POCCNET Language Study : PRGE 2-81

2.9¢ JOVIAL/J3S

2.9.1s LANGUAGE FEATURES

JOVIAL/J38 [REI75,S0F75] is a high level language developed
by SofTe;h for use in avionics applications., The language is
based on JOVIALIJS the Air Force standard lLanguage for command
and control app{1cat1ons. JOVIAL/J438B has been used extensmvely in

the B-1 Strategic Bombe r program.
Ao @esis Bgta Iypes sng Qpe:axgrs

JOVIAL/J3B has seven basic "data types: siéned-'integer,
unsigned integer} fixed points sihgle and double 'precision-
floating point, bit str1ng, and character string, The length ot
bit strings is limited to the implementation dependent number of
‘pits in 2 computer word. Automat1c convere1on "is perfprmed
tetween integer and floating point expressions; The fotiouing
types of d{iterals are permitted in JOVIAL/J3B ‘expressionS'
integer, fixed oo1nt, single and dauble precision fioat1ng po1nt,
and hexadecimal and character strings.

The operators and the data types on which they operate afe
listed below: ' | SR o

arithmetic operators
oy -y *',‘/, ik
ABS - Absolute value. _
INTR - Extracts a bit string from an arb1trary

expre551nn and converts the string to 1nteger.'

INTGR - Converts a fixed po1nt express1on to 1nteger.
FIX - Converts an integer expression to fixed po1nt.
SCALE =~ Scales a fixed po1nt express1on.

relatiopal operators
Sy Sy < 2, €=, 2= _
- AlLL the relational operators can be used tb compare
numeric expressions,; but character expfessions can

only be compared using = and <> .(fhere is no

POCCNET Language Study PAGE 2-82

explicif ordering of the character set). Bit
expressions can not be compared using the
relationéﬁ operators.

All the relational operators yielﬁ & oit

string resuli.

bit_oberators
NOT, AMD, OR, XOR
CSHIFTL = Left shifte

B

SHIFTR = Right shifte
BIT - Pseudo-variasble for adcessing kit stringse. The

BIT function can appear on the left-hand side of

&n assignment statement.

character operators

'.BYTE - Pseudo-variable for accessing a sequence of

bytes (characters)., Can appear on left-hand side

of an assignment statement.

A - e -————

BEGIN <stmt-list> END ;

(Compound statement.)

IF <bit-expr> ; <stmt> ; ELSE'<stmt? b S
S (Stangard conditional statement with optional ELSE
‘part. .If the vatue of the <pit-expr®> is known at
compile time then no code is generated for the
- bypassed THEN or ELSE <stmt>.) '

WHILE <pit-expr> ; <stmt> ;

(Standard while Loope)

"FOR <var> (<init-expr> BY <incr-expr>
{ WHILE <bit=expr> }); <stmt> ;
{For iLoop with optional WHILE clause,)

FOR <var> (<init-expr> THEN <next-expr>
{ WHILE <bit=-expr> } }; <stmt> ;

(Alternate form of for loocp. The <var> is assigned

POCCNET Language Study o PAGE 2-83

the value of the <init-ex§r>'on the first iteration of
the toop, and .thé value of <next-expr> on &t
subsequent iterations. The <next-expr> can be any
integer expression, and it is evatuated 'on--each

iteration of the loopa.)

= GOTO0 <label> ;

(Unconditional branch to ltabel in current namescope.)

- GOTQ <switéh-name> (<ihteger-expr>)_;'
" (Computed goto. The <switch-name> must have been
declared with a statement of the form. '
SWITLH <switch-namé>'=.<Label—list> ; ‘
On execution of the GOTO statement the value i of +the
<integer-expr> is used. to select the 1-th Label, and 2

branch is made to the selected Label . }

-~ RETURN ;

(Return from a procedure or functhﬂ)

- { DEF } { RENT } PROC <proc=-name>
({ <input-parameters>) {: <output-parameters> })
{ <function-type> } ; .
BEGIN
<local~declarations> ;
<stmt-list> ;
END ;
(pefinition of a procedure or fdnction@',lf the RENT
option is selected then feentrant..che will be
generated for the proceduré'(recursivercalls afé not
permitted, however). The DEF cption permits the
<proc-name> to be cal Led from octher: external
pnocédures. Any tabels-appearing in the'<sfmt-[ist>
must be declared in the <£ocat—declarations> section.)

= <pcoc-name> ({ <input-arguments>)
{ : <output=-arguments> })
(Invocation of & procedure or function. " The method

used tc pass parameters {such as call by value,

POCCNET Language Study PAGE 2-84

value=-result, or reference) is implementation

dependent.,

Internal procedures can be declareg as "inline"

routines with 2 statement of .the form INLINE
<proc-name> ; Each dinvocation of an inline
procedure causes the body of procedure to be

substituted inline at the point of invocation,)

JOVIAL/J3B has three constructs for creating more complex
déta structures from the basic data types:

(a) arrays,

Arraxs are declared with a statement of the form
ARRAY <var-name> (<d1mens1on-t1st>) <type> ;
The array type can be any of the baswp data types or a
"po1nter to a table. Arrays can have up to three dimensions,

and afray indexing starts at D._‘The elements in an afray

are referenced using the standard subscript operator
'<var:name> (<subscript-List>) .

{b) tables
The : JOVIAL ~Language has _extensive facilities for
constiructing data tables (linear- lists of record

struétures). A "temp{ate" for the entr:es in a table is

_declarad using the TYPE statement:

TYPE <new-template> TABLE () { g 3

{ LIKE <old-template>)}

BEGIN <item~declarations> END ;
The options M and D affect the packing density of the ditems
within the individual table entries {(M-mediums D-dense).
The LIKE option allows a previously defined table template
fo be usea in the def1n1t1on of a new templateo The itéms.
itn the <new template> will tonsist of all items in the
<itep-declarations> list, preceded by the items 4in the

<old-template> if the LIKE option was used. The type of the

POCCNET Language Study PAGE 2-35%

ftems in the <item-declarations> List c¢an be any of the
basict data types or a pointer to a taole.

