The Software-Cycle Model for Re-Engineering and Reuse

John W. Bailey*
Victor R. Basili
The University of Maryland
Department of Computer Science
College Park, Maryland 20742

*also consultant with Rational, 6707 Democracy Blvd., Bethesda, Maryland 20817

Abstract

This paper reports on the progress of a study which will
contribute to our ability to perform high-level,
component-based programming by describing means to
obtain useful components, methods for the configuration
and integration of those components, and an underlying
economic model of the costs and benefits associated with
this approach to reuse. One goal of the study is to develop
and demonstrate methods to recover reusable components
from domain-specific software through a combination of
tools, to perform the identification, extraction, and
" re-engineering of components, and domain experts, 0
direct the application of those tools. A second goal of the
study is to enable the reuse of those components by
identifying techniques for configuring and recombining the
re-engineered software. This component-recovery or
software-cycle model addresses not only the selection and
re-engineering of components, but also their recombination
into new programs. Once a model of reuse activities has
been developed, the quantification of the costs and benefits
of various reuse options will enable the development of an
adaptable economic model of reuse, which is the principal
goal of the overall study. This paper reports on the
conception of the software-cycle model and on several
supporting techniques of software recovery, measurement
and reuse which will lead to the development of the desired
economic model.

Motivation and Scope
Motivation for the development of an expert-assisted but

highly structured and highly automatable model of software
information capture and reuse stems in part from the

Permission to copy without fee all or part of this material
el th

1 % nted provi at the copies are not made or
sin _ulcd or direc comrr\crcx la va%(.s e, the A
copyng litalion and its date

t xéoucq angd the utle of the pu
a?%c\ar,an notice 1s gcn that ¢o; fx £ 15 by permission
ol the Assocxauorhfo% omputing Mac, xgsry. [o) ctogy
olherwise or republish, requires a fee and/or specify
permussion.

©1991 ACM 0-89791-445-7/91/1000-0267 $1.50

267

recognition of the difficulty of using purely programming

. component-based approaches to reuse libraries.- For certain

kinds of objects and components a strict programming
component-based library is adequate. The success of
object-oriented and object-based approaches have been the
most notable in this regard. However, the inability for such
libraries to capture a sufficient amount knowledge to
dramatically reduce subsequent software development costs
in a general and problem-independent way has also been
observed. On the other hand, models of software reuse
which utilize domain experts in pervasive and undirected
ways are also unlikely to provide a complete solution due
to the large amount of responsibility and effort which is
centralized in the contribution of such experts. The present
work provides a structured model of information
identification and reuse which is both feasible and suitable
for further development and refinement.

Using the Ada language, this paper provides examples of
techniques for choosing, re-engineering, and recombining
components into programs. It also describes rudimentary
methods for quantifying the effort to extract reusable
components from existing programs as well as the effort to
recombine them into new programs. It does not include the
cataloging and retrieval of components, nor does it include
a mechanism to quantify reusability based on
empirically-derived frequency-of-use measures. It does
model a preposed cycle of software development, use,
re-engineering, and reuse, but it does not attempt to model
other aspects of reuse within a software development
environment, such as pure knowledge and experience.
Other recent research papers and technical reports have
covered this larger scope [Basili and Rombach], [Basili and
Caldiera). '

Introduction

"~ Any component of software is seen to be composed of

many functional and declarative details, some of which
pertain to the specific problem being solved by the program
containing that component, some of which pertain to the
general application domain of the containing program, and
some of which pertain to neither the problem nor the

domain, but rather define the essence of the component’s
function in the abstract. Therefore, to dircct the selection
and re-engineering of components of software, three levels
of functional specificity of the software which constitutes
any component are defined: 1) problem-specific details
which would be likely o differ between this and another
similar application in the same domain, 2) domain-specific
details which are not likely to differ between this and
another similar application in the same domain but which
would be unlikely to be appropriate outside of this domain,
and 3) essential aspects which comprise the abstract
functional core of the component and without which the
component would be meaningless.

The three levels cannot be absolutely defined, nor can a
given detail be deterministically assigned to a level, since
from different points of view, a given detail could be
thought of as belonging to different levels of specificity.
Two analyses of a given component could possibly identify
different sets of details at each of the three levels.
However, an analysis of a candidate component for the
purpose of directing the re-engineering and reuse processes
must assign each identifiable detail to one of the three
levels.

Once specificity levels have been assigned to all details of
a candidate component, a measurement of the effort
required to remove each of the problem-specific details is
obtained in order to estimate the total effort to generalize
the component for reuse within its domain. Further, a
measurement of the effort required to remove each of the
domain-specific details is obtained in order to estimate the
total effort to generalize the component for reuse in other
domains. If these measurements show the
cost-effectiveness of either of these generalizations, then
the candidate component is suitably generalized and placed
in either a domain-specific or domain-independent
repository, as is appropriate. -

In order to assign specificity levels to all the constituent
details of a candidate component, domain experts may have
to be consulted. However, automation to support the
identification of the details and to support the component
‘generalization through their removal can be used to
streamline the process. Further, there may be ways to
capture the domain experts’ decisions and the reasons for
them, in order to partially automate or support any
subsequent decision making which follows similar patterns.

To support the generalization process and its quantification,
three styles of software component reuse which are
currently being practiced are identified and examined for
their adaptability to the model. These reuse styles are
termed layered, tailored, and generated reuse. Examples
illustrating them, and demonstrating how they are related
by an underlying dimension of generality, are shown.

268

Along with these examples, proposals are given for how o
measure the amount of re-enginecring required to derive
components suitable for the different methods of reuse, as
well as the amount of effort required to recombine
components using the different methods. As effort is
expended to make a component more general, more
opportunitics to reuse it become available, However, each
of those reuse opportunities will have to resupply the
specifics required for the reusable component to perform its
function in the new context, implying an amount of reuge
effort which is proportional to the degree of generality of
the component. :

Therefore, an economic equation presents itself, which is
how to optimize the sometimes competing factors of
generalization effort, reuse effort, and breadth of utility,
The solution to this equation will have to wait until more
work is done on the probability of reuse for a given
generalization, and other factors. Rather hard questions
figure in to this equation, such as the cost-benefit of
constraining a solution to take advantage of an available
component (which amounts to establishing and following
standards) as opposed to developing a more suitable one,
and even the cost of classifying, storing and retrieving
components. - Developing a framework for an economic
model which captures these factors is the first Step to a
greater understanding of these issues. The last section
relates the activities defined in the software-cycle process
model to this economic model of reuse.

