OPT:

An Approach to Organizational and Process Improvement

Carolyn B. Seaman *
Victor R. Basili
Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract

Software development and maintenance enterprises con-
stitute an extremely complex, varied, and poorly un-
derstood class of organizations. This is due in part to
the newness of the technology and the dynamic nature
of the field, but it also stems from the complexity of
human-machine interactions. A major driver of the ef-
fectiveness of such an organization is the relationship
between the software development process and the or-
ganizational structure. Little attention has been paid
to this relationship, Scacchi’s work [6] being one excep-
tion. Our approach addresses this issue in more detail.

This paper describes the OPT method for improving
both the organizational structures and processes that
constitute software development environments. This
method is meant to be part of a continuous improve-
ment program, and is modeled after the Quality Im-
provement Paradigm [1]. The approach includes mech-
anisms for modeling the relationship between an or-
ganizational structure and a development process, for
measuring this relationship quantitatively, and for us-
ing this information to plan specific improvements to
the environment.

1 Introduction

The role that organizational design plays in the software
industry is different from its role in nearly any other
business. The processes which constitute software de-
velopment present an awkward blend of completely au-
tomated tasks, steps that require human-machine inter-
action, and some purely creative activities. The orga-
nizational structure that is appropriate for a particular

*This work is supported in part by IBM Canada Laboratory
Centre for Advanced Studies and by NASA.

software development effort does not arise straightfor-
wardly from these processes, as is often the case with
manufacturing efforts. Nor is it largely irrelevant, as
might be the case in strictly artistic endeavors. Clearly,
the organizational design of a software development
project is a non-trivial task. At the same time, the ef-
fect of organizational structure on the proper execution
of development processes can be profound. Communi-
cation can be facilitated (or hindered). Responsibility
can be fairly distributed and well understood (or easily
denied and passed on). Software development organi-
zations must be designed to facilitate the smooth exe-
cution of development processes, both automated and
human.

The OPT approach to improvement of software de-
velopment environments is based on the combined im-
provement of organizational structure and development
process. The approach is an iterative improvement
method based on the Quality Improvement Paradigm
[1]. The OPT modeling formalisms and the OPT met-
rics are central to the approach.

The goal of the OPT modeling formalisms is to cre-
ate an organizational model. An organizational model
completely describes those aspects of the relationship
between organization and process that we wish to mea-
sure. An organizational model has three parts. First
is a process model which describes part of a particular
lifecycle development process, an entire lifecycle pro-
cess, or a group of interrelated processes, depending on
the scope of the modeling effort. The second part in-
cludes information about the actors, the interactions,
and the support processes that are instrumental to the
execution of the development process. The third section
represents the purely organizational (non-process) re-
lationships in the environment. Information about the
process (first part) and the organization (third part) are

related by the second part. In other words, the second
part of the model describes the organization/process
relationship.

We have focused on two major factors which charac-
terize the relationship between an organizational struc-
ture and a process. These two characteristics are the
distribution of responsibility and the communication re-
quired by the process. The OPT metrics are designed
to quantify these characteristics.

Responsibility for process activities is distributed
among the members of the organization. The process
can be said to impose this responsibility on an organiza-
tion. Speaking in the abstract, an organization does not
take on any responsibility unless it is given some sort of
process. In this way, the issue of responsibility captures
the effect that the process has on the organization.

The second factor which characterizes the relation-
ship between an organizational structure and a process
is the process communication within the organization.
An organizational structure can either facilitate or hin-
der the efficient flow of information between process
activities and participants. In this sense, this second
factor characterizes the effect of an organization on a
process.

The OPT metrics, which are designed to capture
the characteristics outlined above, are also used as the
building blocks of OPT goals and constraints. Quan-
titative relationships are defined between the various
properties of responsibility and communication. Con-
straints specify which of these relationships must be
preserved. Goals specify which of these relationships
must change. How the relationships should change, and
by how much, is what defines improvement.

In the sections which follow, the OPT improvement
method is first described. Then the OPT modeling for-
malisms and the OPT metrics are presented. Finally,
the way in which the metrics are used to form goals and
constraints is illustrated.

2 The OPT Approach

The OPT approach is an iterative improvement method
based on the Quality Improvement Paradigm (QIP)
[1], an iterative, goal-driven framework for continuous
improvement of software development. The QIP is a
closed-loop process which includes steps for planning,
executing, and evaluating improvements to software de-
velopment environments, as well as for incorporating
experience gained from improvement efforts into future
development.