The table templates c¢an then be used to déclare data
tables: 7

" TABLE <table-name> (<number-of-entries>) { P } {'E 5 ;

BEGIN <item~declarations> END ; _
The M and D options have already been described. The
defavlt method for allocating storage for & table is by
table:entry: for each tabte entry there s 'a -contiguous’
block of core that is long enocugh to contain all the items
in the <item-declarations> list, 1t the P option is
specified, however, the table is altocated-iﬁ a'"haraliel"
fashion: there is.a cont1guous block of core for the first.
item in all the table entries, & block for all the second
items, and so. forth, _ _

An alternate version of the table declarstion gives the
programmer complete control over placement of itéms'uithin a
table entry., The number of words per table - entry and the
placement of each item (word position .and starting Bit
wfthin the wordl) is directly specified, " The storaée,.for
items can overlape. o ' _ .

'Individual items in a directly GECLéred table (declared

without a template) are accessed using subscr1pt notat1on'

<table-item> (<table~ ~entry>) -
"An entire tablie entry can be compared—uith or assigned the
value of another table entry using the ENTRY funct1on. Fdr
example,

ENTRY(MSGL.TABLE(I)) = ENTRY(ERROR.MSG(4)) ; o
Tabie entries or items within a table entry of any tabie
declared . with a template _cah only be. aécessed using
pointers. Pointers will be diséussed in the next sect1on.

Note: There are. a Large number of restrictions on the

way that tables can be declared and used.
(¢ bointars_to table entries

A pointer is declared with s statement of the form

POCCNET Lznguage Study PAGE 2-86

ITEM <pointer=var> P { <template> 3 ;
Pqinters declared with a template can only be used to access
table entries having the same “témplatey, pointers declared
without a template can point to any entry.
The fotllowing ﬁointer 'functions and operators are
avattable:
POINI(fiable-name>, <subscript>}
'.‘ -~ Yields a pointer toc the specified'entry
" in the table.
NEXT(<entry=-pointer>, <table-name>, { <index> })
- Yields_a”poin;er to the next table entry
following <entry-pointer>., The <index>
¢an be used to obtain a pointer to some
table entry.rétative to <entry-pointer>.
For exahple, _ _ |
 NEXT(MSGPTR,MSG.TABLE)
NEXT(MSGPTRyMSG.TABLE,~2) .
<tabte-item> (<entry-pointer>)
=~ Accesses the specified item 'in the table
entry pointed at by the <entry4pointqr>.-

The relational operators =, <>, <, 3, <=, >= cap be used to
compare compatible pointeré, and the assicnement operator =

can be used to copy s pointer.

JOVIAL/J3B has & number of features that would be helpful
for .programmjng large systems. Source fiies containing JOVIAL
statemehts can be inserted into a program using & statement of
the form ‘COPY <file4spéc> ; « Program constants can be
declared using the CONSTANT statement:

CdNSTANT <constant-name> <type> = <yatlue> ;
The <constant-name> can be ysed‘in any expression, but it can not
be assigned =a new value by_an assignment siatement oF a procedure
catl., ‘ _ |

The language also has = simple ' replacement and a

parameterized macro facilitye Macros are declered with the

POCCNET tLanguage Study o PAGE 2-87

statement
'DEFINE Cmacro-name> { (<parameter-list>) }
' <reptlacement-string> ;

The <replacement-string>» can contain other macrosg

JOVIALYJ3BE has a2 COMPOOL feature that is similar to (but
more aukward than} the HAL/S COMPOOL block..-A JOVIAL COMPOOL
file can contain ctonstant and macro definitions, dec(arations of
external proéedures and functioﬁs, templates for tables, and
-_references to BLOCK definitions (BLOCK def1n1t1ons are used for
declaring shared, external Gata; they are a combination of the
Fortran CQMMON.anﬁ BLOCK DATA statementse) The COMPOOL'-file can
be invoked by @any oprogram . that réquires the declarations and
templates. ' | ' '

The lLianguage has an OVERLAY statement that 1s 51m1lar to the
Fortran EQUIVALENCE statement. JOVIAL/JBB has no 1/0 fac1ltt1es.

A - Em W e e A - w an

" Ee Runtime Env1ronment

JOVIALY/J3B requires' a runtime stack for ‘any procedures
_dettared to be reentrant. Other than this, the_languagg requires

Littile in the way of runtime environment.

Fe Syntax

The BNF grammar for JOVIAL/J3B has approximately 500
productioRs (the SoflTech grammar for the language includes type
restrictiens and is considerably more precise than typical . BNF

grammars) .

2e%e?e CHARACTERISTICS

A.'Maghigg.gggendence

P e -

JOVIAL/J3B has & Large nuﬁber of impleméntation dependent
features, idncluding the method usegd tc pass procedure. and
functjon parameters, the maximum length of bit strings ;(Limited
to ohe computer word}), the functions INTRy, BIT,y and BYTE used for
accessing bit and character strings, the OVERLAY statement,

POCCNET bLanguage Study _ PAGE Z-88

programmer specified table allocation (word position and @it
position within a word), the restriction that atl items in a
table dectared with the parallel (P} attribute occupy & single

word, and the lack of a'cotlating sequence for the character sete.

Be Eifl ciency

T he laﬁguage should be as efficient as Fortran for programs
using nop-reentrant proceduress, AlL cata areas can be allocated

staticallye.
€. Level af the Language
JOVIAL/J3B is a high tevel language.

Language and Comp

o e W - -

Ler

k=t

JOVIk’fJ3B is & large language‘ with complicated data
structures {the TABLE in particular). The compiter will also be

large;

£E. Specials System Features

b

The ianguage has pit and character data typesy the INTR,
BiT, and BYTE functions fof accessing bits &and characters,
reentrant procedures and fuhctiohs,' the OVERLAY statement for
equivalencing data storage, and the TABLE data structure. ALl of -

these features uodld be helpful for system programming.

