CALCULATION AND USE OF AN
ENVIRONMENT'S CHARACTERISTIC SOFTWARE METRIC SET

Victor R. Basill ! and Richard W. Selby, Jr. 2

! Department of Computer Science, Unlversity of Maryland, College Park, MD 20742, USA
2 Department of Information and Computer Selence, Unlversity of California, Irvine, CA 92717, USA;
was with the Department of Computer Sclence, Unlverslty of Maryland, College Park, MD 20742, USA

ABSTRACT

Since both cost/quallty goals and productlon en-
vironments dlffer, this study presenis an approach for
customizlng a characteristic set of software metrics to an
environment. The approach 1s applled In the Software
Englneering Laboratory (SEL), a NASA Goddard produc-
tlon environment, to 49 candidate process and product
metrics of 652 modules from six (51,000 — 112,000 line)
projects. For thls particular environment, the method
vlelded the characteristic metric set {source lines, fault
correctlon effort per executabie statement, deslgn effort,
code effort, number of I/O parameters, number of ver-
slons}. The uses examined for a characteristic metrle set
include forecasting the effort for development,
moediflcation, and fault correcilon of modules based on
historical data.

1. Introduction

Several metrics have been proposed to predlct pro-
duct cost/quality and to capture dlstinet prolect aspects
{8, 12, 18, 19, 21]. The effectlveness of the metrics In
capturlng what 1s Intended, however, has depended omn
the particular environment examlned {1, 4, 9, 10, 13, 17,
27, 28, 29]. A partleular software metric that has been
useful to characterize, evaluate, or predict aspects of soft~
ware development In one environment may have limlted
usefulness elsewhere. The dliferlng cost/quallty goals
among environments and the diverstty In methodology,
software type, etc. contrlbute to the lnconsistent perfor-
mance of metrles. Thus, 1t seems lnappropriate to at-
tempt to select a set of software metrles that have
unlversal effectiveness across all software environments.
The selectlon of a set of metrics approprlate for a partle-
ular envlronment must conslder s Indlvidual features;
that 1s, a metrlc set must be customlzed to a speclfic en-
vironment.

Sectlon 2 descrlbes the tdea of characteristle soft-
ware metric sets, Sectlon 3 presents an approach for cus-
tomlzlng a characterlstic set of cost and quality metrics
to an environment. The appllcatlon of the approach In a
software productlon environment 1s discussed In Section

4. Sectlon 5 Investigates the use of a characteristic.

metric set as a management tool. Section 6 presents the
concluslons from this work.

CH2139-4/85/0000/0386 © IEEE 1983

2. Characteristic Software Metric Sets

The successful management of sofiware prolects
reguires a dlverse range of capablllties, Including monitor-
Ing and contrelllng the evolving scoftware systemm and
forecasting the cutcome of the development. Techniques
that asslst In these management functions may lead to
more successful prolects, and possibly higher product re-
qulrement conformance and operatlonal reliabillty. The
ldea of a characterlstlec software metrle set supports
several aspects of software management.

A characteristic software metric set 1s a conclse
collectlon of metrics that capture distinet factors In a
software development/malntenance environment. A
characteristic metric set can be thought of as a vector of
metrics that represents different areas of lmportance In an
environment. Since both cost/quallty goals and produe-
tlon environments differ, the particular factors that are
captured by the metrics n the set will differ across en-
vironments. The calculation of a characteristlec metric set
should be based on the ‘partlecular cost and quality goals
in an environment, and reflect the Inherent differences of
an environment from others.

A, characteristic metrlc set may be used to 1)
characterize an environment, 2) compare an environment
with others, 3) monitor current projJect status, or 4) fore-
cast prolect outcome relatlve to past prolecis, when
metrtes In the set are avallable early In development.
Once the distinct factors In an environment's set are
determlined, the set then characterlzes what aspects are
important in the environment. Comparlng the charac-
teristle set of lfactors In one envircament with the sets of
other environments provldes a format to distingulsh and
contrast among them. WIthln an Indlvidual environment,
the actual values of the metrics In the set characterlze a
particular project or project subsystem. The change In
the metrle values durlng a p'rojectr can be used to monltor

. project status and Its change over time. The characteris-

tic set in conlunction wilth historlcal data can be used to
forecast the outcome of the current project relatlve to
past prolect outcome.

