
Experimenting with Error Abstraction in Requirements Documents

Filippo Lanubile Forrest Shull Victor R. Basili
Inst. for Adv. Computer Studies Inst. for Adv. Computer Studies

Dipartimento di Informatica Computer Science Department Computer Science Department
University of Bari University of Maryland University of Maryland

Bari, Italy College Park, MD, USA College Park, MD, USA
+39 80 544 3261 +1 301 405 2721 +1 301 405 2721

lanubile@di.uniba.it fshull@cs.umd.edu basili@cs.umd.edu

Abstract1

In previous experiments we showed that the
Perspective-Based Reading (PBR) family of defect
detection techniques was effective at detecting faults in
requirements documents in some contexts. Experiences
from these studies indicate that requirements faults are
very difficult to define, classify and quantify. In order to
address these difficulties, we present an empirical study
whose main purpose is to investigate whether defect
detection in requirements documents can be improved by
focusing on the errors (i.e., underlying human
misconceptions) in a document rather than the individual
faults that they cause. In the context of a controlled
experiment, we assess both benefits and costs of the
process of abstracting errors from faults in requirements
documents. 1

1. Introduction

Previous experiments [3, 5, 11] have evaluated
Perspective-Based Reading (PBR), a method for detecting
defects in natural-language requirements documents. In
each case, defect detection effectiveness was measured by
the percentage of faults2 found in the requirements

1 This work was supported by NSF grant CCR9706151
and UMIACS.
2 We use the following terms in a very specific way in this
paper, based on the IEEE standard terminology [8]:
• An error is a defect in the human thought process

made while trying to understand given information, to
solve problems, or to use methods and tools. In the
context of software requirements specifications, an
error is a basic misconception of the actual needs of a
user or customer.

documents reviewed. (The documents used contained
seeded faults that were known beforehand.) Major results
were that: (1) team detection rates were significantly
higher for PBR than for ad hoc review methods, and (2)
the detection rates of the individual team members also
improved in some instances when PBR was used.

The idea behind Perspective-Based Reading (PBR) is
that reviewers of a product (here: requirements) should
read a document from a particular point of view.
Specifically, we focus on the perspectives of different
users of the requirements within the software development
process, for example,
• A tester, making sure that the implemented system

functions as specified in the requirements;
• A designer, designing the system that is described by

the requirements;
• A user, who needs to be assured that the completed

system contains the functionality specified.

To support the reader throughout the reading process
we have developed operational descriptions (called
scenarios) for each role. A scenario consists of a set of
activities and associated questions that tells the reader
what he should do and how to read the document. As the
reader carries out the activities on the requirements, the
questions focus his attention on potential defects for his

• A fault is a concrete manifestation of an error within
the software. One error may cause several faults and
various errors may cause identical faults.

• A failure is a departure of the operational software
system behavior from user expected requirements. A
particular failure may be caused by several faults and
some faults may never cause a failure.

We will use the term defect as a generic term, to refer to
an error, fault, or failure.

perspective. Typically, each question is focused on
uncovering one type of fault.

In order to create these questions, we used the
following taxonomy of faults in natural language
requirements. These categories are based on cases in
which a necessary attribute (as defined by [1]) of
requirements documents have not been met. They are also
similar to the taxonomy proposed in [2].
• Missing Information: Some significant requirements

or software responses are either not included or not
defined

• Ambiguous Information: A requirement has multiple
interpretations due to multiple terms for the same
characteristic, or multiple meanings of a term in a
particular context

• Inconsistent Information: Two or more requirements
are in conflict with one another

• Incorrect Fact: A requirement asserts a fact that cannot
be true under the conditions specified for the system

• Extraneous Information: Information is provided that
is not needed or used

• Miscellaneous: Typically, defects having to do with
organization, such as including a requirement in the
wrong section

Note that we do not claim these classifications to be
orthogonal. That is, a given defect could conceivably fit
into more than one category.

Through our experiences in the PBR experiments, we
noticed that quantifying, classifying, and defining
individual faults was very difficult and possibly subjective.
Concentrating on faults had some distinct drawbacks:
• It was often possible to describe the same fault in

many different ways.
• Some faults could be associated with completely

different parts of the requirements.
• There were groups of similar faults, and it was

difficult to understand whether these were best
thought of as one or multiple defects.