- The Software-Cycle Model

This section describes the model of software development
which underlies this study. The model proposes the
recycling of existing software into components which can
be combined into new programs. This proposed sofrware
cycle takes place in the context of a software development
organization and allows effort already applied to the
creation of previous programs to be recaptured and used to
reduce the effort needed to create new programs. This
software-cycle model is consistent with models of
experience capture and flow within a development
organization as described by [Basili and Rombach] and
[Basili and Caldiera]. It describes in detail, and proposes
an implementation for, one aspect of the more
comprehensive experience factory described in those
studies. :

The software-cycle model is so-named to describe the flow
of information and experience, in the form of software, into
newly developed programs where it can be recovered and
packaged for efficient reuse in subsequently developed
software programs. The capture and reuse of information
at the delivery point of the conventional software lifecycle
is clearly not the only time at which such information is

accessible. However, this approach is chosen because at
the time that software is delivered, the information is
packaged in a concrete form (software programs) which
can be analyzed and manipulated. Also, a substantial
amount - of information may be available from
previously-developed programs which is not recorded in
any form other than the delivered software. Further, by
instituting an approach which applies effort to capture
reusable information at this stage, the software
development organization has the choice to separate the
information recovery and repackaging from the effort to
develop the software, and to conduct those activities
independently and in parallel. So, for pragmatic reasons,
the present model of information flow in a software
development organization uses developed software as the
main source for recoverable information. (See also
[Caldiera and Basili].)

3. Component repository:
Store general components,
devoid of problem-specific
detail, allributed with
quantitative reusability

information

5. Reuse: Select and

instantiate components,
identify deficiencies

I

[]

repository

new
programs

| —

— e by ——
4. Creste: R R
independently- . e — _—
develop components ZR'em':e:"Q'":f‘- e
in a reuse-guided . c"Y d°'°_le"" - ——
manner in order to pe ,b"’ T““s' —_—
fill deficiencies, or possibly aiso
as calied for by :°""ﬁ'"'599°"'c selected
process 5 etails components! | existing

1 programs

1. Fitter for candidate components.
using measuremen) and analysis of
non-general details

Figute 1. The processes nvolved in the Sottware-Cycie Model

As shown in Figure 1, existing programs are examined for
candidate reusable components. For the purpose of this
study, a component can be any definable portion of
software. Obvious examples are individual, or sets of,
subroutines, subprograms, functions, paragraphs, packages,
or other structuring features of the software language in
use. A re-enginecred component can be any of these,
although it can also be nothing more than a template or a
set of instructions for a software generation routine,

A re-engineered component can be intended either for
reuse only within a particular domain or reuse across many

269

domains. If a component is only intended for reuse within
a domain, its re-enginecering seeks to remove any
problem-specific details from it, but to allow any
domain-specific details to remain. Such components are
termed domain-specific components. If a component is
intended for reuse across domains, however, then its
re-engineering would attempt to remove all
domain-specific details as well as the problem-specific
details, leaving only essential function, This kind of
component is termed a domain-independent component.
Leaving a component insufficiently general to be used
across domains obviously limits the number of
opportunities it might enjoy for reuse. However, there are
significant compensating advantages. A domain-specific
component retains more details which then do not have to
be resupplied by the reuse client. Also, the generalization
effort to reach only problem-independence is usually less
than the generalization effort required to reach
domain-independence. So, by accepting a constrained
reuse scope, a component can be easier to generalize as
well as easier to reuse.

A candidate component for re-engineering is one which has
identfiable problem-specific or domain-specific details and
which .can be feasibly re-engineered to eliminate the
presence of some or all of those details. A domain expernt
may be needed to differentiate between problem-specific
and domain-specific details, and measurement of the
estimated generalization effort is needed to determine the
feasibility of the re-engineering. Some components may be
candidates to yield a domain-specific component after
re-engineering but not a domain-independent component.
Other components may be candidates to yield
domain-independent components (possibly in addition to
domain-specific components), while still others may not be
good candidates to yield either category of reusable
component.

The goal of reuse re-engineering is to be able 1o isolate and
then to replace the problem-specific and/or the
domain-specific aspects of a component so that it can be
made to operate in different contexts. A component might
be viewed as a blend of general function, which defines its
essence, and specific function which relates to the current
context or declarations on which the general function is
performed. This is shown graphically in Figure 2a. The
general function, shown in light grey, is that which is
essential to the component or that which defines the nature
of the component. The specific function, shown in dark
grey, can either be problem-specific or domain-specific.
As mentioned, it may be necessary to consult domain
experts to distinguish between a problem-specific detail
and a domain-specific detail. However, given a sufficient
body of experience, it may be possible to predict the
specificity of a detail via a predictive function that is
tailored by previous expert decisions, ‘or by statistical

analyses of several similar components in the same domain,

Candidate component

Essential tunction

Generalizable detalls

. Figure 2a.

Typical candidate component, showing that it is a combination of
essential function which defines the component and problem-specific
or domain-specific details which can polentially be generalized in
order to re-engineer the component into a more reusable one.

Ons possible Inpgtantiation

only essential
function remalns

Re-engineered component

Figure 2b,

After re-engineering, the essential functionality remains in the i
reusable component but problem-specific or context-specific details
are eliminated and become the responsibility of the reuser 10 provide.
One possible instantiation could result in the original component again.
but many other instantiations are now possible

Figure 2b shows an imaginary candidate component which
contains both essental function, which is general, and
specific details which, if altered, could allow the
component o contribute its functionality in different
contexts. These specific details, shown in dark grey, have
been removed from the body of the component to signify
that they are now viewed as only one of potentially many
possible instantiations of the remaining, general
component. The re-engineering process of the
software-cycle model seeks to locate and remove these
non-general aspects (either only the problem-specific
aspects or, possibly, the domain-specific aspects as well)
and to relegate them to the responsibility of the reuser as
part of the component’s instantiation. The techniques for
the removal of these details are discussed as part of the
section on re-engineering techniques which follows. It will
be shown there that the re-engineered component does not
need to be expressed in the programming language of the
original candidate component which was used to produce
it It might be a pre-processable component or a
component generator which can be used to produce

270

components when necessary., In these cases, it is the
template or the generator that is reusable, since any
subsequently required components would be produced on
demand and would not, themselves, be considered reusable,

Separated and re-engineered (generalized) components are
stored in a repository to be made available to the
developers of new software. Similar to the process of
consulting domain experts when categorizing the details
which need to be generalized out of candidate components,
repository experts may have to be consulted to assist in the
location and instantiation of required components in the
repository. Repository experts could possibly choose from
among various schemes to satisfy the needs of a developer.
Certain choices might provide more utility but might come
with more restrictions or limitations of options. Also, the
repository expert might choose from different methods
arrive at functionally the same result to the requesting
developer, for example by either generating the software or
by providing a tailorable component,

Components in the repository are attributed with
measurement information describing the expected-effort to
instantiate them for reuse. In many cases, this instantiation
becomes the responsibility of the reusing developer, for
example- when the component is already a structural
component in the developer’s language of choice and
simply must be supplied with actual parameters to serve the
developer’s need. In other cases, the instantiation can be
the responsibility of the repository expert, who might have
to produce components for the developer from templates,
rules, instance specifications, and generator programs. In
either case, the measurement attribute of a component will
guide its users when deciding whether to select it or not,
and how much effort to expect to expend configuring it for
reuse,

A request for software components might be unfillable
given the current state of a repository. In this case, the
repository experts can work with the developer to design
and create a new component which will not only serve the
current need but which will become an instant candidate for
insertion into the repository, with a minimum of
re-engineering. - Or, gaps in the capabilities of the
repository can be identified by the experts prior o a
specific need, and special developments can be guided,
specifically for the purpose of supplying components to fill
those gaps. In the software-cycle model, any new
development is done with reuse in mind, specifically with
an eye toward further populating the component repository.