The goals for this study are threefold. 1.} Develop
an approach for customlzlng a set of metrles to particular
cost/quallty goals In a spectfic environment. IL.) Apply
the approach to calculate the characteristic set for the
NASA/SEL environment. I} Examine the usabllity of

declle.

the approach as a management tcol for predlcting out-
come of system parts.

3. Approach for Set Calculation

A proposed approach for calculating a characterls-
tle metrlc set conslsts of three steps: 1) formulate the
goals and questlons that represent cost/quallty factors In
an environment; 2} st all metrics that capture lnforma-
tlon relating to the goals and questions; and 3) condense
metrics Into a set capturlng distinet factors. Thls ap-
proach satisfles the two key aspects of customlzing a
characteristlc metrlc set to an environment: sepsitlvity to
the cost/quallty goals of Importance In the environment,
and capturilng the Peatures that give the environment lis
identity.

The first step is to generate a cost/quallty goal
and question framework for the environment on which to
base the generatlon of all potential metrles (see Flgure 1),
After the goals and questions have been speclfied for an
environment, all possible metrics are llsted that represent
relevant Information. These first two steps are an appll-
catlon of the goal-question-metric paradigm [6, 7}. Slnee
a software eanvironment ls In some sense deflned by the
projects 1t deveiops, applylng the metrics llsted to those
projects reflects an environment's ldentlfylng features.
The third step 1s to condense the ccllection of candidate
metrles Into a characteristle set. Factor analysls may be
applled to accomplish thls step [22, 24]. This data reduc-
tion task actually groups the metrics llsted according to
how they relate to the dlstinet factors In an environment.
Appropriate metrles that relate to each of the factors can
then be selected based on some criterta, such as ease of
calculation or phase avallabillty. In very heterogeneous
environments, cluster analysls [16, 24] may first be used
to ldentlfy demographleally simllar prolects or subsys-
tems, followed by factor analysis withln the groups. Sec-
tlon 4.3, “NASA/SEL Set Calculatlon,” describes the ap-
plicatlon of these steps In a software production envircn-
ment.

3.1. An Alternate Approach

An alternate approach to determining a small set
of characteristle metrics was examlned 1n [15]. In thls ap-
proach, twenty candldate complexity metrics were caleu-
lated on 585 PL/I procedures. The name of each pro-
cedure was put Into a large “‘complexity pot™” once for
each time the procedure appeared In the top deeclle of 3
candldate complexity metric. Slnce there were twenty
candidate metries, the name of a given procedure could
then appear up to twenty tlmes 1o the pot. The pro-
cedures ldentlfted by a single metric were then compared
with those In the total pot. For each appearance of a
procedure name in the total pot, a candidate metric was
awarded one polnt if that name was 1n the metric's top
The candldate complexity metric that scored the
highest would be selected for the characteristic set. All
occurrences of procedure names were then removed from
the pot that appeared ln the top declle of the first metrlc
selected. The scores for the metrles were then recalculat-
ed based on the remalning procedures and another metric

Filgure 1. Goal/question/metric paradigm.
Goals: /(il /(]32\ Gga
Questrons: Q, Q Qz Qg Qg
Metrics: M; M, M, M,

would then be selected, continuing untll no procedures
remalned 1n the pot.

This first approach for calculating a metrle set 1s
slmple and stralghtforward. HoWever, there are some
drawbacks resulting from the stmpllcity, includlng the
technlgque used to select metrics for the characteristic set
and a fundamental assumption In the calculatlon. Includ-
Ing a large number of highly dependent program metries
in the collectlon examined (e.g., the software “‘quantity”
group of executable statements, length, volume, vocabu-
lary, ...} increased disproportionately the number of ap-
pearances of routines commonly selected by that group in
the pot of "“complex™ ‘ programs. It 15 therefore no
surprise that the metrle that selected the greatest percen-
tage of the appearances in the pot 1s one member of the
“quantlty” “group (length). In each of the twenty pro-
gram metrics examlned, the top declle of programs was
chosen as the most complex accordlng to that metrlc.
This decislon relied on the lmplicit assumptlon that soft-
ware complexlty 1s a monotonically increaslng function of
each of the metrics, which 1s possibly troublesome.

