaborations among researchers 
in software engineering as well as high-performance 
computing, and in adapting an empirical approach to the 
study of how HPC codes are engineered effectively. We 
have reported our high level approach for evolving our 
designs over time as we discover more about unique 
constraints in this area, which we hypothesize will be 



useful for similar efforts of tailoring empirical study for 
other specialized fields. We have reported what we have 
discovered about the particular constraints for empirical 
studies of HPC codes, and showed an experimental 
framework that takes the constraints into account. 

Furthermore, we have begun collecting baseline 
data about how novices perform on various HPC 
applications, which can be useful for both researchers 
and educators who would like to replicate those 
experiences. The data help build confidence in our 
approach by showing that there are no significant 
differences across classes with similar experience 
tackling similar problems, while there are significant 
differences in performance and effort for the different 
parallel models applied.  

Clearly, however, more work needs to be done to 
explore the influence of context variables and collect 
data from more widely disparate application 
development. Such work will be guided by the matrix 
that describes the problem space (Table 1) to show 
where we are lacking coverage. Future studies will be 
run to generate the large and diverse data sets, covering 
a majority of cells in the matrix, which will be required 
to address those questions in the most general case. We 
are also working with industrial and government HPC 
developers, to determine in what ways experience level 
affects development practices and results. 
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