Fo Error Checking and Debuaging

The JOVIAL/J3B language is strongly typeds so many program
errors can be detected during compilation. _

As discussed in sectién Be Control §££gg;g£g§, no ctode is
generated for.the bypassed_sectioﬁ of an IF statement when the
vaLue of the <bit-expr> is known at compile time. This feature
perm1ts debugging code to be maintained. in a JOVIAL/J3B vprogram
without any expense in executlon time or shace. For examplte:

DEFINE DEBUG = X“1°; | | |

IF DEBUG ; BEGIN <debdgfstatements>‘ENb;

POCCNET Language Study : PAGE 2-8¢9

The language msnual does not indicate that any other debugging

féatures are availables
G. Design Support
(a) modularity

Mdduiarity in JOVIAL/J3B is good. The tanguagé has
proceduresy functions, and the basic control structures for
 Structured programming. The tanguage permits independent
compilatioh of procedures, functions, and. COMPOOL-fileé. The"
COMPOOL and COPY files can be wused to store commonly used
declaratiens or source text, and the BLOCK s;atémenf-pérmits

sharing ot external data .
(b} modifimbility

JOVIAL/d3B has a number of features whicﬁ- QdUld-'aid in
_program podification, inc[uaing the CONSTANT decLaratioﬁ, the
DEFINE statement for defining macros, the COPY_ statement for
including source fi{es, and the COMPOOL files. The langbagé also
has a stractured <control structure which will tend to héké

‘programs more readable,
(c) reliabidity

" The mseudo}vériabtes BIT and BYTE for accessing bit and:
~character strings need to be used carefully,_éince'they‘can be
used to aiter any portion df & data item. The OVERLAY statement
ang user~specified @ table altocation also require cérefﬁl
programmiég. In general, hoﬁever, it should be ‘considérab[y
'eaéier to write reliable pfograms' in JOVIALZJ3B than in a
language Llike Ffortran. JOVIAL/J3B thas stfucturgd control
stfucture&, array and table data struttures, a_Largé set of basic
déta typesy severasl féatures‘that cén.improve the readability of
programs (macros and CONSTANT items), COMPOOL and COPY files to
insure that separately compiled programs emplioy the same datea

declarations, and strong type checkinge

Ha Usg

POCCNET Language Study PAGE 2-90

JOVIAL/J38 has peen implemented on the 1BM 370G series and a
number of special purpose minicomputers including the SKce 2070,
SKC 2000, IBM 4T , and the LITTON &4516D. The compiler weas
developed by SofTech using~thé RED language. JOVIALYJ3IB has been

used extensively in the B8-1 Strategic Bomber program,

POCCNET Language Study . PAGE 2-91

2¢10. LITTLE
2¢10.1+ LANGUAGE FEATURES

LITTLE.[SHI?#Z was developed at NYU in 1968_in_an‘éttempt to
produce an efficient but 7 machine independent systems
implementation Language. The only dstaz type supported by.the
tanguage is bit strings of arbitrary (put not varying) Llength,’
ang no type checking is performed. LITTLE 1is essentially a

Fortran language with some structured programming'construc;s.
A. Basic Pata Iypes ang Operators

LITTLE is a typeless language that operates on bit _strings
of érbitrary tengtho. The ltanguage allows five txpes,bf constants
" to appear 1in expressions: unsigned integers, octal numbers,
binary numbers, mixéd binary/octal ﬁumbers, énd charatter strings
(incluoing the empty string). Note that floating point numbers

are not provided. The following operators are provided:

bit string operators
s+ ORey oANDay; +EXOR.
Bitwise OR, AND, and exclusive OR of twd'expressions. -
The shorter dperand is padded on Left with zeros.
s NOT . '
«FB.
| Posifion of leftmost 1-bit in expression.
«NB o ' |
Number of 1=-bits in expressione
eCo ' |
Bitwise concatenation of two operands.

<start bit> <number of bits> <expr>

Fseudo variables for inserting or extracting bits.
The <Ee operator must be used for operands extending

across word boundarys.

earithmetic operators

gy =y ¥y /]

POCCNET Language Study

Integer arithmetic operatorse.

relational operators _ . ‘
.EG., o NE oy -LT-, éGT.,V.LEog e GE.

character operators
<string-1> +INe <string-2>

Index of <string=1> in <string-2>,

PAGE

«Se <start character> <number of characters> <string>

Pseudo variable for iriserting or deleting

stringse.

«CHs <character number> <string>

character

Pseudo variabie for inserting or de(eting single

- ctharacters.,
<string-1> .CCe. <string=-2>

String concatenation.

‘Be Controt Structures

IF (<expr>) <stmt> ;

 (Simple if statement.)

2-97

- IF fexpr> THEN <stmt*l§st> { ELSE <stmt-List>)} END IF;

LCompound if.)

- WHELE <expr> ;
CUNTIL
<stmt-Llist>

"END WHILE ;-
UNTIL

(Standard while and repeat Loops.)

=~ DO <var> = <expr=-1> TQ <expr-2> BY <expr-3>

<stmt-list>
END DO ;

(Standard for Loop.)

- 60TO0 <label> ;

GOBY (<expr>) (Clabel-1>, +.ey <lLubel-k>)

(Unconditional and computed goto.)

~ SUBR <ident> { (<parameter-list>))

s

F 4

r

POCCNET Language Study) PAGE 2-93

<stmt-bList>

END SUBR ;

FNCT <ident> { (<parameter-list>) 3 ;
stmt-List> '
END FNCT ;
(Fortrad Like subroutines and functions. Neither can
‘be recursive. A function may not sssign values to its

input parameters.)

- CONT { <specifier> >} ;
(Continue next iteration of the innermo#tnor
specified DOy WHILE, or UNTIL toops?

- QUIT { <specifier> } ;

(Exit the innermost or ancified 1oops)

- RETURN H

(Return from a subroutine or function.)

The only 'data structure supported Dby _LITTLE is “the

one-dimensional array. The statements

SIZE <ident> (<length in bits>) ;

DIMS <ident> (<number of élements>) ;-
declares <ident> to be a one-dimensicnal afray, each element of
which is a bit stfing of length-<Lengfh in bits>, Array elements
are accessed using standard subscript notation: 7

<ident> ((subécript>) .

. LITTLE is & typeless, Fortran-like language with nec block
structure and ‘comments in /* %/ or $ to end-of-line pairss
LITTLE has 2 DATA statement for initiatizing variables, and a
NAMESET {feature similar to fFortran COMMON. The language also has '
a simple and a parameterized macro facidity éLLouing'-recursfve

macro expsnsion.

E. Rupntime Environment

POCCNET Langusge Stucdy _ PAGE 2-94%

~ Because LITTLE forbids recursive subroutines ~¢r functions,
the language does not Fequire 2 runtime stack. There is also no

need for any form of dynamic storage allocator.

- -

Yhe BNF grammar for LITTLE has approximately &80 productions.