Our paper presents an approach for calculating a
characteristlc set that advances the above approach by 1)
selecting candldate metrlcs based on an environment’'s
cost/quality goals, and 2) abstracting relationships (e.g.,
correlatlons) among (in)dependent metrles Into a set of
environmental factors. The use of values of characteristic
metries to 1dentify modules with partlcular attrlbutes,
such as those of high "“complexlity'’” as was done In [15], 1s
discussed In Sectlon 5.

4. Application in the NASA /SEL Environment

This sectlon describes- the NASA/SEL environ-
ment, the data collection, and the resulting characterlstic
metric set. ’

4.1. NASA/SEL Environment

The Software Englneerlng Laboratory (SEL} [2, 3,
11, 25] Is a Joint venture between the University of Mary-
land, NASA/Goddard Space Fllght Center, and Comput-
er Sclences Corporatlon. The purpose of the SEL has
been to provide an experimental database for examinlng
relatlonships among the factors that affect the software
development process and the delivered product. The
software comprlsing the database 1s ground support soft-
ware for satellites. The six systems analyzed Iln this
study conslsted of 51,000 to 112,000 lines of FORTRAN

" source code, and took between 6900 and 22,300 person-

387

hours to develop over a pertod of 9 to 21 months. There

are from 200 to 600 modules (e.g., subroutines) In each
system and vhe staff size ranges from 8 to 23 people per
project, Ineluding the support personnel. Anywhere from
10 to 61 percent of the source code 1s reused or modified
from previous projects.

4.2. Data Collection

. The data dilscussed In this study are extracted
from seversl sources. Among the data analyzed are the
effort to design, code, and iest the varlous modules of the
systems as well as the changes and faults that occurred
guring their development. KEffort data were obtalned
from a collection form that is filled out weekly by all pro-
grammers onr the project. They report the tlme they
spent on -each module In the system partitioned Into the
phases of deslgn, code, and test, as well as any other tlme
they spend on work related to the project, e.g., documen-
tatlon, meetings, etc. A module 1s defilned as any named
object In the system; that 1s, a module s either a maln
procedure, block data, subroutine or function. The faults
and changes are reported on another data collectlon form
that is completed by a programmer each time a change 1s
made to the system. A static code analysis program
called SAP [14] automatically compuied several of the
statle metrles examlined in thls analysis.

4.3. NASA/SEL Set Calculation

In the applleatlon of the appreach o the SEL en-
vironment, there were two major reasons to use Just six
recent projeets. First, changes and Improvements In de-
velopment technologles and personnel tend to be refiected
In the prolects developed (as they are Intended to be).
Therefore, the conslderation of prolects not recently com-
pleted would not be representatlve of the current environ-
‘ment. Second, several development environments do not
have a long history of data collection. Discussing an ap-
proach that required a large proJect database would have
little utlllty for them.

Three goal areas were defined for the SEL environ-
ment. The first goal area was o analyze the system de-

velopment effort. An example questlon under this goal 1s |

“What are the attributes of modules that result In high
development effort?”. The second goal area was 1o
analyze the system modificatlons. An example question
here 1s ‘*What are the attributes of modules that will be
difilcult to change?”. Analyzlng the system faulis was
the third goal area. An example gquestlon would he
“What are the atirlbutes of modules that will be fault-
prone?”. The generated list of metrlcs based on these
three goal areas appears In Table 1; a total of 49 metrics
was examined. The metrlcs are grouped according to the
general areas of slze/complexity f21], effort,

faults/changes, and software sclence [19]. The set nota-.

tion In the table slgnifles the ratlo of one metrlc over
another, e.g., amount of code effort was consldered alone
and divided by the amount of testing effort, overhead
effort, and total effort. In addition to belng examined
alone, several effort and faults/changes metrles were dl-
vided by slize/complexlty metrics.

From the slx projects, thls analysls focuses on 652

388

Table 1. List of measures examined In the SEL
environment.

Size/Complexlty Area

source lines (SRC)

executable statements (XQT)
comments

comments/SRC
Cyclomatic_complexity

calls

{Cyclomatic_complexity} over {XQT}

BEffort Area
total _effort
deslgn_effort
code_effort
testing_effort
{design_effort} over {code_effort}
{code_eflort} over
{testlng_eflort, overhead_effort, total_eflort}
{design_effort, code_effort, testing_effort} over {calls}
{destgn_eflort, code_effort} over {ng'}
{total_effort} over
{SRC, SRC-comments, XQT, calls}