We began to wonder if measuring defect detection
effectiveness by means of the number of faults found was
actually a good measure. From a researcher’s point of
view, focusing on the underlying errors might well be
more appropriate. Concentrating on errors rather than
individual faults seemed to offer the following potential
benefits:
• Improved communication about the document: We

reasoned that it would be easier for reviewers to
discuss and agree on which areas of functionality the
document author specified incorrectly or
incompletely, rather than on every isolated mistake.

• Improved learning by developers: There is a need to
go beyond defect removal [9] and focus on improving

the development skills of the participants in a review
activity. Looking for basic misconceptions allows
reviewers to learn what the actual problems are and
then prevent the injection of faults in the future.

• Domain-specific guidelines for requirements: Errors
for a specific problem domain are expressed at a
higher level of abstraction than faults, and could be
made available throughout the organization to other
reviewers and developers. This benefit is not
encouraged by current review methods, which focus
merely on defect removal [9].

In order to continue adding knowledge in this area, we
have run a new controlled experiment. The primary goal of
this study, which is presented here, is to understand
whether there is a role for error information within the
defect detection/removal process for requirements
specification documents. Specifically, we are seeking to
evaluate whether error abstraction can be both a feasible
and effective way of augmenting the defect detection
process.

2. The Defect Detection/Removal Process

Because the cost of defect removal grows exponentially
with respect to the phase in which the defect was injected
[4], human reviews, such as Fagan's inspections and its
variants [6, 7, 12], focus on finding faults at the output of
each phase, by means of individual reading and team
meetings.

Requirements defects are the most expensive to correct
if they are not detected for a long time, and currently
formal inspections of requirements documents yield only a
low rate of fault detection [10]. For these reasons, we
thought it most appropriate to use requirements documents
to begin experimenting with the use of errors in defect
detection.

Figure 1 shows the usual process to detect and remove
defects in a formal technical review. First reviewers find
faults in the requirements document, by individual reading
and meeting as a team, and then the author uses the
reported faults to fix the requirements.

If we find that error information can be useful in the
defect detection process, we can augment the usual process
to use this additional data. Figure 2 shows our proposed
process to detect and remove defects in requirements
documents. In the middle of the overall process we
introduce a new phase where reviewers are asked to find
errors by abstracting from discovered faults. In order to fix
the requirements, the author of the document can then
receive the recovered list of errors as well as the mapping
to the specific faults.

Figure 1: Usual defect detection/removal process

Figure 2. Proposed process with error abstraction

From our experience as reviewers of requirements
documents, we have observed that requirements errors
tend to be domain-specific, i.e. errors are more often
related to specific functionalities in the system rather than
to generic causes that might apply to any system. In the
absence of a knowledge base of domain-specific errors, the
only chance to discover meaningful errors is starting from
what we can observe, i.e., faults in a document, and
looking for common patterns at a higher level of
abstraction. The error abstraction phase is made up of three
main steps:
1. Understand the nature of the faults found, i.e., why

each fault represents a defect in the document
2. Identify errors by classifying the faults under

progressively more abstract themes
3. For each error, make sure to locate all of the faults for

which it is responsible

The detailed guidelines for abstracting errors from
faults are given in the appendix.

3. The Empirical Study

In order to understand the role of error discovery in
improving software quality, and to assess our proposed
process for reviewing requirements documents, we ran a
first empirical study. Our research questions are the
following:
• Can this process be used for abstracting faults to

errors?
• Does the abstraction process produce meaningful

errors?
• What is the right level of abstraction for an error?
• Do subjects get a unique result? (I.e. is there some

objective list of errors that subjects can largely agree
on, or is the error list largely the result of each
subject’s point of view?)

• What is the cost of error abstraction?
• What is gained from the process of abstracting errors?
• Can we build reading techniques that effectively

encapsulate the new model (reading for fault detection
and abstracting errors) for requirements review?

In the following subsections, we present the design of
the controlled experiment and provide some early
indications from the collected data.

3.1. Experimental Design

In running this experiment in a classroom environment,
we were subject to a number of constraints. Most
importantly:
• Because all members of the class should be taught

something, we could not have a control group. In
other words, we could not have a segment of the class
with no treatment or training.

• Because subjects were not isolated, and would have
presumably discussed their experiences at various
parts of the experiment amongst themselves, we could
not "cross" the experimental artifacts, that is, use a
particular artifact for one group before treatment and
for another group after treatment.

