3

~

~

A STUDY OF A FAMILY OF STRUCTURAL COMPLEXITY METRICS

Victor R. Basili
David H. Hutchens

Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract

A family of structural complexity metrics which
contains a number of current metrics is developed.
The family may be used to give a framework for ex-
perimental analysis of metrics. By implementing the
family or a suitable subfamily as an automatic metric
tool, many metrics become readily available and may
even be merged to form new metrics in response to
information .obtained during exploratory analysis.

CR Categoryf 4.6

Introduction

Many people have made attempts at quantifying the
complexity of computer programs. A good complexity
metric could be used as a quality assurance test by
software developers and could even be used as part of
the contractual obligation. Current complexity
metrics, based upon the physical attributes of the
software product, fall into three basic categories:
volume, control organization, and data organization.
Each of these categories will be discussed briefly
below. :

Volume metrics are measures of the size of the
project; for example, the number of lines of code,
the number of statements, or the number of operators
and operands [Halstead]. The cyclomatic complexity
[McCabe] of structured programs, when viewed as the
number of decisions plus one, can be considered a
member of this category. Other metrics which relate
to volume include the number of variables, the number
of procedures, the average length of procedures, and
the number of input/output formats [Carriere &
Thibodeau]. Note that these are measures of the
logical size, rather than just the physical size,
of the programs.

Control organization metrics are measures of the
comprehensibility of the control structures. Thus
cyclomatic complexity, when viewed as the number of
control paths, is also a control metric. The average
nesting level has been shown to be a useful control
organization metric [Dunsmore]. Essential complexity
[McCabe], which will be discussed later, falls in
this category as well.

Data organization metrics are measures of the
data visibility and use and the interactions between
data within the program. Data Binding [Basili &
Turner; Stevens, Myers & Constantine] is an example
of a module interaction metric. PCAM [McClure]
concentrates on those interactions which affect the
flow of control. Spans [Elshoff] and Slicing [Weiser]
are concepts which relate closely to data complexity.

A Family of Control Structure Metrics

None of the above metrics has gained widespread
acceptance as a good measure, i.e., one which can be
used for quality assurance and contractual obligations,

for two reasons. First, there is a lack of experimental

evidence to determine what aspects of the system life
cycle the metric actually explains. The metric could,
in fact, correlate well with debugging time and say
little about the difficulty of maintenance. Thus

the experimental evidence should be focused on the
intended use or uses of the metric. Second, the
metrics are static (non-parameterized) so they cannot
be tuned to the results of exploratory analysis.

In light of the second comment, it is reasonable
to consider defining & parameterized family of com-
plexity metrics. Although one would like to include
elements from each of the three categories, the
current research has concentrated on volume and con-
trol concepts with the hope of later including the
data measures or treating them in a separate family.

The structural complexity family should incorpor-
ate length, nesting, control paths, types of control
structures, and ease of understanding the decomposi-
tion. The family should transcend language. Various
members should emphasize different aspects of soft-
ware development and maintenance.

The length could have been measured by lines of
code, with or without comments. However, in a free
format language this measure can be altered by
cosmetic revisions of the code, so -the number of
statements is a more consistent measure. The nesting
factor should be included as a multiplier for each
construct at a given level. Control paths and types
of structures are closely related and are handled in
a variety of ways by current metrics. The ease of
understanding the decomposition is intended to measure
the relative difficulty a (maintenance) programmer

. encounters when he must understand the structure of

control.

With these concepts in mind, a recursive defini-
tion of a family of control structure cogplexity
metrics could be given by

c(p) = bil_fldpi) + £(n, ¢, t,s)

where p 1s a program which is decomposed in some
fashion into k components Py+ PgsceesPye The parameter

b is used to generate the multiplier for nesting level.
The function f is the key to the measure. It has four
arguments: n, the number of decisions in program p
which are not part of a particular subcomponent; %,
the nesting level of component p; t, the type of
structure instantiated by p; and s, the structural
"niceness" of p.

Some discussion of, and restrictions on, the
parameters will clarify their meaning. b is intended
to penalize nesting so b > 1, where b = 1 obviously
removes it from the formula. Since an increase in
the number of decisions should not decrease the com-
plexity, f should be a nondecreasing function of n.

At first glance, one might be tempted to place a non~
decreasing condition on f with respect to the level, &
However, there is reason to believe that a concave up
function of £ may be better [Dunsmore]. An example

will be given later.

It should be noted that b is in fact superfluous,
for the metric c(p) = b E C(Pi) + £(n,8,t,s) =
{ c(pi) + £°(n, %,t,s) where £"(n, 4,t,s) = bx +

f(n,2,t,8). Here b is reduced to a constant in the
function £°. The definition is stated the way it is
because the explicit inclusion of b helps clarify the
nexting penalties. Indeed, many instantiations will
drop £ instead of b.

The parameters t and s may appear redundant,
but they have different purposes. -The values of t
normally range over syntactic entities, such as while,
case, and if statements. On the other hand, s 1is used
to answer the question "Is this structured program-
ming?" A more precise statement of this question will
be given, but some background must be presented first.