Neither of these last two topics, the selection of
components from a repository and the direct development
of components rather than through re-engineering, are
currently part of the study, They are mentioned here in
order to complete the software cycle depicted in Figure 1.

The major emphases of Lhc study are the 1denuﬁcanon of
candidate reusable components from among existing
software, the re-engineering of those components to
improve their generality, the measurement of those
processes, and the development of an economic model

which can assist an organization in opnmxzmg its software
cycle costs.

Reuse Modes and Methods

By studying the dependencies among software elements, a
determination can be made of the reusability of those
elements in other contexts. For example, if a component of
a program uses or depends upon another component, then
the first component would not normally be reusable in
another program where the second component was not also
present. On the other hand, a component of a software
program which does not depend on any other software can
be reused in any context (ignoring for the moment whether
or not it performs any useful purpose in that context). The
issue of software independence is at the heart of this study.

It will be seen that increased independence of a software
component often comes at the cost of functionality. The
ideal software reuse re-engineering process would provide
& means of preserving all of the function or utility of a
component while also making it independent of
problem-specific or domain-specific details. However, this
is not possible in most cases since some of the desired
functionality is likely to be captured by those specific
details, and removing the details will remove that
functionality, This study describes a compromise solution,
which is first to generalize a component, and then to
systematize the means to configure it in order to restore the
specific function required in a particular context of reuse.

A scheme to maintain generalized, reusable components in
a repository, in addition to a means of configuring them in
different ways for different domains or contexts, enables a
repository with a manageable number of components to be
described. Without the ability to instantiate a given
component in different ways for different usages, a
repository would have to contain many times as many
assets in order to serve the same need. In order to avoid
this problem, this work recommends storing fewer
components, each of which is sufficiently general to be
able to operate in various contexts, and then providing
methods to instantiate them to provide functionality in
those contexts.

By examining existing successes in software reuse, it can
be seen that there are three different but related ways of
making software components which are gencral and
independent, and yet which remain capable of being
instantiated with problem-specific details. An important

271

premise of this work is that software which is general in
these ways does not necessarily need to be developed
directly. Instead, it is often possible to re-engineer existing
software so that it achieves the necessary independence.

For this study, the three modes are termed layered,
tailored, and generated. Each mode describes components
which can be combined to develop larger programs.
However, a tailored component can be made more flexible
and general than a layered component and a generated
component can be the most flexible and general of all. On
the other hand, a layered component is the easiest to reuse,
requiring the least effort on the part of the client to
incorporate it into a program, while a generated component
is the most difficult to reuse.

What all of these techniques strive for is the absence of
dependence from the reused software on external
declarations, which would hamper the generality of the
software. In other words, a component of reusable
software should ideally not be expected to "know" about
declarations and other components which are
problem-specific. A reusable resource which requires the
reuser to also include other common denominator
components, which contain needed declarations, is not as
reusable as one which has no such requirements.

Within the confines of a single domain, however, certain
dependencies can be tolerated, since the users can be
expected to guarantee the minimum required declaration
space across all occurrences of reuse of a component. This
result opens up vast new ranges of possibilities, since the
generality of a component need no longer be absolute but
rather need only be general with respect to a certain domain
or domains. No expectation of generality within other
domains is maintained. Domain-specific reusability
implies a certain amount of built-in dependence whereas
wide-scale reusability or generality precludes this
possibility. By allowing domain-specific constraints, the
possibilities for identifying reusable components expand
enormously but the breadth of applicability for each
component is limited to that domain.

Layered Reuse

Layered reuse is used to describe the case where reusable
functions or operations are viewed simply as abstract
primitives which are callable from within the language of
the client. A math library, probably the most commonly
cited example of reuse, and one which is often viewed as
an ideal, is an example of layered reuse. Analogous to a
math package, other common examples are packages of
utilities which operate on universal types or concepts, such
as string handling utilities and time utilities. Other
successes in layered software reuse include user interface

or /O toolkits, graphical display toolkits, runtime kemels,
and layered network protocol software.

Layered reusability is often viewed as the goal for a library
of reusable components, where a sufficiently rich set of
abstract operations would be available to an applications
programmer in order to minimize the effort required to
generate a new system. In addition to the previously
mentioned independence from other components, an
additonal recommendation for the success of a layered
component is that the data on its interface be expressed in
terms of standard types. This restriction allows the client
software to communicate with the reusable component

without the additional complexity of adhering to specific -

non-standard types. One reason that a math library is so
inherently reusable, for instance, is that real numbers are a
-universal way of expressing the values used by and
returned by the mathematical functions in a library. Any
language which supports real numbers can-make available
a corresponding set of mathematical functions.

However, unlike the portability enjoyed when restricting
one’s domain to a universal concept such as real numbers, a
considerable amount of software which might otherwise be
available for reuse is written to operate on problem-specific

types and data structures. This is the case whether those.

types are named and declared as in Pascal or Smalltatk, are
common data areas as in Fortran, or are merely locations in
memory as in assembly language. Components can still be
written in a layered manner but in these cases they typically
depend so heavily on specific data structures that they are
limited to being reused only where identical data structures
or other operands are present. It is not always possible to
parameterize a component with respect to all of its
assumptions about context. Because of these limitations on
the applicability of a layered component, constructing
comprehensive reusable libraries of them in languages such
as Ada has been harder than might have been expected.

Tailored Reuse

Another category of successful reuse is tailored reuse,
where configuration of the reusable software is required in
order to allow it to interoperate properly with the client
software. A familiar example of such reuse is seen with
database management systems which require tailoring in
order to handle records of the user-defined structures.
Simpler examples of tailored reuse are generic data
structures which allow the client software to create stacks,
queues, lists, etc., of application-specific types or to search
through or sort objects of those types. Still other examples
of tailored reuse are forms management systems which are
customized by parameterization, expert systems which
must be initialized with rules, spreadsheets which must be
supplied with formulas, and statistics packages which must

272

be provided with data sets and programs to achieve the
desired results.