We therefore used an experimental design, shown in
Table 1, in which the entire group of subjects moves
together through six sessions, three of which examine the
effect of the error abstraction process followed by team
meetings on ad hoc reviews, and a further three which
repeat the same examination for PBR reviews.

Thus, we manipulated the following independent
variables:

Find Faults
in

Requirements

Use Faults
to Fix

Requirements

Find Faults
in

Requirements

Abstract
Errors From

Faults

Use Errors and
related Faults to

Fix Requirements

Original

Reqs.

Repaired

Reqs.

Original

Reqs.

Repaired

Reqs.

Individual
Fault
Detection

Error
Abstraction

Team
Meeeting

Ad Hoc
review

Session
1A

with Ì Session
1B

Reqmts
Document 1

 Ì Session
1C

PBR
review

Session
2A

with Ì Session
2B

Reqmts
Document 2

 Ì Session
2C

Table 1. Experimental Plan

• The error abstraction: In sessions 1B and 2B all
subjects perform the error abstraction process.
Activities performed in sessions 1A and 1B can be
treated as a baseline corresponding to the absence of
the experimental treatment (i.e., subjects review
documents without error abstraction).

• The team meeting: In sessions 1C and 2C subjects
meet as teams to discuss error and fault lists. This
helps us understand how difficult it would be to
integrate the use of error abstraction with inspection
meetings. For example, we were unsure of whether
teams will report different errors than individuals,
because team lists might reflect the consensus of
potentially different points of view on errors. Also,
since we did not know how similar individual error
lists would be, we could not estimate how long teams
would take to come to a consensus on an error list.

• The reading technique: Each reviewer used Ad Hoc
reading and PBR in sessions 1A and 2A, respectively.
The activities of sessions 1B-1C and 2B-2C are also
tied to the reading technique because they have as
input the fault lists produced as a result of the
individual fault detection.

• The requirements document: Two SRSs, one for an
Automated Teller Machine (ATM) and the other for a
Parking Garage control system (PG), are reviewed by
each subject. Both documents contain 29 seeded faults
and are, respectively, 17 and 16 pages long.

• The review round: each subjects participates in two
complete reviews: session 1 and session 2.

Since each subject is exposed to each level of the
independent variables, the experiment has a repeated-
measures design. However, the last three factors (reading
technique, requirement document, and review round) are
completely confounded. That is, we cannot distinguish
between the effects of using ad hoc vs. PBR, or reviewing
ATM vs. Parking Garage documents. We can also not
detect any learning effects that might have made the
documents easier to review over time.

We collected initial list of faults discovered (sessions
1A and 2A), the list of abstracted errors and a revised list
of faults (sessions 1B and 2B) and the final list of faults
and errors that result from team discussion and merging
(sessions 1C and 2C).

For the experimental purposes, we measured subjects'
response from
• Semi-structured questionnaires (after each session)
• Focused in-class discussion (after session 2C)

The questionnaires asked our subjects to answer
multiple questions on key dependent variables in the study:
• Time spent
• Percentage of faults/errors expected to have been

found
• Degree of help provided by the abstraction process
• Degree of confidence with the review method taught
• Degree of confidence that the errors produced from

the abstraction process actually represent real
misunderstandings of the document’s author

• Degree of process conformance
• Degree of satisfaction with the reading technique for

fault detection
• Degree of satisfaction with the abstraction process
• Variance of individual fault/error lists within a team
• How well the final team fault/error lists corresponded

to the original individual lists
• Type of process followed during the team meeting
• Perceived benefits from meeting as a team (if any)
• Perceived differences in abstracting errors between the

PBR and ad hoc methods
• Perceived differences in meeting as a team

considering that team members had used different
perspectives

The in-class discussion was based on the questionnaire
answers. They were run to give subjects the chance to
clarify, confirm, or expand on their written feedback.

3.2. Running the Experiment

The experiment was run as a series of assignments for
the CMSC 735 and MSWE 609 classes on Fall 1997.
Because the assignments were mandatory and had to be
graded, all 65 students participated in the experiment. We
assigned each session of the experiment as a homework
exercise. However, individual sessions were started in
class to allow our students to ask questions about the
techniques as needed, and then complete the work outside
of class.