The OPT approach to improvement of software devel-
opment environments relies on the combined improve-
ment of organizational structure and development pro-
cess. Like the QIP, it is a closed-loop improvement
cycle. The steps are outlined below:

1. Model the initial relationship between the organi-
zation and the process

2. Set high-level project goals, as well as specific or-
ganizational and process improvement goals

3. Define constraints which represent management
policies and which limit the possible changes

4. Using the model, measure various properties of the
organization/process relationship

5. Based on these measurements, select candidate
changes to the organization and process which will
contribute to the satisfaction of the stated goals

6. Simulate these changes by applying them to the
model, or experiment by applying the changes to
some subset of the organization and/or process

7. Re-measure and evaluate the results of the simula-
tion or experimentation

8. Either iterate back to step 2 to find more candi-
date changes, or institutionalize the changes in the
actual environment.

The OPT approach considers an organizational struc-
ture and a software development process together as a
single system. The purpose of the steps outlined above
is to identify the most appropriate changes to be made
to the organizational structure and the development
process in order to satisfy the general project goals.

The result of step 1 is a baseline organizational
model, described in the next section, which captures
the relevant properties of the organization and process.
This model is designed to facilitate the evaluation of
the OPT metrics, also described in a later section. The
goal-setting step (number 2) in OPT results in two sets
of goals. The first set are high-level project goals that
concern such issues as quality and productivity. Goals
in the second group are defined in terms of OPT met-
rics. They reference specific attributes of the relation-
ship between organization and process, such as respon-
sibility and communication. The OPT goals must be
chosen so that their satisfaction contributes to the sat-
isfaction of the project goals. Constraints (defined in
step 3) are also expressed in terms of OPT metrics. The
OPT metrics are also used in step 4 to quantify relevant
attributes of the relationship between the organization
and process. The attributes are quantified in such a
way that they highlight anomalies, or parts of the en-
vironment that are out of the ordinary. This facilitates
the selection of candidate changes in step 5. Steps 6 and
7 allow the evaluation of changes before they are imple-
mented. The measurement results of step 7 are used
to modify goals, constraints, and candidate changes in
subsequent iterations of the OPT cycle.

Organizationa
Specification

- elements and links

Mapping
Statements

Architecture Specification

- activities, agents, interactions

Mapping
Statements

Process Model

- tasks, roles, products,
artifacts

Figure 1: An organizational model.

3 Organizational Models
Organizational models have three parts:

e an organizational specification, which describes the
organizational structure

e a process model, which describes the development
process, and

e an architecture specification, which describes the
relationship between organization and process

This section describes the notations used for repre-
senting organizational models. Figure 1 shows the dif-
ferent parts of an organizational model. Forming the
base is a model of a particular development process.
The architecture specification, the middle layer, de-
scribes the relationship between the process and the or-
ganizational structure charged with executing the pro-
cess. Information in the architecture specification 1is
present in, but obscured by, the process model. It rep-
resents those aspects of the process that impact, or are
impacted by, the structure of the organization. The
third part, the organizational specification, represents
the purely organizational (non-process) aspects of the
software development environment. An organizational
model also includes explicit mappings between corre-
sponding objects in these three parts.

An organizational specification represents an organi-
zational structure very simply as a set of nodes and

links. It describes the non-process relationships, or
links, between different elements of the organization.
Such relationships might include ”manages”, ”reports
to”, 7funds”, ”sits near”, and ”evaluates performance
of”. Link types are all user-defined. In most organi-
zations, the relationship of greatest interest is the one
that defines the management structure. However, other
relationships exist in organizations, and thus should be
studied as well. A single organizational specification
can contain any number of different types of links. The
elements of the specification usually represent people,
but could represent other organizational components,
such as teams, divisions, and locations.

The purpose of the architecture specification 1s to de-
scribe the organizational properties of a software devel-
opment process. The agents that execute the process
are described in terms of the specific activities that they
perform and the interactions between them. In other
words, those parts of the process that are relevant here
are those that can affect, or be affected by, the organi-
zational structure. This information is an abstraction
of information assumed to be available in the process
model. Such an abstraction is necessary because most
process models obscure this type of organizational in-
formation among other details, making it scattered and
often 1mplicit. In other words, the information that is
most important to the modeling of an organization is
difficult to conceptualize in a process model and must
be abstracted out to be seen clearly. An architecture
specification provides this abstraction and thus is more
useful than a process model for organizational analy-
sis. It also provides the bridge between a development
process and an organization which allows the two to be
considered together as a system.