Tailoring in this way is accomplished before the
component is called, but it happens automatically at
execution time as part of the language behavior. Whereas
in layered reuse a client simply calls a component with the
proper parameters, tailored reuse implies a two-step
process where a component is first molded to the specific
configuration required by the current context and is then
called to perform its function.

The generic feature of Ada allows certain kinds of
tailoring, in the form of generic parameterization, to be
accomplished. Because of the static checking enforced by
Ada, however, only a limited amount of parameterizations
are possible. Other languages have different mechanisms
for accomplishing this parameterization. Most notably,
assembly languages employ very flexible macro
expansions which can be quite powerful. However,
object-oriented languages have traditionally used a more
flexible form of layering (full inheritance) while
overlooking the possibility for component
parameterization. (Future revisions to C++, however, are
expected to include a template mechanism to allow
within-language tailoring [Ellis and Stroustrup].)

Generated Reuse

The third category of reuse, generated reuse, occurs when

" the reusable software is used as a generator program rather

than being incorporated directly into the final application.
The required software is emitted as a result of the generator
program operating on input tables or files. Typically, only
the generator and not the generated software is reused. The
generated software is regenerated, as opposed to being
modified directly, if changes are required. Whereas
layéred and tailored reuse take advantage of
language-supported features (subprograms and generics in
the case of the Ada language) generated reuse requires
additional tooling to accomplish a kind of tailoring which is
external to the implementation language.

A common example of generated reuse, which perhaps
stretches the definition somewhat, is a compiler, which
accepts files of a high-order language and emits software in
a machine-executable form. One reason that it may seem
unconventional to think of a compiler as reusable software
is that its output is not directly manipulated or even
observed by the compiler’s users. Nevertheless, it fits the
definition here for generated reuse (which could be thought
of as a batch form of tailored reuse).

Other common examples, where the generated output is
more likely to be manipulated or at least observed by the

,users of the generator, are fourth-
user interface generators, test case generators, parser
generators and table-driven forms management systems.
At least one large Ada development is making substantial
use of generated reuse in an MIS system development,
through the use of a specially-developed generator [AIC].

Table 1 is a summary of the modes of software reusc
described and the examples mentioned for each.

Layered:
Math libraries
Common utilities packages
User interface or /O toolkits
Graphics kernel systems
Runtime kemnels
etwork layered software

Tailored:
Database management Systems
Forms management systems (runtime configured)
Expert systems
Spreadsheets
Statistics packages
Generic data structures

Generated: : :
Forms management systems (file driven)
User interface generators
Test-case generators
High-order languages
Fourth-generation languages
Parser generators
MIS systems

Table 1. Reuse Modes and Examples

The distinctions between these categories can sometimes
become blurred. For example, whether a reusable package
is configured at run time by parameterization (tailored) or
in advance by tables such that it emits a separate program
(generated) may not be of any real consequence. In fact,
the examples given in one category often have analogs
which exist in the other category. For example, forms
management systems already exist in both generated and
tailored versions. Although parser generators are typically
generated components, since they are stand-alone
grammar-driven programs which emit desired software,

ey could instead be incorporated into the end-product and
re-emit their parsers on the fly. The obvious reason not o
do this is for efficiency of repeated use of the same output.
However, an interpreter for a language can be thought of as
a compiler which is configured to perform as tailorable

273

software. In this case, the run-time efficiency is traded off
for the flexibility of being able to alter the
"parameterization” (the interpreted program) quickly and
easily.

A Simple Example
As a simple example of how a low-level component can be
viewed as a generalizable layer of function, consider the
following error-reporting routine.

with Text_lo;
procedure Gyro_Speed_Error is
begin
Text_lo.Put_Line ("Error: The gyros are not up to speed.");
end Gyro_Speed_Error; :

This highly specific routine represents one end of the
generality scale. It is easy to use, requiring a simple

- parameterless call, but might not be likely to be widely

called upon within a program. There are three observable
details within this unit: 1) the use of Text_lo.Put_Line to
report the error message, 2) the use of the standard output
device to display the error, and 3) the choice of the literal
string to be displayed. '

procedure Report Error
Put_Line

Prepend an intro

use current output
use literal string "Error: °
Figure 3a.
in the example from the text. procedure Report_Error was seen 10

be composed of four decisions. Two are considered part of the essential
funclionality and two are considered to be problem-specific details.

Re-engineered procedure Report_Error

%—— some output destination

+ g
e—- some literat string

Prepend an intro

Put_Line

Figure 3b.

The re-engineered version of Report_Error shows the two probiem-
specific details removed from the component, to be supplied by the
te-user. The intrinsic functional aspects of the component remain
Other interpretations of the re-engineering decisions {o be applied
could possibly remove one of these, as well.

A consultation with a domain expert might result in our
choice to parameterize thc exact error message to be
reported, which might yield the morc sensible reporting
routine, shown below.

with Text_Jo;
procedure Report_Error (Message : String) is
begin

Text_lo.Put_Line ("Error: * & Message);
end Report_Error;

This version of the unit is depicted in Figure 3a. Had we
performed the transformation without expert consultation
we might have simply parameterized the entire message.
However, in our hypothetical problem domain we will
assume that the expert recommended retaining a
hard-coded standard prefix in order to facilitate the
post-processing of the log file. Also, this generalization
has cost us the part of the original functionality. which
spelled out the exact error message. Since the client must
now supply this string, we have increased the effort to use
the unit by making it more general.

The generalization of a value (a string value in this case) is
the easiest kind of transformation since it can be performed
with a simple value parameter. Since the parameter type is
Ianguage-defined (type String) there is no further
complexity to exposing this parameter in the procedure
interface. Also, the effort to configure the component
amounts to simply defining the error message string as a
parameter. Again, this kind of reuse is the easiest.

The procedure above still assumes that the user intends the
message to be written to the current output device using
Put_Line. That constitutes part of the retained functionality
of this component. In the process, we have also added the
detail that the standard prefix "Error: " will always appear.

Additional consultation with a domain expert might reveal
that the assumed use of the standard output device is
another problem-specific detail. A later reuser of this
component who was working on a different problem in the
same domain might not want to be bound by that
assumption. Again, Ada provides a simple way to
parameterize the component so that users can specify the
output device. Again, however, this generalization comes

at the cost of functionality. In this case, the functionality -

which is lost is the assumption is that the current output
device is to be used. Default parameters can sometimes
provide an opportunity to restore such assumptions while
retaining the generality, as will be shown later. The
parameterized version of the unit which follows removes
the assumption of using the current output device but
retains’ the function of writing the literal string "Error: "
followed by the caller’s message.

274

with Text_lo;
procedure Report_Error
(Message : String;
On_Deévice : Text_lo.File_Type) is
begin
Text_Jo.Put_Line (On_Device, "Error: " & Message);
end Report_Error;

Notice that the user is now required to do additional work,
Instead of simply providing the error message, the desired
output device or file must be provided. That decision has
shifted from the component to the (re)user. Again, thisis a
form of value parameterization, the easiest form of both
generalization and reuse configuration.