The control flow of a program may be described by
a digraph. A program (equating the program and its
digraph) is called a proper program if it has a
single entry, a single exit, and every node of the
program lies on some path from the entry to the exit.
A proper program is called a prime program if it con-
tains no proper subprograms with two or more nodes.
Some common prime programs are the usual while do od
and if then else fi. A prime decomposition is found
by continually replacing prime subprograms by function
nodes (a2 node with a single entry and a single exit).
A proper program has a unique prime decomposition if
sequences are treated as a unit [Linger, Mills & Witt].

By letting the parameter s have the two values
1) proper and 2) not proper, the resulting (sub)family
is given by:

k f(n, 4t) ; p proper
c(p) = bizlc(pi) +-{

g(n, %,t) ; p not proper.

This restricted family will be the subject of the rest
of this paper. If the decomposition of p into Py Py
++s, P, is in some sense reasonable, it would be
expecteéd that proper programs would be easier to under-
stand than non-proper programs. Thus it is assumed
that f(n, 8,t) < g(n, &,t) for all n,%, and t.

Some Members of the Family

Consider the member obtained by letting b = 1 and
f(n,2,t) = g(n, 4,t) = n, where the subcomponents are
determined by prime program decomposition. Note that
at each level of the recursion each of the pi's are
determined by prime decomposition and are, therefore,
necessarily proper. Hence, the g(n, £,t) branch is
never used. The measure is just

k .
c(p) = iElc(pi) +n
and eventually each decision will be counted exactly -

once. Therefore, the member is just the cyclomatic
complexity minus one.

Essential complexity is defined as the cyclomatic
complexity minus the number of subprograms in the prime
decomposition (ignoring sequences). Thus, we may use
a sibling of the previous measure where

Cf(n,1,t) = n-1 n>0
0 n=0
minus one. Note that for a program constructed accord-
ing to standard structured programming techniques,
this measure is zero and the essential complexity is
one, since each prime program will have either zero
or one decision node.

to obtain the essential complexity

14

/

The decomposition of p into p3, p2, ..., Pk can
be based on the syntactic structure of the language.
One major benefit of this approach 1s the ease with
vwhich a compiler can be changed into an automatic
metric tool. As a simple example, consider the de-
composition of programs into statements (and state~
ments into substatements) where

k
e(p) = Z;c(py) +{1
0

Note that this uses the t parameter of the family.
The resultant measure 1is nothing more than a state-
ment count volume metric.

3 P & statement

; otherwise.

In fact, by methods similar to the above, many
of the volume metrics can be derived. If we count
expressions and appropriate subparts, we get

e(p) = Iclpy) +{1

0 ; otherwise

3 p an expression,term,...,identifier

which is Halstead's operatortoperand count. It is also
possible to count declarations to get an identifier
count.

By Combining the proper,not proper distinction
with syntactic decompositions at the statement level
(grouping sequences), an interesting measure may be
derived. It is assumed that the language allows nested
statement constructs such as the usual while and if.
Then the member defined by

K 0
c(p) ™ 1£1c(p1) + s P proper
: n ; p not proper

is very similar to essential complexity where complex
predicates are treated as a single decision. This
measure counts the number of decisions in all state-
ments which are abnormally exited (e.g., with a GO TO)
vhile essential complexity would sometimes subtract
one for each exit. For example, consider the follow-
ing program:

1i:=1
while i ¢ max do
begin
4if A[1] = key then goto £ ;
1 :=41+1
end
LY
£: return

The essential complexity is the number of decisions
minus the number of programs in the prime decomposi-
tion, which is 2-1=1 (dropping the plus one from
McCabe's definition). On the other hand, the above
measure gives c(p) = c(while) + 0 = c(1f) + 1 = 1 + 1=2,
The difference occurs because the code begimning with
the while and ending with the return forms a prime
program even though it is not a syntactic statement.

The point of this digression is that essential com-
plexity can be approximated using the statement decom-
position motif. The next two examples also use the
statement decomposition idea.

For a set of small programs, it was found that
those with a central average nesting level tended to
have fewer program changes during development
(Dunsmore]. The family may genmerate metrics which
describe this phenomenon., For example, if

k
e(p) = Lyelp) + 2-2

then the metric need not be positive. The interpreta-
tion would be that a measure close to zero is good

while those on either side are progressively worse. from this preliminary analysis will then be used to

Note that this metric does achieve the quality of generate other members of the family. The best

averaging,at least if we divide the result by the candidates will then be tested on the compilers.

number of statements. On the other hand, the measure

could directly penalize deviation from "best" depth The compilers were written under three different

by using |£-2 | or perhaps (%-2)2, These are examples development methodologies: ad hoc individuals, ad hoc

of the concave up functions with respect to fwhich teams, and disciplined teams. Many metrics have

were mentioned earlier. already been tested to see if they detect the differ-
ences in methodologles [Basili & Reiter]. The metrics

The last example of the members of the family which have already been analyzed included, among

‘follows: others, statement counts (broken into types),

variables declared (global, local and parameter), and

c(p) = 1.1Zc(p,) + 1+log,(n+l) ; p proper Data Bindings. This work will be continued with the
i 2*(1+1082(n+1)) ; p not proper. structural complexity family.