2.10.2. CHARACTERISTICS

A. Machipe Dependence

LITTLE has no machine dependent features and could be
implemehted on most machines. Hou9ver, because of the arbitrary
length of operanus, there are feu mach1nes that could 1mblement

CLITTLE eft1c1ently for operands longer than the word sizes

EIEQSZ

Jods

B. Eff

LITTLE should be efficient for pfogfams using variables that
match the word size of the host machine. Intine code can be
generated - for most operators, there 1is ne need for a runtime
stack, and there is no block entry or dynamic storage allocation.
For expre&sjons invdlvfng ope rands longer than a single word,
however, LITTLE may execute considerably slower than hana- coded-

assembly ianguage.

Co Level
Do Size of Language and Compilter

LITTLE is a small language, and_thé compiler should also be
small, - ' '

E. Special: System Features

-k -

FOCCNET Language Study - PAGE 2-95

- Because of the {ack of data types, LITTLE can operform no
compile .or runtime type checking. Gther runtime checksy such as
su05cript'errors'or expression out of range in & GOBY statement,
will be performeg if the debug option is specifiéd, 7

The CbC 6600 imptemeniaion of LITTLE providgs-the' following
debﬁggihg facilities: .(1) trace of assignments to selected
variables; (2) calling history of subprograms; (3)'sta£istics on
number of stétéments executed by statement type; (4) subscript’
checks for arrays; and (5) verification that «certain assertions

(LITTLE expressions involving program variables) are true.
‘6.Design Support
(a) modularity

LITTLE allows dindependent _cbmpitatien of_ modules, and

provides communication through NAMESET (Fortran COMMON) blocks.
(o) mogifiability

LITTLE has a fairly powerful mac ro processor, the . standard
structured programming constructé, and a feature for conditional
compilation of Source text. These. would be a great hélp in
modidfying LITTLE programﬁ. However, the lack of'any featurés for
tohstfucténg new data types (other than one~-dimensional afrayé)
means that aill data structures would have to be implemented by
"the LITTLE programs themselvess. Subseguent chénges to the data

structures coutd require large scate revisions of the program.
Cc) reliabidity

Because LITTLE is5 @ typeléss lanéuage, the compiler performs
no compile or runtime checks to insure that the bit pattern in an
operanag is.meaningfut. Type checking is tnereforé the wuser”s
responsibilitye. 'In addition, the lack of data_ structures
reduires LITTLE programs to simulate the data structureé with
LITTLE statements. LITTLE programs will then be Lohger,'mdre
complexs and harder to understand thsn a program written 1in &

language with more data structuring facilities,

BOCCNET Language Study _ PAGE 2-9%

He Use

LITTLE has neen imblemented on the CpC 6600, the IBM 360
séries, amd the Honeywel! 512. The compiler is written in LITTLE

itself, and could easily be boctstrapped onto other machines,

POCCNET Language Study - PAGE Z~97

 2.91. PASCAL

2¢11:e1+s LANGUAGE FEATURES

PASCAL - [JENT4,RIL76] is a ogeneral purpose, high' Level
tanguagé designed by Niklaus Wirth as a successor to ALGOL 60.
The tanguage has a full set of control structufes faor étructured
programming, .anﬁ many facitities for data structuring including
arrays} recards, sets; and typed pointers. . PASCAL has.beenr used
for a number of systems—orientéd.problems including the-compilers
for PASCAL and CONCURRENT PASCAL, and fhe SOLO Qpefating_system
{a singteﬁuser operating system for the PDP 11/455,'

A. Basic Bata Iypes and Operstors

PASCAL has four bassic data types: INTEGER, REAL, BOOLEAN,
and CHAR (single character). Full type checking is_berformed at
“compile time, and no automatic conversions are performed between
the basic types. The foilowing types'of constantsﬂére-permitted
in expressions: integer, real, boolean, character, and str{ng
(treated as an array of characters). ' ' _' N

The opérators and the data types on which they_operate are

“tisted below:

arithmetic operators and functions (INTEGER and REAL operands)
| ty =y *y [~ Standard arithmetic operators for
INTEGER or REAL operaﬁds. The _ ?
division operator returns a REAL result.
. DIV, MOD - Division,an& modu lus qperatbrs for :
INTEGER operands. | | |
ABS(<expr>) - Absolute value of REAL or INTEGER
' ' expression.
SGR{<expr>) - Square of REAL or INTEGER <expr>.

The following functions are available for INTEGER

operands:

0bD(<expr>i - Function returning true if the expression

POCCNET Language Study ~ PAGE 2-98&

is odd.
SUCC(<expr>) = Functions yielding successor and

PRED(<expr>) predecessor of the expression,

The following functions are available for REAL operands:

TRUNC(<expr>} = Functions yielding INTEGER result of
.ROUND(éékDr}l truncating or rohnding_a REAL <expr>.
SINy. COSy : -‘Standa(d.mathemaiicat functions.
ARCTAN, LN, | ' |

EXPy. SGRT

logical operators (BOOLEAN operands)
- AND,. ORy NOT - The BOOLEAN operators yield
a BOOLEAN result. -

relational operators (all basic types)
Sy &>, <;,>,_<=,->=
- The two operan&s must have thé same
type. The relational operators yield
a BOOLEAN resulte = -

character operators
SUCC, PRED
CHRQ(expr))

Successor and predecessor functions.

Yields i-th character in the character
. sety, where i is the value of <expr>.
ORD¢<char>) - Ordinal position of the character in the

tharacter set.

Be Controk Structures

BEGIN <stmt-List> END

(Compound statement.)

1F <boolean-expr> THEN <stmt> { ELSE <stmt>)}

(Standard conditional with optional ELSE clause.)

WHILE <boolean-expr> DO <stmt>
(Wwhile {oop.)

REPEAT <stmt-List> UNTIL <boolean-expr>

POCCNET Lencuage Study PAGE 2-99

(Until Loops The body of the loop will be executed
at least once.)

- FOR <var>» := <expr-1> TO <expr-2> DO <stmt>
DOWNTO

(For Loops with implied increments of +1 and =1.7

- CASE <scalar-expr> OF
" <constant-list-1> : <stmt-1>
. P

L4

<constant=-list-k> : <stmt—k>
END
({ase statement. The <scalar-expr> <can be INTEGER,
'CHAR, BOOLEAN, or any user-defined scalar or subrange
type (scalar and subrange types will be descrined
latér " in Section C€)e The constant Llists mdst_contain
constants of the same type as the <scalar-expr>. The
<scalar-expr> is evatuated,'and the constant lists are
SCanned 'td fﬁnd a cbhstanf‘equal to the expression.
If a match is found then the corresponding statement
‘is executed; if no match is found then none of the

statements are executed.)