The objects of an architecture specification (activ-
ities, agents, and interactions) correspond to objects
that appear in most process models (see [5], for exam-
ple). Activities refer to individual tasks or process steps
in a process model. Most process modeling languages
allow the specification of who or what is responsible for
executing each task. This type of object is usually called
a role, and corresponds to an architectural agent. Inter-
actions describe an instance of communication that is
required by the process. They are sometimes difficult to
map to specific objects in a process model. They corre-
spond roughly to artifacts, or products, or documents,
which serve as input or output to a task.

Agents are defined, in part, by the activities they per-
form. Also associated with each activity is information
about the priority of that activity, and the formality of
the responsibility associated with that activity.

agentDeveloper is
activity Develop_Component;
priority = (1,1);
formality = written;
activity Request_Component;

priority = (2,2);
formality = spoken;
end Developer;

Agents are also defined by interactions between them.
Each interaction definition describes one part of the de-
velopment process which requires some type of informa-
tion to pass from one person or group to another person
or group. An interaction, then, defines an instance of
process communication. A simple example of an inter-
action definition is shown below.

wnteraction Component_Request is
purpose: directional;
participants: Component_Library;
Projecti_Developer;
untdirectional from Projectl_Developer
to Component_Library;
dependent activities:
Component_Library. Answer_Request;
Projecti_Developer. Request_Component;
end Component_Request;

The notation used to write architecture specifications
has been designed specifically for that purpose, and is
described in detail in [7] and [8].

A process model representing the development pro-
cess of interest forms the third part of an organizational
model (the bottom part in Figure 1). A discussion of
process modeling and the various formalisms that are
available can be found in a number of references, in-
cluding [2], [4], and [5]. An organizational model can
incorporate a process model in any representation that
provides certain required capabilities. These capabili-
ties are:

e representation of roles, or objects that are the per-
formers of process steps

e description of products, or inputs and outputs of
process steps

e functional decomposition of process steps

e representation of resource allocation information
(effort or cost information)

We require this information from a process model for
two reasons. First, it allows mappings to be defined be-
tween the process model and the architecture specifica-
tion. Also, this information is explicitly used in the cal-
culation of OPT metrics, described in the next section.
Many process modeling formalisms are available that
provide at least the first three of these requirements.
In some cases, the resource allocation information must
be obtained separately.

An organizational model also requires four types of
mapping statements, to describe four types of mapping
relationships. These four types describe mappings be-
tween:

e architectural agents and roles in a process model
e architectural activities and tasks in a process model

e architectural interactions and products or artifacts
in a process model

e architectural agents and elements of an organiza-
tional specification

4 Organizational and Process
Attributes

A software development environment is an information-
feedback system, which is defined as a system in which

...the environment leads to a decision that re-
sults in action which affects the environment
and thereby influences future decisions. [3]

This applies to the actions and decisions that take
place in a software development environment. They
have an effect not only on the software product, but also
on the environment itself, and how software is produced
in the future. This attribute of software development
environments influences how we measure them. The
metrics designed for development environments must
examine the internal workings of the system and how
the different parts of the system interact with and affect
each other. Measuring the end product, or even the
intermediate products (documentation, specifications,
designs, etc.) is not sufficient.

The overall goal of the OPT method is to determine,
given a software development process and the organi-
zational structure meant to perform that process, how
well suited these two elements are to each other. That
18, two questions must be asked:

How good is this process for this organization?
How good is this organization for performing
this process?

Because it is often possible and desirable to modify both
the organizational structure and the process to achieve
improvement, these two questions must be considered
simultaneously.

We have chosen two major attributes which charac-
terize the relationship between an organizational struc-
ture and a process. These were chosen to be broad and
thus to encompass a number of smaller issues within
their scope. They were also chosen to represent the
complementary impact between organization and pro-
cess. The first characterizes the effect that the process
has on the organization, while the second deals with the
effect of the organization on the process.

4.1 Responsibility

The first characteristic is the distribution of responsi-
bility for process activities among the members of the
organization. A process’ activities can be said to im-
pose certain amounts of responsibility on the members
of an organization. In this way, the issue of responsi-
bility captures the effect that the process has on the
organization.