Faults/Changes Area

verslon

total_changes

welghted_changes

total_faults

welghted_faults

{total_faults, welghted_faults} over {SRC, XQT}

Software Sclence

T g iy N1 N2/1, |

N N- v Vi L"
1/L° E B Ex B"

A

newly developed modules with complete data for the
metrics lsted in Table 1. The use of principal factor
analysis (with orthogonal varimax rotation) {22, 24} 1so-
lated a set of six distlnet factors, {size, modlfication and
fauls correction effort density, development effort, code
and test effort, 75, #verslons}, which are listed in des-
cending order of overall lmportance and cumulatively ex-
plalned 79% of the variance. The 5y metrle 1s the
number of 1/O parameters ln a module. Some approprl-
ate metries that relaved well to each of the factors In the
set, were a) slze — source llnes, executable statements, and
N (the total number of operators and operands); b)
modification and fault correction effort density fault
correction effort / executable statement; ¢} development
effort — design effort, total effort / executable statement,
and deslgn effort / subroutine call; d) code and test effort
— eode effort, code effiort / subroutine call, and test effort
/ subroutine call; e} 1, — ny; and f) #verslons — number
of module versions. Thus, a feasible characteristic metric
set for the SEL environment 1s {source Hnes, fault correc-
tlon effort per executable statement, design effort, code
effort, number of I/O parameters, number of versions}.

Table 2. Fraction of past SEL modules in the
upper guartlle of the dependent varlabies.
2a.) Module Development Effort

Characterlstic Quartile of Metric M.
Set Metrle M; Upper | Second | Third | Lower
code effort 74 .18 .04 .04
deslgn effort 56 18 13 .13
source llnes Sl .26 14 .09
S Ny .48 .24 17 11
verslon 44 37 .13 06
fault correctlon 41 .28 .15 .18
effort / XQT -
2b.) Module Modification Effort
Characterlstlc Quartile of Metrle M
Set Metrlec M Upper | Second [Third | T.ower
fault correctlon .65 .18 .08 09
effort / XQT
version .52 33 11 04
code effort .50 27 17 .06
source lines .50 .28 .13 .09
o 45 24 .23 .08
deslgn effort 41 25 .18 .17
2¢.) Module Fault Correctlon Effort
Characterlstic Quartile of Metrle M;
Set Metrle M; Upper | Second | Third | Lower
fauit correctlon 81 19 .00 .00
effort / XQT
verslon .50 .35 .12 .03
code effort 48 .29 .15 .08
source llnes 42 .33 14 11
N 42 .28 .19 11
design cfiort .36 .25 .20 .19

5. Use as a Management Tool

Although a characterlstic set has the several uses
outlined 1n Section 2, thls study focuses on the use of
metrics in the set to forecast the outcome of modules In
projects. Several studles have polnted to the unsatisfac-
tory use of metrles as direct predictors of software cost
and quality {5, 20, 26]. Thls Inadequacy motlvates the
use of software metrics from & new perspective — the ex-
amlnation of how well the metrics In the characterlstlc
set can ldentlfy system parts (or whole systems) resulting
in high or low cost/quality. System parts wish lnterest-

Ing cost or quallsy attributes nclude those with hlgh/low

development effort, high/low modlfication effort, or
high/iow fault correctlon effors.

An approach for uslng metrics to ldentify systein
parts having Interestlng attrlbutes is as follows. First,
select some lnteresting cost or quallty aspect of a system
part, such as the total development effort for a module.
Then, choose a set of modules that would be useful to
Identlfy, such as those modules that might eventually be
In a prolect's upper quartlle of total development effort.
MNext, from past prolects determine how often metrle

389

value ranges (e.g., guartiles) contalned modules that end-
ed up In the upper quartlle of development effort. Flnal-
ly, characterize and identify modules in a current projeet
that are likely, based on past metrlc data, to end up in
the upper guartile of total development effort. The calcu-
latlon of a characterlstic metrle set and the use of
corresponding metric data from past prolects is intended
to help ldentlfy Interesting modules In a systenl. -

5.1. Metric Data from Past Projects

The data displayved In Table 2 were calculated
from slx SEL projects, and are Interpreted as follows.
The table 1s dlvided Into three sectlons, corresponding to
the three SEL goal areas dlscussed above. There 1s a
table sectlon for each dependent varlable: total module
development effort, total effort for module modification,
and total effort for fault correctlon In a module. The
characteristic set of sly metrics that represent the
different environmental factors is listed ln each section of
the table. Conslder the sectton on total module develop-
ment effort. The table displays the fractlon of modules
contalned In the upper quartiie of total development
effort, based on their flnal quartile ramklngs for the