- WITH <variaplerlist>.DOI<stmt>- 7
- (Executes <stmt> using the record variasbles in the
<varisble~list.> Any expression in <stmt>‘m5y refer to .
" subcomponents .of the records without fully qualifying
'the'subcompanent. fFor example, if X is a record with
subcbmponents Ry By andlc, t hen
WITH X DO BEGIN

A 2= A +‘1.0;
B := A < 10.0;
£ = 767

END

is egquivalent to
Xeh 1= X A + 1.00}
XeB 1= XeA < 10.0;

POCCNET Langusge Study PAGE 2-100

- G0TO <label>;
(Unconditional transfer to a statement.in thé current
namescobe. PASCAL regquires theat -aLl labéls be
declared with the LABEL statement.)

- PROCEDURE Xproc-name> { (<parameter—iist>) }; <proc-body>

'FUMCTION <func-~name> { (<parameter—list>) } : <type>

<func-body> ' '
{Procedure and function definitions. Eoth may be
recursives The wuser can request that baraméters be

passed by value or by references)

~ <fanc-name> { (<argument-list>) %
<proc-name> { (<argument-Llist>) }

(Invoke a function or procedure.)

C. Data Structufes

LT R T3 P Sy Y

PASCAL has seven constructs for creating more complex data

structures from the basic data types:

(1) scalar type
The scalar tybe statement _ .

TYPE <type~ident> = (<object-1>, ...,'<object-k>) ;
‘defines an ordered set consisting of <object=1>y ooy
<object-k>. For example: - : _ '

TYPE MONTH = (JAN,fEB,MAR,APR,MKY,JUN,JUL;AUG, :

| SEP,OCT,NOV,DEC) ; i '
The set is ordered, so the relational bperatqrs'=, <>y <y >,
<=4 2=, the assignment operator :=; and the fuﬁctions Succ,
PRED and ORD can be applied to any scalar type. Note: the
basic types INTEGER, CHAR, and BOOLEAN are predefined scalar
types. ' '

(2} subrange types
Subrange types are subranges of scalar types, and they

POCCNET Language Study PAGE 2-101%

 8lso form ordered sets of objects. The statement
TYPE <type-ident> = <object=1> .+ <object=-m> ;

defines @ subrange types. There must be a scalsr type
tontaining both . objects, and the first object must be less
than the seconds For exampleﬁ

TYPE SPRING = MAR ., MAY;

"TYPE DIGIT T el 797

TYPE INDEX = 0 .. 100;

ALL the operators for scalar types can be applied to

L

H

subrange typese

arrays _
The statement ,
_ TYPE <type-id> = ARRAY [<gimension-List>] OF <type> ;
defines an array types. Arrays tan have an arbitrery number
of dimensionsy &and the <type* ¢tan be any basic {ype or cne
Qf the types discussed in this section. The dimensions are
specified by subrange types. For example:

TYPE MATRIX = ARRAY[1..3, 1..3] OF REAL;

VAR VECTOR : ARRAY[1..10] OF REAL; |

VAR JOBSRUN : ARRAY£1968..19?3, JAN.;DEC] OF INTEGER;
The assignment operator 1= . may be wused to 'copy entire
arrays, 'and array élements are referenced by listing the
$ubsdripts in brackets: '
<jdeﬁt> [<subscript-List>] .

(4) sets

The statement
TYPE Ctype-ident> = SET OF <base-type> ;
defines a type consisting of alt possible subsets of the

<base~type>, which must be a stalar or subrange type. For

'Exémate:
TYPE DAY = (M, T,W,THyF,5A,5); {Define scalar type)

VAR DAYSOFF : SET OF DAY; . {Now use it for a set)
VAR DIGITS : SET OF 0..9; |
The following oﬁerators are available for maniputating set.

types:

POCCNET Language Stugy - PAGE 2-~102

[<element-~list> 3] Set constructor yielding set.
The List may be empty.
ty =, % - Set union, difference, and

intersection.

=, <> - Tests on equality or inequality.
<=4 »= - Tests on set inclusion,
IN - Membership operator yielding

truse if element is in set.

CS} typed pointers
‘Pointer types are defined with a statement of.thé‘fqrm

-~

_TYPE <type-ident> = <type> ; _
wheré <type> is any type. .There is no ”address* function din
PASCAL - it 1is not possible ‘to obtain the .address of =
variable. Instead} al(' pointers in PASCAL'peinﬁ inte a
dynamic storage areas, and new pointers can only be ‘cfeated'
by requesting the allocation of some new data oﬁjeqt'in this
‘Storage area. _

The following pointer operators andr.functions are
avaitable (Assume that pointer P is dectared as VAR P : ‘ X;__
o . - : . |

NEW(P) ~ Allocates enough space for an object ot

' type Xy and sets P to the address of.

the space., | . _ -

DISPOSE (P) - Deallocates the object_ﬁointéd-to‘by P

' and sets P to NIte. ‘
P~ . = bereference gperator i{elding object
' pointed at by P. May appear on the
left-hand side of an assignment

statement.,

y <> - Tests on pointer equality.’

~ The assignment operator can be

to copy poeinters,

(6) tile type
'The-statement
TYPE <type-ident> = FILE OFf <type> ;

POCCNET Language Study PAGE 2-103

defines a sequentiél fitle of obijects of type <type>, The
declaration of a wvariable using this type (i.e., the
declaration of g file) causes the implicit declaration of a
variable X", where X is the name of the file variable. This
Qariable X" has. type <type>, énd acts as the buffer pointer

tor the file. The basic file functions are

CRESET(X) = Sets X~ to the first record in the file X,
REWRITE(X) - Prepares file X fos'rewfiting.

GETEX) - Gets the next record and assigns it to X" .
PUTEX) ' - Writes out X" into the file. '

(7) record structures

A record type is declared with a statement of the form
TYPE <type~ident> = RECORD
<member-1> : <type-1>

. . s
. B
. .