At the beginning of the course, we asked students to fill
in a questionnaire to assess their experience in areas
related to the PBR perspectives: designer, tester, and use
case creator. We then assigned subjects to one of the three
PBR perspectives in such a way as to provide equal
numbers of reviewers at each level of experience. (Note
that each subject used only one of the PBR perspectives
during the course of the study.) Then, teams were created
so that one member came from each of the PBR
perspectives and all members of a team had the same level
of experience.

Before session 1A, we provided the fault taxonomy to
be used as a basis for the ad hoc review, and we gave a
lecture in which we provided an example of each of the
fault types. The examples came from a requirements
document for a video store which was used exclusively for
the training lectures. Before session 1B we provided the
guidelines for error abstraction and gave a lecture to our
subjects. We did not provide any specific training, before
session 1C, as to how a team should accomplish the task of
discussing and producing a representative list of faults and
errors. We therefore allowed the teams to run the meetings
however they felt was most useful, and asked subjects to
explain the process they used on the questionnaire.

Before session 2A, we gave a lecture in which we
presented the PBR technique for each perspective and a
short application of the technique to the example
requirements document. We also gave handouts containing
the detailed perspective-based technique and the associated
data collection forms. The training for session 2B was
already given in session 1B. Session 2C, like session 1C,
did not require training.

3.3. Early Results

Here, we present a first analysis of the mix of
quantitative and qualitative information, which comes
from fault and error lists, debriefing questionnaires and in-
class discussion.

Can this process be used for abstracting faults to errors?
36% of students indicated that the abstraction process

"helped a lot" to identify errors in the requirements, 59%

answered that the process provided "some help", and 5%
answered that they received "no help". Considering the
cumulative percentage we can say that almost all students
found the abstraction process a useful way of composing
an error list.

From in-class interviews we discovered that students
tended to use (perhaps subconscious) heuristics when they
followed the abstraction process:
• Some tried to distribute faults approximately equally

among errors
• Some tended to avoid errors that had only a few faults

– the tendency was to lump these faults in with other
errors

• Some just stopped looking for faults related to a
particular error when that error already had a lot of
faults compared to others on the list

Does the abstraction process produce meaningful errors?
Most students (44/65) had confidence that at least some

of the errors they listed represented real, meaningful
misunderstandings in the documents.

What is the right level of abstraction for an error?
Students reported an average of 9 errors and 33 faults

each (for an average of 3.7 faults/error).
However, not knowing whether their abstraction level

was “right” was one of the most commonly reported
frustrations with the use of error abstraction.

Do subjects get a unique result?
At a high level, there were some similarities between

the error lists reported.
• 25 different errors were reported in all
• 4 errors were listed by over half of the reviewers
• 3 errors were listed by over a third

What is the cost of error abstraction?
On average, students spent about 1.5 hours on

abstraction and one hour re-reviewing the document for
additional faults.

While for these variables there were no significant
differences between the two sessions (ATM document
with ad hoc reading and PG document with PBR), the time
to get the initial list of faults was higher (p=0.0002)
reviewing the PG document using PBR (3.75 hours) than
for reviewing the ATM document using an ad hoc
technique (2.75 hours).

What is gained from the process of abstracting errors?
Knowledge of errors did not lead to many new fault

discoveries. On average, students found only 1.7 additional
true faults as a result of applying the error abstraction
process.

Still, most students (49/65) agreed that “the effort spent
to abstract the errors was well-spent”. Some of the reasons
for having found so few new faults were cited:
• Some subjects tended to not put any real effort into

finding new faults after abstraction, if they felt that
they had found most of the major ones in the first
review.

• Some subjects reported that finding errors helped
discard false positives, but not find new faults.

Furthermore, fault detection was not felt to be the main
point of abstraction. Many other benefits from having
performed the abstraction were cited:
• It helped focus on most important areas of the

document.
• It gave a better understanding of the real problems in

the requirements (63% of students said they were
"very confident" that the errors they found really
represent true information about the reviewed
document).

• It gave more confidence in the faults found.
• It improved communication by being able to talk of

general classes of faults
• It seemed to convey better information for correcting

the document (although defect correction was not part
of the experiment).

Can we build reading techniques which effectively
encapsulate the new model (reading for fault detection and
abstracting errors) for requirements review?