Table 3. Fractlon of past SEL modules In the
lower quartlle of the dependent variables.
3a.) Module Development Effort
Characteristle Quartile of Metrle M
Set Metrlc M, Upper | Second Third | Lower
code effort .00 00 23 77
source lines .10 12 24 .54
verston .08 J4 30 .50
Ty .06 .21 25 45
design effort .02 23 37 .38
fault correcticon .12 .25 32 31
effort / XQT
3b.) Module Modlficatlon Effort
Characteristlc Quartlle of Metrle M,
Set Metrle M; | Upper Second Third Lower
version .08 .15 28 A48
fault correctlon .01 .13 43 43
effort / XQT
g .14 19 25 42
source llnes A1 .18 .30 A1
code effort 11 18 34 - 37
design effort .18 .28 27 27
3¢.) Module Fault Correctlon Effort
Characterlstic Quartile of Metric M
Set Metrle M; Upper | Second | Third | Lower
fault correctlon .00 00 50 .50
effort / XQT ‘
verslon 18 .18 27 .37
source lines 21 .19 29 .31
code effort 18 .24 27 .31
(N 20 24 25 .31
design eflfort 18 .25 28 28

characteristic metrics. For example, 749 of the modules
In the upper quartile of code effort were also In the upper
quartlle of total module development effort. Only 99 of
the modules In the lower guartlle of source lines were In
the upper quartile of total development effort. The In-
terpretation 1s the same for the other dependent variables
of module modification effort and module fault correction
effort. Tabie 3 1s analogous to Table 2, exeept 1t dispiays
the fraction of modules consalned In the lower (instead of
the upper) quartlle of the respecilve dependent wvarlable.
For example, 509 of the modules In the lower quartile of
number of verslons were also ln the lower quartile of total
module development effort.

~ 5.2. Data Interpretation

The informatlon In these tables could be used to
forecast the outcome of modules In a system. At the end
of the design phase, the 1; metric and the amount of
effort spent In deslgn are known. The modules In the
upper quartile of deslgn effort should be ldentlfied by a
project manager because 56% of these modules ended up
In the upper quartile of total development effort. That 1s,
In this environment the modules In the upper guartlle of
deslgn effort were more than twlee (=.58/.25) as likely
than by chance to be the most expensive to develop
overall; these modules were approxlmately 28 {(=.58/.02)
times more Nkely to be in the upper quartlle of total de-
velopment effort than to be In the lower quartlie of total
development effort. Modules In the upper guartile of the
7, metric were almost twlce as likely than by chance to
require the most effort to develop, modify, and correct.

Other observations Include 1) 1t is easlest to ldentity
those modules that wlll have high development effort; 2

. 1v s most difficult to ldentlfy those modules that wili re-

quire little fault correction effort; and 3) the metrics of
design effort and 712* are reasonably simllar In forecastlng
abillty, except that 7, seems superlor In ldentifying
modules that wlll require llttle modification effort.

The two tables help characterize the SEL develop-
ment environmeni. The total development effort for a
module” tends to be indicated by the module's codlng
effort — modules In the extreme quartlles of coding effort
are three times more llkely than by chance to be n the
correspondlng extreme gquartlles of total development
effort. Since the programmers in the SEL are qulte ex-
perlenced In the applicatlon area and with appropriate
design approaches, the dominance of codlng effort seems
reasonable. In other environments, the amount of destzn
effort might better lndleate the total development effort
required. Other observatlons laclude 1) high density of
fault correction effort (fault correction effort per execut-
able statement) Indlcates high total modificatlon eflort
and hlgh total fault correction effort; and 2) an extreme
(high or low) number of program verstons reflects a
correspondlng amount of modificatlon effort and correc-
tlon effort.