<member~ﬂ> : <type-k>
{ CASE <tag-field> : <type> OF
<case-label-list=1> : (<§ariant-iist?1>}:
. . '. ’
. | - .
7 <case-label=list~k> : (<variant-list-k>} 7
1END ; _ %
Recobds can contain an arbitrary number of members, and each
member can be of any type. PA§CAL‘tecords'can also contaﬁn'
& “vardiant® part at the_ené.of the record. This variant
part permits records of the same fype to contain a different
nuﬁb&f ang different types of members, The value of the
<tég-jié{d> determines what is stored in the variaht portion
of the record. For example: '
TYPE LINK = ° PROCDESCRIPTOR;

PRIORITY = 1¢.6;

PROCDESCRIPTOR = .

RECORD' {befine a process descriptor.l

FLINK,BLINK : LINK; {Forward/backward ptrs}
GPR : ARRAY [0..71; {General registers?

POCCNET Language Study PAGE 2=-104

PSW : INTEGER; {Pfogram status)
CASE PR : PRIORITY OF {Variant part)
15293 ¢ (MAXTIME,
MAXPAGES : INTEGER);
&z C 3; .
5,6 : (BUFFER : ARRAY[O..1283 OF INTEGER)

€

E ND
The dot operator “." is used to réfeﬁence members of @&
recocds For example: |
" VAR P : PROCDESCRIPTOR;
VAR I : INTEGER;
CFOR I :=D T0 7 DO P.GPRLIJ == O;
P.PR = 23 :
P.MAXTIME := 5;
P.MAXPAGES := 1000;

The WITH statement discussed in,Sectioh'B can be used to

avoid qual{fying each member of a record with the record
‘names: The assignment operator := c¢an be .used -to copy an
entire record. '

‘De Other Features

- e

PASCAL_réduires the declaration of all_variables, functions,

procedufes, and labels. PASCAL has a declaration of the form

. CONST <ident> = <expr>; |
for_declaning.program constants. The identifier can be wused 1in
any expression, but the wvalue of the .identifief tan nat_be
sltered. PASCAL does not provide dynamic arrays -or evén array
dimensions as parameters, as in the following FORTRAN Segment: |

' SUBROUTINE XYZCARRAY, N M) '

INTEGER NyMsARRAY(N,M)

Thus, it s hot possible to write a PASCAL progfam that
manipulates arrays of arbjtrary-sizes.. . '
' Finably, the language does not permit external functions or
procedures: & PASCAL program consists of a main program_and an
arbitrary number of nested functions and procedures, and the

entire program must be compiled'as a unite

POCCNET Language Study PAGE 2=-105

Ea Runtime Environment

- - ke M e .

PASCAL reguires & runtime steack (all functions and
procedures are - potentially recursivel), 1/0 routines, anc a
dynamic storage allocstor. " Some implementations may provide a

garbage cellector for repacking the dynamic storage area.

- Fs Syntax

PASC&L has a BNF grammar with approximately 150 productions.,

2.11.2. CHARACTERISTICS

e — —— . ———

‘=PASCAL is not machine dependenf and has been implemented on

a Large number of machines.
B Efficiency

PASCAL is moderafely efficient. Thg-Language does require a
.runtime stack; and dynamic storage allocation is required in any
program -using pointers or fftes. Hou¢Ver, the language features
have been carefully selected to permit efficient implementation
of_the'laaguage. Sets can be represented by bits strings; the set
union, Sntersectibn, and differeﬁce operators can theh be
implementéd in just a2 few. instructionse Scatar and subrange
types are equivalently simple. The strurfured'contrbl stru;turés'

also permit better code optimization.
Co Leyel
PASCAL is a high level languagea.

b« Size of the Language and Compiler

Jube

The PASCAL language is moderate in size. The compiler, which

is written in PASCAL itself, is only 8500 statements.

PASCAL has typed pointers, dynamic storage allocation,

POCCNET ianguage Study . PAGE 2-106

records, and the set type (which can be viewed as bit stringsl.

Fe Error Lhecking and Qgggggigg

—— - -

PASCAL performs full type chetking at compile tiﬁe. | In
addition, pointers are 'fully typec and all pointers point into
the:dynamic étOrage areas This prevent s pdinteré from pointing
to objects of the wrong type. bointers containing ilLegal machine
addresses, aftémpts to deallocate storage thet —was never
allocated, or attempts to access data in deallocated areas. The
subrange fypes alsc allow the implementatﬁoﬁ to perfo}m runtime
checks on variadles to insure that the values are. within the
subrange. Such a feature would be - very helpful in a diagnostic
compiler. ' | ' ' :_' '

The PASCAL manuél‘ does not indicate that any _speciak.

debugging tocls are availablé.
6. Design Support
{a) modutarﬁty

: Modutarity in PASCAL is_fairo The tanguage has a full set of
structured contro{ structuresy, and internél' procedure§ énd
functions are provided. However, PASCAL does nof permit.externét
prbcedurés or functionss This makesrit costly to use. existing
programs . {¥n a system Library, for exampiel, since thé programs

must be recompiled each time they are used.
(b) modifwability

~ As discussed previouslj, PASCAL has no provisions for
_external procedures or functions. This would be a serious
weakness in targe systems (10,000 Lineé), where the most friviél
modification in one of the programs would require the
recompilation of the entire system. However, PASCAL does have
the CONST feature for declaring program constants, hiéh‘level
data structures and operators, the subrange type, and the control
structures for structured programmings ALl these features. make

programs easier to read and modify.

POCCNET Language Study PAGE 2-107

{(c) reliability

_ PASLAL performs complete type <¢hecking at compite time
(including procedure 1'and. function parameters, and pointer
variaplesYs, PASCAL is alsoc 2 high level and well structured
language, so that procgrams should be smatler and more
setf—docu@enting than prograMs written in languages with fewer
data or control structures. It should be considerably easier to
write reliable programs in PASCAL than in & language Like
FORTRAN. | |

He Use

PASCAL has been implemented on almost all commercial
computer systems, including the POP 10, PDP-11 series, B&700,
UNIVAC 1100 series, IBM 360 and 370 series, and the CDC 3000 and
6000 series. The compiler is written in PASCAL itéeif, so the
'cqﬁpiter'could be transported to other machines using standard

bootstrapping technigues.