An additional part of the functionality of the component is
the literal string prepended to the caller’s message. As
shown below, this could also be parameterized, again
removing that specific functionality but generalizing the
component on that behavior. This requires yet one more
piece of information from the user as part of the
information needed for this component to perform its work,
however once again it is a low-cost value parameterization.

with Text_lo;
procedure Report_Error
{Message : String;
Intro : String;
On_Device : Text_lo.File_Type) is
begin
Text_lo.Put_Line (On_Device, Inwo & Message);
end Report_Error;

This generalized component is depicted in Figure 3b. This
might constitute a domain-independent version of the
reporting routine, according to our domain experts,
although the only way to be certain that a component is
compatible with all domains is to ensure that it does not
depend on any other components. In Ada any such
dependencies are revealed by the context clause. A later
transformation will eliminate the dependence on Text_lo.

As noted, Ada affords us an opportunity to restore the
assumption of using the specific string "Error: " and the
standard output device through the use of default
parameters without reducing the generality. This is shown
below.

with Text_lo;
procedure Report_Error

(Message : String;

Intro : String ;= “Error: ";

On_Device : Text_Io.File_Type :=

, Text_Jo.Standard_QOurput) is
begin ,
Text_lo.Put_Line (On_Device, Intro & Message);

end Report_Error;

At this point, two details remain (the use of

Text_IoPut_Line and the prepending of a user string). The
use of Put_Line could be removed through tailoring
(below) but the removal of the choice to concatenate an
introductory string could not be done within the language.
For that degree of flexibility, generated reuse would be
required. Once a generalization is needed which is not
language-supported, the costs are considerably higher. One
way 1o reduce those costs is to provide tool support for the
generalization, a process which amounts to establishing a
new language to accomplish the generlizaton. The MIS
system described in [AIC] has reduced their software
generation costs in this fashion.

. This points out the obvious conclusion that the cost of a
generalization depends on the level of language or tool
support for it. One way to estimate cost is to begin with an
ordinal scale of difficulty and then to move to a more
detailed scale after more analysis has been done. For
example, it was noted that value parameterization is
relatively straightforward. This would be at the lowest end
of an ordinal effort scale. Above that would be tailoring
parameterization such as Ada’s generic formal type and
subprogram parameters. At the hardest end of the scale
would be software generation, with tool-supported
generation being easier than custom-built generation. A
more detailed approach to effort would be to relate the cost
to the number of lines of code that must be written,
changed, or added. '

It can require a judgment call to choose what details to
remove and what function to leave in the component. For
example, in the above example, the fact that the original
literal string was broken up into a standard prefix and a
user-supplied message was only one possibility for
generalization. One guideline is to leave operational parts
of a component intact and to allow the operands to bé
supplied by the reuser. A discussion of the separation of
operations from operands can be found in [Bailey and
Basili], :

The simple error-reporting example from before can also
be re-engineered into a tailored component using the Ada
language. The difference between this result and the
layered result is that the reusers will have to perform
slightly more work in order to instantiate the component,
but then subsequent calls can be simpler. As suggested,
tailoring in Ada through the use of generics is seen as a
harder process than value parameterization but easier than
software generation. A tailored example of the component
follows.

with Text_lo;
generic

Intro ; String := "Error: ";

On_Device : Text_Jo.File_Type := Text_Jo.Current_Output;
procedure Report_Error (Message : String);

275

procedure Report_Error (Message : String) is
begin

Text_Io.Put_Line (On_Device, Intro & Message);
end Report_Error;

Unfortunately, this is illegal in Ada since a limited type
(Text_lo.File_Type) is not permitted as a generic value
parameter. This is an example of where strong static
checking can be at cross purposes with generalization and
reuse. If it were legal, nevertheless, the user would have
the responsibility for providing the introductory string and
the output device one time (at the time of the generic
instantiation) thus tailoring the component for further
reuse. From then on, the component would be no more
difficult to use (from the standpoint of parameterization)
than the original non-general version.

To avoid this limitation of generic parameters, a solution
could be obtained by generating the specific component
desired, using tools outside of the Ada language. The
generated component could look exactly like the original
component but the reusable software would no longer be
considered the component itself, but rather the generator
which creates it. In this case, the generator would emit a

Report_Error procedure which was hard-coded to write the

error message on a given device, The value of that device
would be given as a parameter to the generator. More
examples of generation are shown later.

A different tailoring would also be-possible. As mentioned
earlier, the dependence on Text_lo can be eliminated by
requiring that the client tailor the component to use a
particular string-processing routine., This makes the
component completely independent, with the persistence of
the use of a standard prefix as the only detail which is
retained from the original version.

generic

Intro : String := "Error: *;

with procedure Put (S : String);
procedure Report_Error (Message : String);

procedure Report_Error (Message : String) is
begin

Put (Intro & Message);
end Report_Error;

Note that this most general version is also the least
functional. Nevertheless, the ability to tailor the
component once within a program and to then use it with
the same level of effort as the first layered transformation
makes it of some value. The reuser has additional work 1o
do with this solution, as well. For example, unless the error
messages are to be writien to standard output, the °
subprogram to be passed to the generic formal Put

procedure has to be written. This means that the effort to
reuse a tailored component could be greater than the effort
1o reuse a component generator. So, the cffort to gencralize
is not always proportional to the corresponding effort to
reuse.

By examining existing systems and by obscrving the
opportunities to generalize their parts according to these
different methods of rcuse, choices become available in the
ways in which the software can be re-engincered for future
reuse. The next section describes a simple mail system in
terms of its conventional configuration as a custom-built
application and then in terms of the various ways the parts
of it can be generalized using the above methods.

Re-Engineering a Simple Electronic Mail System

This section takes a simple electronic mail system through
transformations to yield components which can be
combined using the three methods described above. In the
interests of space, parts of the examples and some identifier
names have been abbreviated, and no bodies are shown.
Complete listings of the examples are available from the
authors.

In a conventional design, one component, or package, of a
mail system could be used to manage the mailboxes of the
users and a second could manage the messages, or the
constituents of a mailbox. This would represent a
conventional encapsulated or "object-based" design of the
system where the mailbox package would allow operations
such as create, add a message, delete a message, return a
message, and perhaps displaying a directory of messages,
maintaining the status of each message, and so on. The
message package would allow message creation and
display, and possibly reply construction, forwarding, etc.