Ideally, the metrics In the characteristlc set would
all be avallable early In development and have strong re-
latlonships with the dependent varlables of Interest.
Some metrics, such as fault correctlon effort per execut-

able statement, have limlted usefulness as a predictor be-
cause of not being avallable untll late in project develop-
ment. An assumptlon is needed In order to use metrle
data from past projects to forecast the outcome of
modules from a current prolect. The assumption Is that
the relationshlp between z module's current metric quar-
tlle and 1ts eventual outcome (e., development,
modification, and correctlon effort) Is the same as the re-
latlonship between the final metrle quarttles of past pro-
jects’ modules and thelr outcome. This assumption 1s
reasonable when using data from recent projects that are
slmilar to the current project, and when predicting from
metrles whose flnal quartlles are reasonably certaln early
In development (e.g., the number of I/O pdrameters In a
module tends to remaln relatlvely constant once specified
In the deslgn phase, and therefore, the metric’s value does

not tend to change quartiles). Note that the examples
and metric data presented are from a particular environ-
ment, project data from other environments may differ.

Using a characterlstle metrle set with correspond-
Ing data from past projects enables the monltoring of a
small set of customized metrics to forecast current project
outcome. A characterlstle set Is usable as a management
100l as socon as the metrics in the set are avallable,

6. Conclusions

A characterlstlc software metric set 1s Intended o
help support the ¢flective management of software devel-
cpment and mailntenance. The approach examined for
bulldirg a characterlstle metrlc set Is adaptable to
different cost/quality goals and to different environments.
The calculatlon and use of the set eouid be coupled to an
aytomated prolect monltor and database. The major
resuits of this study are 1) an approach has been
descrlbed for customlzlng a characteristle software metric
set to an environment; 2) the applicatlon of the approach
to the SEL productlon environment ylelded the charac-
terlstle software metrle set {source Hnes, fault correction
effort per executable statement, deslgn effort, code effort,
number of I/O parameters, number of verslons}; and 3)
the use of a characterlstle metric set with correspondlng
historleal data can asslst in project management by fore-
casting the outcome of system parts.

Further investigatlon In thls area lncludes incor-
poratlng the characterlstlc metric set data {from Seetjon
5) into a knowledge-based system. A statistleal pattern
classlficatlon scheme [23] 1s under conslderation, although
such an approach applles Bayes' Theorem and would as-
sume Independence among the metries 1n the characterls-
tle set. In this envircoment Independence between, for
example, deslgn effort and number of 1/0O parameters is
reasomable, while Independence between source llnes and
code effort Is questlonable. A knowledge-based system
that could use Information from several metrics simul-
taneously would characterlze system parts more
effectlvely and forecast thelr outcomes more precisely.
Thls work Is Intended to advance the understanding of
the use of varlous metrics 1o characterize and predlct as-
pects of software cost and quallty.

390

7. Acknowledgement

Research supporied 1n part by the Alr Force Offlce
of Sclentific Research Contract AFOSR-F49620-80-C-001
and the Natlonal Aeronauties and Space Adminlsiration
Grant NSG-5123 to the Unlversity of Maryland. Com-
puter support provided in part by the Computer Sclence
Center at the University of Maryland.

8. References

1]

(2]

(3]
(4]

5]

6]

(7]

9l
[z0]

[11]

f12]

[13]

J. W. Bailey and V. R. Basili, A Meta-Model for Software

V.

V.

Development Resource Expenditures, Froc. Fifth Int
Conf. Software Engr., San Diego, CA, pp. 107-116, 1981.
R. Basili, M. V. Zelkowitz, F. B. McGarry, R. W. Reiter,
Jr., W. F. Truszkowski, and D. L. Weiss, The Software
Engineering Laboratory, Software Ene. Lab.,
NASA/Goddard Space Flight Center, (Greenbelt, MD,
Rep. SEL-77-001, May 1977.

R. Basili and M. V. Zelkowitz, Analyzing Medinum-Scale
Software Developments, Proec. Third Int. Conf Software
Engr., Atlanta, GA, pp. 116-123, May 1978.

Victor R. Basili, Tutorial on Models and Metrics for Softwere

B.

Management and Engineering, IEEE Computer Society,
New York, 1980.

. R. Basili, R. W. Selby, Jr.,, and T. Y. Phillips, Metric

Analysis and Data Validation Across FORTRAN Projects,
IEEE Trans. Software Engr. SE-9, 6, pp. 652-663, Nov.
1983.

. R. Basili and R. W. Selby, Jr., Data Collection and

Analysis in Software Research and Management, Proceed
ings of the American Statistical Association and Biometric
Soctety Joint Stetisticel Mectings, Philadelphia, PA, Au-
gust 13-16, 1984,

. R. Basili and D. M. Weiss, A Methodology for Collecting

Valid Software Engineering Datax, Trens. Softwere Engr.
SE-10, 6, pp. 728-738, Nov. 1084. .