POCCNET Language Study PAGE 2-108
2412. PREST4
241241+« LANGUAGE FEATURES

PREST4 [KAF75] 'is @ preprocessor for Fortran that was
developed by a group at Ohio State University during the periocg
1973-1975, The Llanguage provides a 'number of structured.
prog?amming _conétructs, 2s wel L as some statements for
controtling the ocutput Listings of PRESTG source programs. The
structured programming constructs are not preceded by special
‘tharacters (e.ge $, %), a technique that ha§ been used by other
Fortrén- Preproce ssor s. -In the remainder of this section, the

PREST4 Llanguage is tonsidered to be Fortran IV augmented by the
PREST4L preprocesSsore '

A. Basic bata Iypes and Operators

_PRESTA supports the fi&e basic data types of Fertran - jv:
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL. The
language permits mixed-mode expressions and will automatically
convert betueen'.integer, real, and dohble precision numbers, .
_Constants used in expressioné can have the following types:
integer, real, double precision, complex, Logical, octal, andg
character Strings_ (character strings must be delineated by
aposxrophas; since PREST4 does not permit.the H specification
used by Fortran IV), ' ' o

fhé operators and the data types oh which they operate are
listed below: ' |

arithmetic operators (INTEGER, REAL, and DOUBLE
' | PRECISION cperands)

Ty Ty Ky [, Kk

logical operators (LOGICAL operands)
INOT.’ oANDOg -OR.
relaiionaé operators

.EQ}_Q’ oNE «) Allt’peSQ
sLTey oLEss «BTe, oGEs INTEGER, REAL, or DOUBLE

POCCNET Langusge Study - PAGE 2-109

PRECISION operands oniy.

Bs Controdi Structures

- - . e A e

IF <expr> THEN <stmt> { ELSE <stmt> }

(Standard conditionals.)

- DO <stmt=list> END

{Compound statement.).

~ DO WHILE <expr>
' UNTIL

<stmt=list>
END. |
(While and repeat Léops «)
~ DO <var> = <expr-1> { STEP <expr=2>) WHILE <expr-3>
‘ UNTIL _
<stmt-List>
END. o
(Standard for Loop.)

Note: PREST4 does not permit use of the Fortran IV forms of
the 1IF and DO statements; only the structured forms may be-

Uusede:

= GOTO <stmt-number>
GOTO <ass€gn-variabte> _ ,
GOTO (<§tmt-numner-1>, seey <sStmt-number~k>), <var>
(Unconditional, ASSIGNed, and computed goto

statements o)

= READ (<unit-numoer>, <format-number>, END: <stmt>)

' ' <input-variabte-list>
(Standard Fortran READ statement with d1fferent syntax
for the end-of-file condition. The END: <stmt>
providés a means of intercepting an end~of-file

condit+don without introddcing a G0T0 statement.)

= <type> FUNLTION <ident> (<parameter-iist>)
<Stmt-list> ' '
END.

POCCHET tLanguage Study PAGE 2-110

SUBROUTINE <ident> { (<parameter-List>) 3
<stmt=-Llist>

END |
(Standard Fortran function and subroutinese. Neither
€an be recursive, Both functions and subroutines can

have multiple entry points.)

-

PREST4 has only one feature for building more complex data
types: arrays of up to 7 dimensionse The declaration
DIMENSION <ident> (<dimension-list>)
declares <ident> to be an array. Elements of an array are
accessed using standard subscript' notation <ident>
(<Spbscript-list>).

O. Other Eeatures

:PRESIA‘ is essentially & Fortran language with ‘some
additional: constructs for structured programming. The language
has no block structure or recursion., PREST4 provides statement
funﬁticns,- EQUIVALENCE, COMMON, and DATA statements, and the
.-ﬁortran 1/0 statements. Comments are denoted by an asterisk in
- the first column of the.input card. PﬁEST# also provides a numper
cf" control statements for affecting the output listings of a
PREST4 program: - | .

ALIST ‘- Begin listing squfqe prdgram,'
- AXLIST . = Stop listing source programse
XPAGE - Page eject.
%SKIR <couﬁt> -~ Skip specified number of (ines,
%pocC . - Places comments in boxes of asterisks,
XDOCEND | | |

A control StatEment .ZCOPY' <file-name> 4is also provided for
inserting program text into a8 PREST4 program frbm a file. This
~feature would be very useful for inserting variable declarations
or COMMON blocks intoc a program. 7 |

Es Runtime Environment

- - —— - - — -

POCCNET tanguage Study o PAGE 2-111

PREST4 has no dynamic storage allocation or recursicn, s$o no
stack or heap is needed. Except for I/0 &and type conversion

routinesy PREST4 should run on a bare machine.
Fo Syntax

Fortran IV (andrthereforé PREST4) has a BNF grammary, but a
compiler would probably not use it. Fortran compilers tend to use

ad hoc compiling technigues.,

2e12+2+ CHARACTERISTICS

A. Mach

|.¢.

_e gendence

Lo - L

 ANSI standard Fortran IV (and therefore PREST4} is fairly
machine irdependent. Fortran programs can usually be transported
to different machines with onlx mipor modifications _(e.g..

“different 1/0 unit numbers).

B. Efficiency

Fortran IV formatted 1/0 must Dbe performed dinterpretively
and 1is .therefore gquite slows In_alt other respects Fortrén—iv
and PREST4 are efficent programming Languagess We note, Houevér,
that the additional structuring of PREST4 programs that would be
vehy hetpful to a code optimizer is not aVailable to the Fortran
compilér; sl the structured statements are converted to IF and

GOTO statements before reaching the comp1ier.
C. teyvel
PREST4 is a medium level lLanguage.

De §

[15F2Y

ze of Language &nd Compiler

~Becasse of .the EQUIVALENCE statement, the wunstructured
nature of Fortran programs (optimization is difficult), and the

Preprocessor passy PRESTS will require a fairly large bompiler..

E. §Qg§1ai sttem Features

- — - - -

POCCNET Langusge Study PAGE 2~112

Althaugh PREST4 s descriped as "A Highly Structured FORTRAN
Lahguage for Systems Programming"”, the language has no special

system featurese.

Fe Error Checking ang Debugging

Fortran cqmpiLers have traditionallyrhad very. poor compile
and rruntémé‘ diagnostics, so PRESTY diagnostics will probsbiy be -
poor. The preprdcessor phase of PREST4 does print errcr messages
when illegal PREST4 statements are detected.