This member exhibits some of the flexibility of the Lonclusions
family. The b value of 1.1 penalizes nesting by
counting each statement 10% more than it would be at
the next outer level. Furthermore, poorly structured
code costs twice as much as well structured code.

Each statement must contribute at least one to the
measure due to the addition of 1 in each of the
functions £ and g. The use of the logarithm encourages
the use of case statements, the only standard control
structure with more than one decision node. Thus, ——

A family of structural complexity metrics has
been defined which encompasses many of the current
metrics. Much work remains to be done in comparing
and evaluating the various members of the family. This
evaluation will be based on the correlation with agpects
of the development cycle, in particular, program
changes and team organization.

this metric includes consideration of nesting level, S References
ti“g‘h (s;a;ement Cg““‘)* structured Prigi‘“m::SSE::Z; [Basili & Reiter] V. R. Basili & R. W. Reiter, Jr.,
(t;es, an to:usest)or use 0 € organizing con "An Investigation of Human Factors in Software Develop-
e case statement). ment," Computer Magazine, Dec. 1979, pp. 21-38.
Experimenting with the Family [Basili & Turner] V. R. Basili & A. J. Turner, SIMPL-T
: A Structured Programming Language, Paladin House
There are two ways to use the structural com- Publishers, Geneva, I1l., 1976.

plexity family in the analysis of software engineering. . W s
The first is for testing the correlation of a given £g:$:i:;:e§tT§ébxd::;lst;c:.S:;:::::eCosﬁ'E::izzgz::’
program property with some software development or Techaique for Foreign Military Sales," General Re-

maint ect. Given the property in question
one ngingzv:§gpcthe family memierpwhiZh de;icts th; search Corporation, Santa Barbara, California, June '79.

property. An experiment must be performed to measure {Dunsmore] H. E. Dunsmore, "The Influence of Program-
the development or maintenance aspect and then the ming Factors on Program Complexity,” Ph.D. diss., Dept.
metric is calculated for the programs used in the of Computer Science, University of Maryland, July ‘78,

experiment. Standard statistical methods may then be

used to determine the correlation. [Dunsmore & Gannon] H. E. Dunsmore & J. D. Gannon,

"Experimental Investigation of Programming Complexity,"
Proc. ACM-NBS Sixteenth Annual Technical Symposium:
Systems and Software, Wash., D. C., June '77,pp.117-125,

The second use of the family has been mentioned
before. The family may be viewed as a function from

parameters Into metrics. Given a software engineering [Elshoff] J. L. Elshoff, "An Analysis of Some Com-
aspect and data from an experiment, the parameters are mercial PL/1 Programs," IEEE-TSE June 1976.
manipulated in an attempt to maximize the correlation [Halsiead] M. Halstead. E1

. . y ements of Software Science,

Liements of Software Science

between the resultant metric and the aspect. This is Elsevier Computer Science Library, 1977,
exploratory data analysis. The analyzer must be X
careful not to become excessively detailed in the {Linger, Mills & Witt] R. C. Linger, H. D, Mills,
parameter changing as the result of the analysis is B. I. Witt, Structured Programming: Theory and
limited by the accuracy of the data. Having deter- Practice, Addison-Wesley, Reading, Mass. 1979,
mineg a candidate :et;ic, :; should be te:;edtagainst [McCabe] T. J. McCabe, "A Complexity Measure," IEEE-TSE
new data in a standard confirmatory experiment. Vol.], No. 4, Dec. 1976, pp. 308-320.

Current research takes the second approach where (McClure] C. L. McClure, "A Model for Program Com-
the aspect being studied is program changes during plexity Analysis," 3rd International Conference on
development. The number of changes has been shown to Software Engineering, May 1978, pp, 149-157.
be closely related to the number of errors [Dunsmore &

& . P. o Je

Gannon]. The structural complexity family with proper éS::ve:si Mzergo S:nzizntiﬂ;l W tP e:t;vena, S I;M
t proper statement distinctions has been yers . b. Lonstantine, Tuctur esign,” IBM

verses not prop Systems Journal, Vol. 13, No. 2, 1974, pp. 115-139,

implemented in the SIMPL-T [Basili & Turner] compiler.
SIMPL-T is a GOTO-less non-block language which
allows statement nesting. Loops may be abnormally
exited using the EXIT statement and RETURNs are
allowed at any point, SIMPL-T is used in many courses
at the University of Maryland. The experimental data
was collected from class projects ranging in size from
string manipulation routines to small compilers. The
string manipulation routines are being used for ex-
ploratory analysis. The analysis will begin by con-
sidering some of the metrics mentioned previously
{e.g., cyclomatic complexity, essential complexity,
number of statements) and others. The insights gained

15