Interestingly, the three PBR perspectives (designer,
tester, and user) seemed to affect the error abstraction
process differently. For example, there were some specific
comments on the design perspective:
• It seemed to be better at leading to errors than faults

(12 designers agreed vs. 5 disagreed)
• It tended to help find omission faults. (Some subjects

felt that these faults were closer to the level of errors
in this document. Omission faults often dealt with
missing functionality, which indicated that system
behavior was not well understood.)

There were also some specific comments on the test
perspective:
• The documents were a little too high-level to really

use this perspective effectively. Faults could pass the
test cases but still be caught because they were clear
contradictions to the domain knowledge.

• In contrast to design, this technique tended to catch
omissions within, but not of, requirements.

3.4 Limits and Lessons Learned

Here we report other comments from class discussion
which point up limits of this study that might be removed
in further studies:
• There was some debate as to whether the abstraction

process can produce real errors from seeded faults.
Since the faults were seeded individually, not starting
from seeded errors, it was felt that the results of error
abstraction for these documents were necessarily
arbitrary. (And if so, mightn’t different results be
obtained for a document with real faults and errors?)
This debate really hinges upon the question of how
representative the seeded faults were in the
experiment, and we had to admit we really didn’t
know.

• Our guidelines for the process may have given a piece
of bad advice, since they advised that errors that had
only 1 or 2 associated faults might not be general
enough. It seemed to be agreed that some useful
errors could have such small numbers of faults.

• There may have been some confusion of results
between faults and errors because some people had
already applied some sort of abstraction in the review
session. This was especially true in the second
session, as having done the whole process once
already, subjects reasoned they were just going to
have to turn their faults into errors eventually anyway.
To some extent, this was a result of the types of faults
in the documents: for faults that ended up affecting the
document in multiple places it was really just easier to
write one error that covered all cases. This was
especially true for the faults of omission, because it
usually seemed to be large functionalities that were
missing and not small pieces.

4. Conclusions

In this paper, we have reported our experiences from an
experiment designed to assess the usefulness of errors,
rather than just faults, in requirements defect detection.
The primary indication from this study is that our process
of error abstraction appears feasible. Subjects were able to
perform the process in what we consider a reasonable
amount of time. Although there was some variation in the
results among subjects, the process did result in a number
of errors that were arrived at independently by a sizable
fraction of the subjects. In addition, a majority of the
subjects expressed confidence that the errors they
produced represented real misunderstandings in the
document, and were not arbitrary constructs.

It is more difficult to assess the effectiveness of the
error abstraction process for defect detection. The process
was certainly not effective in the way we had anticipated:

it did not lead to a substantial number of new faults being
detected in the document. Our subjects did seem to feel
the process was worthwhile, however, and suggested a
number of other ways in which it could be beneficial to the
error abstraction process. These alternative measures of
effectiveness remain to be tested in future experiments.

Acknowledgments

Our thanks to the students of CMSC 735 and MSWE
609 classes for their cooperation and hard work.

References

[1] ANSI/IEEE. IEEE Guide to Software Requirements
Specifications. Standard Std 830-1984, 1984.

[2] V. Basili, D. Weiss. Evaluation of a software
requirements document by analysis of change data.
In Proceedings of the 5th International Conference
on Software Engineering, San Diego, CA, March
1981.

[3] V. R. Basili, S. Green , O. Laitenberger, F. Lanubile,
F. Shull, S. Sørumgård, and M. Zelkowitz. The
empirical investigation of Perspective-Based
Reading. Empirical Software Engineering: An
International Journal, 1 (2): 133-164, 1996.

[4] B. W. Boehm. Software Engineering Economics.
Prentice Hall, Englewood Cliffs: NJ, 1981.

[5] M. Ciolkowski, C. Differding, O. Laitenberger, J.
Muench. Empirical Investigation of Perspective-
based Reading: A Replicated Experiment, Technical
Report ISERN-97-13, April 1997.

[6] T. Gilb, and D. Graham. Software Inspections.
Addison-Wesley Publishing Company, Inc.,
Reading, Mass, 1993.

[7] W. S. Humphrey. Managing the Software Process.
Addison-Wesley Publishing Company, Inc.,
Reading, Mass, 1990.

[8] IEEE. Software Engineering Standards. IEEE
Computer Society Press, 1987.

[9] P. M. Johnson. Reengineering inspection.
Communications of the ACM, 41 (2): 49-52,
February 1998.