In a typical arrangement, using either Ada or an
object-oriented language such as Smalitalk, the mailbox
package (or object) would depend upon the message
package to obtain the use of the declaration of message
objects, in order to arrange those objects into mailboxes. In
Ada, the specifications for each of these two packages
might reasonably be:

package Messages is
type Usemame is ...
type Line is ...
type Textis ...
type Message is private;
procedure Set_Sender (M : in out Message; To : Username);
procedure Set_Receiver (M : in out Message; To : Usemname);
procedure Set_Subject (M : in out Message; To : Line);
procedure Set_Body (M : in out Message; To : Text);
function Sender_Of (Msg : Message) return Username;
function Receiver_Of (Msg : Message) return Username;

276

function Subject_Of (Msg : Message) retum Line;
function Body_Of (Msg : Message) return Text;
private
type Message is
record
Sender : Username;
Receiver : Username;
Subject : Line;
Msg_Body : Text;
end record;
end Messages;

with Messages;
package Mailboxes is
type Message is new Messages. Message;
-- derive an equivalent type Message
Max_Mailbox_Size : Natural := 1000;
subtype Box_Size is Natural range 0 .. Max_Mailbox_Size;
type Mailbox (Size : Box_Size :=0) is private;
procedure Store (Box : Mailbox; Owner : String);
procedure Retrieve (Box : in out Mailbox; Owner ; String);
function Size (Of_Box : Mailbox) return Box_Size;
“function Msg_At (Position : Natural; In_Box : Mailbox)
return Message;)
procedure Remove (Num : Positive; In_Box : in out Mailbox);
procedure Append (Msg : Message; To_Box : in out Mailbox);
procedure Mark_Read (N : Natural; In_Box : in out Mailbox);
procedure Mark_Unread ... : .]
procedure Mark_Answered ...
procedure Mark_Deleted ...
procedure Mark_Undeleted ...
function Is_Read
- (Msg_Number : Natural; In_Box : Meilbox) return Boolean;
function Is_ Answered ...
function Is_Deleted ...
No_Msg_At_Position : exception;
private
type Attributes is (Deleted, Read, Answered);
type Atr_Sets is array (Atributes) of Boolean;
type Mail_Item is
record
Item : Message;
Status : Atr_Sets;
end record;
type Item_Aurray is array (Posidve range <) of Meil_Item;
type Mailbox (Size : Box_Size :=0) is
record
Itemns : Item_Array (1 .. Size);
end record,;
end Mailboxes;

These packages are depicted in Figure 4a. As shown, the
Messages package is an example of an independently
reusable layer, and the Mailboxes package constitutes &
layer on top of the Messages package. (Since the
constituent types of Usemname, Line, and Text are not
shown, it might be the case that they would be comprised
of user-defined types, making the Messages package
dependent on other client software.) Realizing that the
decision of how to implement the constituents of a message
represents one of the opportunities for generalization of this
package, the components of a message could be supplied as
parameters to a generic version of this package. This
would constitute a tailored version of the package:

[oy

Fd

generic
type Usemame is private;
type Line is private;
type Text is private;
package Gen_Messages is
type Message is private;
... - as before
end Gen_Messages;

This generalization is shown in the top part of Figure 4b.
The effort to perform this tailored generalization is in line
with other tailoring efforts discussed in the previous
section. The declaration of three generic formal parameters
is one measure of the work performed. Also, the reuse
effort implies the declaration of actual type parameters to
be associated with these generic formal types. One way to
quantify the effort to generalize, then, is to claim that three
declarations are required. Three declarations are also
required of the client reuser.

package Messages

4-component record-type abstraction
use username, line, text subtypes
Exports type Message

package Mailboxes

4-compbnenl record-type abstraction
Exports type Mallbox, an 1/O array

depends on external type Messagea. Message
Figure 4a.

&g the conventions shown previously, this depicts the process of tailoring the
Vissages and Mailboxes packages from the text.

taliored packsge Messages

Sle—— types for username, etc.
(supplied by reuser)

4-component trecord-type abstraction

exports type Message

teilored package Mailboxes

+ -’_:"@—uomo message type (i.a.,
Messages Message, sbove)

Figure 4b.

e specific component types of a Message have been removed as well as the
%pendency of Mailboxes on Messages The reuser will re-establish this link

277

Going beyond this somewhat tailored version, notice that
even the structure of a message could be a candidate
generalization. In this case, tailoring would be difficult or
impossible within the confines of the Ada language so
generation is required. Generation is feasible since the
contents of the Messages package could be
deterministically described if one were to specify the
constituent components of a message. For example, if no
subject line were wanted, the original - package could
instead have been written:

package Messages is
type Username is ...
type Text is ...
type Message is private;
-- procedures Set_Sender, Set_Receiver, Set_Body
-- functions Sender_Of, Receiver_Of, Body_Of
private
_type Message is
record
Sender : Username;
Receiver : Username;
Msg Body : Text;
end record;
end Messages;

-- no Subject component

Or, if a message with a date and time stamp were desired,
the abstraction could be augmented with an additional
component, such as with the standard type Calendar. Time:

with Calendar;
package Messages is

type Usermname is ...

type Line is ...

type Textis ...

type Message is private;

-- procedures Set_Sender, Set_Receiver, Set_Body,
Set_Subject, and Set_Time
-- functions Sender_Of, Receiver_Of, Body_Of,
Subject_Of, Time_Of

private
type Message is
record
Sender : Username;
Receiver : Usernarne;
Time_Stamp : Calendar.Time;
Subject : Line;
Msg_Body : Texy
end record;
end Messages;

- new

Although the generic feature in Ada is not powerful enough
to allow these variations as tailoring of a single common
package, all of the Message package examples (as well as
their corresponding bodies) could have been generated
automatically, given the desired set of components for
objects of type Message. This, therefore, becomes an
example of generated reuse, where the generator is the
reusable software and not the actual message package
software. For example, a simple editor-substitution
generator has been constructed which accepts input such as

the following and emits Ada equivalent to the example
shown above.

Generate_Package -
(Context => ",
Local_Decls =>
“subtype username is string(1..10);" &
"subtype line is string(1..60);" &
“subtype text is string(1..80);",
Package Name => "messages”,
Private_Type => "message”,
Set_1=> “set_sender",
Set 2 => "set_receiver"”,
Set 3 => "set_subject”,
Set 4 => "set_body",
Get_1 => "sender_of" '
Get_2 => “receiver_of™,
Get_3 => “"subject_of",
Get_4 => "body_of",
Local_Type_1 => "username",
Local Type 2 => "username”,
Local_Type 3 => "line",
Local_Type 4 => "text");

The effort to construct this generalization amounted to the
writing of about 20 lines of software and the building of
templates from the original unit, The effort to reuse the
component is the construction of the above call. This could
be seen as effort equivalent to declaring 17 string constants,

Note that, at this level of generality, which came at
considerably higher cost than the previous tailoring, more
than just a message Package for a mail system could be
generated. Any private type implemented as a record of
components with set procedures and access functions could
be generated with such a program. Therefore, this
represents a domain-independent form of the component,
where any mail system details are supplied by the reuser.
So, the benefit of applying this substantial generalization
effort is that the component can now be used by many
domains. In fact, we will see that this same generator can
be used to replace part of the Mailbox package, as well.