. A. Behrens, Measuring the Productivity of Computer Sys-

tems Development Activities with Function Points, [EEE
Trans. Softwere Engr. SE-9, 8, pp. 648-651, Nov. 1982.
W. Boehm, Software FEngineering Economice, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

W._ D. Brooks, Software Technology Payoff: Some Statistical

D.

Evidence, J. Systems and Software 2, pp. 3-9, 1981.

N. Card, F. E. McGarry, J. Page, 8. Eslinger, and V. R.
Basili, The Software Engineering Labcratory, Software
Eng. Lab., NASA/Goddard Space Flight Center, Grean-
belt, MD Rep. SEL-81-104, Feb. 1982,

. ‘T. Chen, Program Complexity and Programmer Produe-

tivity, IEEE Trens. Software Engr., pp. 187-194, May
1978.

. Curtis, S. B. Sheppard, and P. M. Milliman, Third Time

Charm; Stronger Replication of the Ability of Software
Complexity Metrics to Predict Programmier Performance,
Proc. Fourth Int. Conf. Software Engr., pp. 356-360, Sept.
1979.

[14]

[15]

(18]

(17]

{18

1]

[20]

{21]

f22]

[23]

[24]

[25]

[26]

. [27]

391

(28]

29}

W. J Decker and W. A. Taylor, FORTRAN Static Source

T.

Code Analyzer Program (SAP) User's Gaide (Revision 1),
Software Eng. Lab., NASA/Goddard Space Flight Center,
Greenbelt, MD, Rep. SEL-78-102, May 1482

. L. Elshoff, Characteristic Program Complexity Metrics,

Proc, Seventh Int. Conf. Software Engr., Orlando, FL., pp.
288-293, 1984.

. 8. Everitt, Cluster Analysis, Znd ed, Heineman Educa-

tional Books Ltd., London, 1980.

. R. Peuer and E. B. Fowlkes, Some Results from an Em-

piriéal Study of Computer Software, Proc. Fourth Int
Conf. Softwere Fngr., pp. 351-355, 1979.

. E. Gaffney and G. L. Heller, Macro Variable Software

Models for Application to Improved Software Develop-
ment Management, Proc. Workskop on Quantitative Sofé-
ware Models for Reliability, Complezity and Cost, IEER
Comput. Society, 1980.

. H. Halstead, Elements of Software Scignce, North Hol-

land, New York, 1977,

. (3. Hamer and <. D. Frewin, M. H. Halstead’s Software

Science - A, Critical Examination, Froc. Stk Int. Conf
Software Engr., Tokyo, Japan, pp. 197-206, Sept 13-16,
1982,

J. McCabe, A Complexity Measure, IEEE Trans. Software
Engr. SE-2, 4, pp. 308-320, Dec. 1676.

8. A. Mulaik, The Foundations of Factor Analysis, McGraw-

J.

Hill, New York, 1972.

A. Reggia, Knowledge-Based Decision Support Systems:
Development through KMS, Ph.D. Dissertation, Dept.
Com. Sci., Univ. Maryland, College Park, Tech. Rep.
TR-1121, Oct. 1981, '

Statistical Analysis System (SAS) User’s Gulde, SAS Institute

Ine., Box 8000, Cary, NC, 27511, 1982.

Annotated Bibliography of Software Engineering Laboratory

(SEL) Literature, Software Eng. Lah., NASA/Goddard
Space Flight Center, Greenbelt, MD Rep. SEL-82-006,
Nov. 1982.

Y. Shen, 8. D. Conte, and H. E. Dunsmore, Software Sci-
ence Revisited: A Critical Evaluation of the Theory and
Its Empirical Support, Trans. Software Engr. SE-9, 2,
pp. 155-165, March 1933.

. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec,

S. Hoben, and Y. Lin, Productivity Factors and Program-
ming Environments, Proe. Seventh Inf. Conf. Software
FEngr., Orlando, FL, pp. 143-152, 1984.

. E. Walston and C. P. Felix, A Method of Pregramming

Measurement and Estimation, IBM Systems J. 18, 1, pp.
54-73, 1977,

. C. Zolnowski and D. B. Simmons, Taking the Measure of

Program Complexity, Proc. National Computer Confer-
ence, pp. 329-336, 1981.