Responsibility for a particular process activity reflects
the extent to which the success or failure of the activity
affects the professional success or failure of a participant
in the activity. Responsibility has a number of proper-
ties that are of interest and that can be measured. One
of these is type. Responsibility can be shared or not.
Management responsibility 1s an additional type.

Another aspect of responsibility is its effect on an or-
ganization member’s level of motivation. Commitment
is the amount of benefit or recognition that someone
derives from participating in an activity and perform-
ing well. Obligation, on the other hand, measures the
negative impact of not participating in an activity, or
performing poorly in the activity. The OPT metrics
that quantify commitment and obligation combine the
values given for priorities and formalities of each activ-
ity in the organizational model.

Another question, which concerns a particular mem-
ber’s level of responsibility over all his or her activi-
ties, is how diverse that member’s responsibilities are.
Diversity of responsibility, then, is simply the number
of different process activities for which a person holds
some type of responsibility.

Finally, proportional importance addresses the ques-
tion of how a member’s responsibility for an activity
affects his or her time. Proportional importance mea-
sures the proportion of a person’s time that is spent
participating in each activity.

All of these responsibility measures can be evaluated
by direct inspection of an organizational model. An
architectural agent definition includes all the activities
for which the agent holds some type of responsibility.
These activities are mapped to process steps or tasks
in the process model. The mapping from agents to ele-
ments of the organizational specification then allows us
to associate members of the organization with process
tasks.

4.2 Communication

The second factor which characterizes the relationship
between an organizational structure and a process 1s the
process communication within the organization. An or-
ganizational structure can either facilitate or hinder the
efficient flow of information between process activities
and participants. In this sense, this second factor char-
acterizes the effect of an organization on a process.

To measure communication, the organizational model
is utilized by analyzing the interactions in the architec-

tural specification. Each of these interactions describes
some instance of communication that is required by the
process. The participants in the interactions are mem-
bers of the organization. The interactions, then, com-
pletely describe the parts played by both the process
and the organization in each instance of communica-
tion.

The central question that must be raised with respect
to process communication has to do with the amount
of effort that the process requires for effective commu-
nication. In other words, how much effort is required to
ensure that all process participants have the informa-
tion they need, when they need 1t7 This is a complex
question whose answer relies on several pieces of infor-
mation. We operationalize the concept of interaction
effort as the product of three properties: the medium
employed, the purpose, and the organizational distance
between the participants of each interaction.

Information about the medium used for a particu-
lar interaction is provided by the organizational model
through the mappings between interactions and objects
in the underlying process model. For example, some
types of interactions could be documents, memos, meet-
ings, verbal agreements, etc. Each of these types rep-
resents a communication medium. The purpose of an
interaction is provided in the interaction definition and
reflects the criticality of understanding in an interac-
tion. For example, some interactions are simply for
the purpose of keeping some part of the organization
informed about the status of another part. Other in-
teractions involve information that will directly affect
decisions made by the recipient of the information. The
relative position of interaction participants, or the orga-
nizational distance between them, is another property
of process communication. How far apart, organization-
ally, interaction participants are reflects not only how
difficult 1t i1s for them to communicate, but also how
difficult it is for them to understand each other. Mem-
bers which are organizationally close together not only
communicate with less effort, but also operate in simi-
lar contexts, and thus can understand each other more
easily. Organizational distance can be impacted by the
hierarchical position of the participants, their physical
proximity, and their involvement in cross-organization
groupings.

5 Formulating Goals and Con-
straints

The metrics described above are used to characterize
a software development environment. Another impor-
tant use, however, is the building of OPT goals and
constraints. OPT goals are set during the OPT im-
provement cycle in order to guide the selection of can-
didate changes to the organization and process. OPT
constraints are also formulated during the OPT cycle,

as part of the characterization of the system. They
are used to constrain the possible choices of candidate
changes.

Goals and constraints are formulated using the met-
rics defined in the last section. Relationships are defined
between the various basic properties of responsibility
and communication. Constraints specify which of these
relationships must be preserved. On the other hand,
goals specify which of these relationships must change.
How the relationships change, and by how much, is
what defines improvement.

Often the relationships defined in goals and con-
straints involve other factors that are not any of the
properties defined above. Relationships often involve
such properties as the organizational level of members,
the importance or criticality of process activities, the
estimated effort of process activities, etc. Metrics must
be defined for any of these properties that are used in
goals or constraints.