Although the style of the Mailbox package is not as general
as the Messages package, there are several opportunities to
make it more general and therefore more reusable in other
contexts. For example, it could be tailored by making the
constituent type Message and the maximum mailbox size
generic formal parameters:

generic

type Message is private;

Max_Mailbox_Size : Nanural = 1000;
package General_Mailboxes is

..... same as package Mailboxes, above
end GeneraJ_Mailboxes;

This arrangement of the Mailboxes package is shown in the
bottom part of Figure 4b. Fortunately, no operations on the
type Message were needed by the package Mailboxes,

278

otherwise those operations would have had to have been
passed as generic parameters * Therefore, following the
convention suggested above, the generalization effort here
is the effort o write two gencric formal parameter
declarations. Reuser effort is the choice of a type and a
value to perform the instantiation.

Beyond the relatively simple generalization shown above,
it can be observed that the Mailbox abstraction is actually
composed of a four-component record-type abstraction angd
an array, Reusing the previously described example of
private record type abstractions, the package Mailboxes
could be divided into two Separate abstractions as follows:
generic
type Message is private;
package General_Mail_Items is
type Mail_Item is private;
procedure Set_M essage ;
(An_ltem : in out Mail_Item; To : Message);
procedure Set_Read
(An_Item: in out Mail_Item; To : Boolean);
procedure Set_Answered ...
procedure Set_Deleted ... :
function Get_Message (An_Itsm : Mail_ltem) retum Message;
function Is_Read (An_Iter : Mail _Item) return Boolean;
function Is_Answered (An_Item : Mail_Item) return Boolean;
function Is_Deleted (An_Item ; Mail_Item) return Boolean;
private
type Mail_Ttem is
record
Item : Message:
Read ; Boolean;
Answered : Boolean;
Deleted : Boolean;
end record;
end General_Mail_Items;

-- a modified implementation

generic
type Mail_Item is private;
Max_Mailbox_Size : Nanral := 1000;
package General_Mailboxes is
subtype Box_Size is Natura) range 0 ., Max_Mailbox_Size;
type Item_Array is array (Positive range <) of Mail_Item;
type Mailbox (Size : Box_Size := 0)is
record
Items : Item_Array (1 .. Size);
end record;

*If Ada supported full inheritance, it would be possible to
write the Mailbox abstraction so that it relies on cernain
operations to be defined for the generic formal type
Message. The user would then guarantee that any expected
functions would be available for any actual type parameter
associated with the formal type Message, eliminating the
syntactic complexity of passing them via additional generic
formal subprograms. This illustrates one of the advantages
of late binding, something that Ada disallows in order to
ensure that required operations are available prior to the
compilation of any instantiations of the generic,

-

~ procedure Store (Box : Mailbox: Owmier : String); ‘

procedure Retrieve (Box : in out Mailbox; Owner : String);
function Size (Of_Box : Mailbox) return Box_Size;
procedure Remove

(Mail_Item_At: Positive; In_Box : in out Mailbox);
procedure Append

(A_Mail_Msg : Mail_Item; To_Box : in out Mailbox);
No_Msg_At_Position : exception;

end General_Mailboxes; :

These packages are depicted by Figures 5b and 5c. In the
above case, the client could obtain the functional equivalent
1o the original mailbox package via the following

instantiations:

package Mail_ltems is

new General_Mail_liems (Messages.Message);
package Mailboxes is

new General_Mailboxes (Mail_Items.Mail_JItem);

tailored package Messages

= &—— types tor username, etc.
“ (supplied by reuser)

4-component record-type abstraction

exports type Message

Figure 5a.

No edditional changes are made during the second pass at 'tailoring the two
packages. Only by generating the Messages package can the decisions about

the struciure of the abstract data type be generalized, since such a run-time

tailoring #s not possible within the Ada language.

+ Y €—— some message type (}.e..

Messages.Message,

4-component record-type abstraction

Figure 5b.

tallored, factored package Mail_ltems

above)

The Mailboxes package is broken into two components, one which implements

Mai lems as a record-type data abstraction, above.

tailored, factored package Mal!boxea

7 £— some mall ltem,
+ & from above

Exports type Mailbox, an 1/O array

i.e.

T

Figure 5¢.

The other package factored from the original Mailboxes package implements
o 10 list of mail items. This no longer contains any problem- specific
function other than implement lists. so it can be replaced with a general-
purpose list abstraction, as shown in the text.

Mall_ltem,

279

Two tradeoffs in this example are observed. First, the
specific way in which package Mail_Item was structured
originally was modified into the more general
multi-component record shown here. This tradeoff was
accepted in order to allow this implementation of
Mail_Items to be similar to the implementation of
Messages, which was previously shown to be highly
generalizable. This is an example of how standardization
limits the choices available to the implementer while
increasing the generality of the resulting programs. For
example, by adopting this approach, the generator program
mentioned before could be used to generate an equivalent
package to Mail_Items through the following input, thereby
allowing the generation of both the Messages package and
the Mail_ltems package from the same reusable
component:

Generate_Package
(Context => "with messages;",
Local_Decls =>

"fype message is new messages.message;",

Package_Name => "mail_items",
Private_Type => "mail_item",
Set_1 => "set_message",
Set_2 => "set_read",
Set_3 => "set_answered",
Set_4 => "set_deleted",
Get_1 => "get_message"”,
Get_2 =>"is_read",
Get_3 =>"is_answered",
Get_4 => "is_deleted",
Local_Type_1 => "message”,
Local_Type_2 => "boolean”,
Local_Type_3 => "boolean”,
Local_Type_4 => "boolean");

The second tradeoff was to make the type Mailbox visible.
This was necessary since the client software will have to
gain direct access to a Mail_Item within a mailbox array in
order to perform the operations from package Mail_Items
on it. Simply returning a value of Mail_Item via a function
call would not allow the user to set the components of a
Mail_Item in a mailbox. An alternative solution would
have been to implement the items in a mailbox as access
values, each designating a Mail_Item. In this way, a
function. returning an access value would provide the
capability for the client to modify the designated object, &
Mail_Item. This situations occurs frequently when
factoring composite abstractions into their constituent
abstractions, and suggests that by presenting objects
directly on the interface to an abstraction, rather than just
their values, an abstraction can be made more general and
reusable.