[10] G. M. Schneider, J. Martin, and W. Tsai. An
experimental study of fault detection in user
requirements documents. ACM Transactions on
Software Engineering and Methodology, 1 (2): 188-
204, April 1992.

[11] S. Sørumgård. Verification of Process Conformance
in Empirical Studies of Software Development.
Ph.D. thesis, Norwegian University of Science and
Technology, 1997.

[12] D. A. Wheeler, B. Brykczynski, and R. N. Meeson,
Jr. Software Inspection: An Industry Best Practice.

IEEE Computer Society Press, 1996.

Appendix: Guidelines for Abstracting Errors
from Faults

1. Understand why each fault you identified represents a
defect in the document.

You should first think about the nature of the faults
you have identified. Each fault can represent a part of
the requirements in which important information was
left out, misstated, included in the wrong section, or
simply incorrect. Faults might also represent
extraneous information that is not important to the
system being constructed and may mislead the
developers.

Think about the underlying mistakes that might
have caused these faults. If information is found in
the wrong section of the document, it might mean
nothing more than that whoever wrote the
requirements organized the document badly. On the
other hand, if there is a contradiction within the
document, then the requirements may reflect an
underlying confusion about some of the functionality
that is to be provided by the system. The distinction is
not always so clear: if a necessary test is misstated in
the requirements, does this represent an isolated typo
or a fundamental misunderstanding about error
conditions?

For example, consider these faults, which were
found in the requirements for the computer system of
a video store. They all come from the part of the
requirements that details how tape rentals are to be
entered into the system.
F3: The requirements say “The system keeps a rental

transaction record for each customer giving out
information and currently rented tapes for each
customer.” However, an explanation of exactly
what information is given out for each customer
has been omitted.

F9: The requirements say that when a tape is rented,
the “rental transaction file is updated.”
However, what it means to update the rental
transaction file is not specified. The information
to be stored here is not discussed.

F10: The requirements say that when the rental is
successfully completed, a form will be printed
for the customer to sign. They also specify that
the forms “will be kept on file in the store for
one month after the tapes are returned.” This is
classified as a fault because the filing and
storage of the forms is outside the scope of the
system, and should not be specified in the
requirements since no corresponding system

functionality will be implemented.

2. Identify errors by classifying the faults under
progressively more abstract themes.

Identifying fundamental errors means finding
patterns in a collection of isolated faults. As such, it is
a creative process for which we can give only a few
guidelines.

It may be helpful to think about what kind of
information is involved in the faults. Do particular
functionalities, system users, or performance
requirements appear in multiple faults? This may
indicate that these are particular aspects of the system
that are not well understood.

It may also be helpful to remember that not every
fault is indicative of a larger error; some will
undoubtedly result just from typos or
misunderstandings of very small pieces of the
functionality. Not every fault has to be a part of a
pattern.

Two of the example faults discussed above can
help demonstrate this. F3 and F9 both involve
missing information about how the information in the
database is to be updated. This may be evidence of an
underlying error that goes beyond these specific
faults: how rentals are to be logged is not completely
specified. Faults F3 and F9 may be assumed to appear
in the document because this underlying error has
been made. F10 may simply represent nothing more
important than an isolated fault, but if we could find
other faults involving the rental forms, then F10 might
be evidence that the role of the rental forms in the
system was not completely understood. In that case,
we would have to ask whether there isn’t an even
larger error, namely, that what historical information
is to be recorded, and how it is to be kept, are not
adequately specified.

We can illustrate F3 and F9 abstracting to a
common error in the following way:

E

F3 F9

Naturally, this may not be the only mapping of
faults to errors. Multiple ways of categorizing the
faults may certainly exist.

3. For each error, return to the document and make sure
you have located all of the faults for which it is
responsible.

Finally, return to the document to see if the errors
you identified lead you to other faults that you might
have missed in the first analysis. Now that you know
the fundamental misunderstandings, you can see if
those errors showed up in other places as well.

In our example, once we realize that there may be a
fundamental error involving the understanding of how
transactions are to be logged, we can return to the
document and look more closely for other faults that
may have resulted. In this way, we could find:
F12: The requirements state that when a customer

pays a late fine, the rental transaction record is
updated. Again, we realize that the exact fields
and values that are to be updated are never
specified.

We can think of the new error as leading to other
faults in the same category:

E

F3 F9 F12