For example, suppose that a particular software de-
velopment environment identifies a problem with slip-
ping deadlines. A decision is made to address this
problem by identifying and focusing on those process
activities on the critical path. The Quality Improve-
ment Paradigm is used to plan and implement improve-
ments in the environment. As well, OPT is used to plan
changes to the organizational structure and the devel-
opment process. The project goal chosen is to increase
the participation of higher-level members of the orga-
nization in critical-path process activities. This project
goal would translate to the following OPT goals, stated
in terms of the metrics defined previously:

e Increase the average organizational level of those
who hold some type of responsibility for activities
on the critical path

e Increase the average commitment and obligation to
critical-path activities for members of the organi-
zation with a level more than z

At the same time, assume that there is a concern
about overloading middle managers. A general policy
is drafted stating that the number of different activities
that a manager has responsibility for is bounded, but
increases with the manager’s level in the organization.
This translates to the following constraint:

e Any member’s diversity of responsibilityis bounded
by y times the member’s organizational level.

This simple example illustrates the way in which
OPT metrics are combined with other measurable prop-
erties to formulate goals and constraints. Depending on
the types of goals and constraints that are chosen, it is
sometimes possible to express the relationships as sys-
tems of linear inequalities that can be solved with linear
programming methods. The solution to such a system

gives a set of values which satisfy the goal by maximiz-
ing (or minimizing) some property while satisfying all of
the constraints. Further research is planned into other
mathematical methods that can be applied to systems
of OPT goals and constraints.

6 Conclusions

This paper describes the OPT method for organiza-
tional and process improvement of software develop-
ment environments. This method is meant to be part of
a continuous improvement program, and is modeled af-
ter the Quality Improvement Paradigm. The approach
includes mechanisms for modeling the relationship be-
tween an organizational structure and a development
process, for measuring this relationship quantitatively,
and for using this information to plan specific improve-
ments to the environment.

The OPT method requires the support of a tool both
to aild in the development of models and to calculate
the OPT metrics from an organizational model. Work
on this tool is planned in the near term. At the same
time, process and organizational information is being
gathered from software development environments to
build case studies with which the approach will be val-
idated and improved. A parallel activity is the inves-
tigation of organization theory literature and practice.
The OPT approach will benefit from the incorporation
of well-founded results and principles from this disci-
pline. One important part of our future work is the use
of the simulation capabilities of many process modeling
tools. When an organizational model includes a simu-
latable process model, the OPT metrics will then reflect
dynamic, rather than static, properties of organization
and process.

This paper describes very early results in organiza-
tional modeling and analysis. This work is part of a
general broadening of focus in software engineering re-
search from strictly technical improvement approaches
to the measurement and improvement of non-technical
factors. This trend in the field reflects a maturity in
software engineering that will bring further advances in
software quality and productivity.

Acknowledgments

The authors would like to acknowledge the contribu-
tions to this work of Gianluigi Caldiera.

References

[1] V.R. Basili, ”Software Development: A Paradigm for
the Future” (Keynote Address), Proceedings, COMP-
SAC ‘89, Orlando, FL, September 1989, pp. 471-485.

[2] Bill Curtis, Marc Kellner, and Jim Over, ” Process
Modeling”, Communications of the ACM, September

1992, Vol. 35, No. 9, pp. 75-90.

[3] Jay W. Forrester, Industirial Dynamics, The M.I.T.
Press, 1961.

[4] Nazim H. Madhavji, Kamel Toubache, and Ed
Lynch, ” The IBM-McGill Project on Software Process”,
IBM Technical Report 74-077, IBM Canada Labora-
tory, October 1991.

[5] H. Dieter Rombach, ”"MVP-L: A Language for Pro-
cess Modeling In-The-Large”, Computer Science Tech-
nical Report Series, No. (CS-TR-2709, University of
Maryland, College Park, MD, June 1991.

[6] Walt Scacchi, ”"Managing Software Engineering
Projects: A Social Analysis”, TEEE Transactions on
Software Engineering, 10:1, January 1984.

[7] Carolyn B. Seaman, ”AAA: A Modeling Language
for Software Production Environments”, Proceedings of
CASCON’92, IBM Canada Ltd. Laboratory Centre for
Advanced Studies, November 1992.

[8] Carolyn B. Seaman, "OPT: Organization and
Process Together”, Proceedings of CASCON’93, IBM
Canada Ltd. Laboratory Centre for Advanced Studies,
October 1993.