Further generalizations are not shown in detail in the
interests of space. However, note that the above
General_Mailboxes abstraction is the only remaining
custom-made application code in the example. It amounts

to an ordered list of items of discernible size, to which
items can be appended and from which items can be
deleted, and which can be stored to and retrieved from
files. Except for the ability to store and retrieve the lists,
such an abstraction would probably be available in a library
of generic data structures. Assuming the constituent
objects are private and not limited private, it would be
possible to perform binary input/output on them. So, it is
not unreasonable to augment an existing generic abstraction
to include storage and retrieval, Such an augmentation of a
list resource could be accomplished by layering something
like the following onto it. -

- Layering on a list abstraction:

with Simple_Lists;

generic
type Item is private;
type Item_Access is access Item;

package General Mailboxes is ’
package Item_Lists is new Simple_Lists (Item, Item_Access);
type Mailbox is new Item_Lists.List;
procedure Store (A_Box : Mailbox; To_File : String);
procedure Retrieve

(A_Box : in out Mailbox; From_File : String);
end General_Mailboxes;

To obtain the equivalent functionality as was provided by
instances of the earlier package General_Mailboxes, the
following declarations would now be required:

package Mail ltems is
new General_Mail_Items {Messages.Message); -- same
type Mail_Ttem_Access is access Mail_Items.Mail_Item;
package Mailboxes is new General_Mailboxes
(tem => Mail_ltems.Mail_Item,
“Item_Access => Mail_Item_Access);

The client can treat the above package Mailboxes similarly
to the earlier version; it will have all the same operations
due to the derivability of those already implemented by
Simple_Lists. Also, note that the mailbox implementation
has been made private again by using designated objects to
hold mail items. This would allow an Item_At function to
return an access value to the actual mail_item and not just
the value of that mail_item. This allows updates of the
item via the operations that were defined in the Mail_Item
package (Set_Message, Set_Deleted, etc.).

Measurement Summary

Measurement is required at two points of the software
cycle. When candidate units are being identified and
domain-specific details are being distinguished from
problem-specific details, estimates of the generalization
effort necessary to remove any give detail are required. At
the time of reuse, estimates of the configuration effort
hecessary to adapt a component for reuse are required.

280

Observations from conducting several generalizations have
shown that an initial estimate based on an ordinal scale is
possible. This scale has value parameterization. as the
easicst to perform for both generalization and reuse,
Harder than this is type or operation parameterization,
which requires tailored generalization in the case of Ada,
The hardest form of generalization is building 4
special-purpose component generator. This can be made
easier through the use of code-generation support tools,

After an initial evaluation of the generalization effort hag
been made and an approach to generalization has been
determined, a more accurate assessment of the effort may
be possible. The most direct indicator of the effort required
is the number of lines of code that have to be written,
changed or added. In many cases, a generalization can be
accomplished with just a few lines of new or changed code.
However, in the case of unsupported component
generation, the entire generator may have to be written.

Reuse effort is easier to quantify since the component in
question is already known. The effort to configure 4
generator or to instantiate a generic can be estimated based
on the number of inputs or parameters required. In most
cases, the usage of a tailored or generated component is
similar regardless of whether the component was developed
from scratch or obtained from a repository. However, even
this step can be complicated by the fact that a development
might choose to be constrained in some way in order to
take advantage of an available component. The costs of
such a decision can be especially difficult to estimate. In
the long run, however, it is expected that the adoption of a
component, similar to the adoption of a standard, is a
cost-effective choice.

Another measure that is needed is an estimate of the future
value of a unit in a repository. It may not be the best
approach to populate a repository with many units which
were inexpensive to generalize if they will rarely be
needed. It would be better to spend the time performing &
difficult generalization if the resulting unit will more than
return that investment. Here again, domain experts will
have to-assist in making this determination.

Future Work

Progress is needed on metrics to quantify generalization
and reuse effort. Effective metrics will open the way to
establishing an economic model of reuse that could enable
an organization to choose its optimal approach to reuse
engineering. Note that the same approach or even the same
specific model would not necessarily be best for two
different organizations. One obvious reason for this is that
one organization may concentrate in a single application
domain while another organization may do work in many

domains with very little repetition. The first organization
may find its optimal approach to reuse is to develop a
mature repository of domain-specific components while the
second organization may find that only
domain-independent components are likely to be cost
effective,

In addition to the costs of generalization and reuse, an
economic view of the software cycle suggested in this
paper would have to deal with repository maintenance,
component retrieval, component probabilities of reuse and
cost savings, and the effort required of domain experts and
repository experts. Current progress is being made in some
of these areas by interviewing experts at one branch of the
NASA Goddard Space Flight Center where reuse has been
practiced for many years, originally with Fortran and more
recently with Ada. The results of these interviews will
assist us in formulating a more quantifiable model of the
costs and benefits of reuse at that organization. It is hoped
that this experience can then be extrapolated into a broader
model of reuse engineering that can be adapted for use at
other organizations.

References

[Bailey and Basili] J. Bailey and V. Basili, "Software
reclamation: Improving Post-Development Reusability,” in
Proceedings Eighth Annual Conference on Ada
Technology, Atlanta, Ga., 1990,

(Basili and Caldiera] V.R. Basili and G. Caldiera, "A
Reference Architecture for the Component Factory,”
Computer Science Technical Report Series, University of
Maryland, College Park, MD, March 1991,
UMIACS-TR-91-24 or CS-TR-2607. :

[Basili and Rombach] V.R. Basili and H.D. Rombach,
"Support for Comprehensive Reuse," Software En gineering
Journal, July 1991, (also, Computer Science Technical
Report Series, University of Maryland, College Park, MD,
February 1991, CS-TR-2606 or UMIACS-TR-91-23),

[Caldiera and Basili] G. Caldiera and V.R. Basili,
"ldentifying and Qualifying Reusable Software
Components,” IEEE Computer, Vol.24, No.2, Feb.1991,
pp.61-70.

[Ellis and Stroustrup] M. Ellis and B. Stroustrup, "The
Annotated C++ Reference Manual," Addison Wesley,
1990, p. 341,

[AIC) Ada Information Clearinghouse. "STANFINS-R -
COBOL and C Programmers Moving Successfully to Ada."
Ada Information Clearinghouse Newsletter 8,2, June 1990.

281

John W. Bailey is a Ph.D. candidate at the University of
Maryland Computer Science Department. He has been
consulting and teaching in the areas of Ada and software
measurement for nine years, and is currently consulting to
Rational. He has an M.S. in computer science from the
University of Maryland, where he also earned a bachelor's
and a master’s degree in cello performance. He is a
member of the ACM.

Victor R. Basili is a professor at the University of
Maryland’s Institute for Advanced Computer Studies and
Computer Science Department. His research interests
include measuring and evaluating software development
and is a founder and principal of the Software Engineering
Laboratory, a joint venture of NASA, the University of
Maryland, and Computer Sciences Corporation. He
received a B.S. in mathematics from Fordham College, an
M.S. in mathematics from Syracuse University and a Ph.D.
in computer science from the University of Texas. He is a
fellow of the IEEE Computer Society.