PREST4 has two control statements for debugging programs.
The statement XIDENT <message> will caUse'<méssage> to be printed
each time the IDENT statement is encountered during eiecutipn of
the brogram. A full statement trace can be initiated with the
XTRACE statement. ' 7 |

G. Design Support
(a) modglérity

PREST4 supports independent compitation of subroutines and

functionsy and communication through:COHMOR blocks,
(b) modifimbitity

ﬁRESTﬂ.-has a limited number of structured programming
constructs, and an include feature LXCOPYY to insert source
statements into a PREST4 .program from a file. However, the
language has no macro processory no 'ffature Like the PASCAL
constant statement for dectaring program constants, and no
significant. features for construtting complex data structures.
PREST4 programs would ne easier to modify than ordinary Fortran
IV Hprograns, but more difffcult than programs written in
languages Like PASCAL or HAL/S. | |

(c) reliability

The structured prograﬁming constructs make PREST4 - a great
improvement over Fortran iv. Howevers PREST4 has no character or
string operators and data types, and doces not have sufficient

data stracturing_ capabilities., The Llack of these . features

POCCNET Language Study PAGE 2-113

requires BRRESTS programs to simulate any character proceSSing,
list preecessingy or record processing with Fortran code. PREST4
programs will therefore tend to be tonger than necessary and more

difficult to understanda.

He Use

PREST4 dis implemented on the FOF-10, but the opreprocessor

coula pe implemented on almost any machine,

POCCNET Language Study PAGE 2-114
2.13. SIMPL-T

2e1341« LANGUAGE FEATURES

SIMPL-T [5AS74,BAS?6aJ is a small, procedure oriented,
non=-block étructured Language developed by Victor Basili and Joe
Turner at the University of‘ Maryland. ‘The ' lLlanguage provides_
features for arithmeticy, <character, and string processing, and
iﬁc{udes'a numoper of Structuréq programmihg constructss | SIMPL-T
is’ the .aasis Language for & famil&,of Languéges that includés
SIMPL-S and SIMPL-XI. (systehs programming Languages for the
Univac' 1100 and the DEC PPP-11 series), GRAAL (a graph algorithm

language), and SIMPL-R (& language for scientific programmingl.

SIMPE-T has three basic data typeé: INT (iﬁtégér),_ CHAR
(s{ngle character), and STRING (variable Length character
strings). Complete type checking is performed at compile-time,
and 1in _géneral no- automatic type tonversibns are performed,
SIMPL-T allows six typés of constaﬁté: integef,. character,
strings binary, éktal, and he xadecimals - ' |

-SIMPi—T provides the following operators and functions for
manipuléting the baéic data types:

arithmetic Operatdrs (INT operands oniy)

*y my ¥y /4 unary -

relational operators (INT, CHAR, or STRING operands)
=, B>, &, >, <=, 3= | |
| The operand types must be the same.. The relational
cperators yield an_integer result (0 - false,:

1 - truel.

string dperdtors & functions
<String$ «CONe <string> _
Concatenation'of stringse.
<string> [<start-position>,; <number-cf=-chars>]

Substring operator, May appear

POCCNET Language Study o PAGE 2-115

on the left-nand side of an
‘ assignment statement. _
LENGTH (<string>) Current Length of string.,
MATCH (<string-1>,;<string-2>)
Position of <string-2> in

<string=1>,.

INTF {<string>} Converts string to integer.

STRINGF (<integer>) Converts &n integer or a
<char> : _ o

_ character tc & string.

TRI%® (<string>) Trims trailing blanks. .

LETTERS (<string>)} Predicate returnihg'true'if

<string> contains only letters.
DIGITS (<Kstring> - Simitar predicate for digits,
CHARF (<string>) . Converts from string to

character,

‘togical operators (INT operands)
' vAND.ay +ORo, o«NOT.
The logicatl operators all return an integer
result (0 or 1), o

‘bit ano part-word operators (INT operands)
, ' © eLLe . o
“<integer-expr> JLC. <number—-of=bits> -
_ : .RL. 7
«RA, .
Left logiéal, left tircular, right Logicatl, and
right arithmetic shifts. '
1] .A. -
<int-expr> .x. <int—-expr>
- L] .
Bitwise and, or, and exctuéive or.
Lo <int-expr>
Bitwise complement. _
<int-expr> [<bit4posjtion>,<number—ofﬁbits>3 _
Part-word selector. May appear on Left-hand sice

of an assignment -statement .

‘character functions

INTVAL {(<char>?

POCCNEY Lenguzge Study PAGE 2-11¢6

ASCII code for the character.
CHARVAL (<ASCII-code>)
Character corresponding to the ASCII code.
INTF (<char>) .
Canvertﬁ-a character (which must be 3 dfgitf
to-an.integef.

CHARF (<integer>)
<string>

Converts an integer or a strTng to character.
PACK (<char-array variable>, <str1na-expr>)
UNPACK: (<str1ng-expr>,<char array-variable>}

Conversion between 'strings and character arrays.

rekt $Structures
IF <expr> THEN <stmt-list> { ELSE <stmt-list> } END
(Standard conditional with the required terminator

ENDS)

tont

= { f<lapbel>' } WHILE <expr> DO <stmt-List> END
(White loop with optional label. The Label'may.onty be -
referenced by EXIT statements; SIMPL-T has no 60TO’

statement.)

~ CASE <expr> OF
<tcase~pxpr-List> <stmt-tist>

<case-expr-List> <stmt-list>-

{ ELSE <stmt=lList> 2}
END.

(Case statement. The <expr> is compared sequehtia;ty
with ~ the values in each <case-expr~tist> ; the
<stm{—tjst>-uhose <case-expr~list> contains the <expr>
is executeds. The <expr> and <case-expr-tist>’s must
all be of thé same type, but can be INT or CHAR. The
<stmt-list> of the optional ELSE clause is executed

onty if no <case-expr-ilist> contains the <expr>,)

- PRaC.<ident> { (<parameter-list>) J

POCCNET Languace Study PRAGE £2-117

<preoc-body>

<type> FUNT <ident> { (<parameter—-List>) 3}
<function-body>
{(Procedure and function definition. Both can be
recursive, ahd both can receive their arguments by
value or by reference. ALl scalar parameters are

passed by value unless the REF gption is specified.)

- EXTT { (<iLabel> }
(Exit innermost or Llabel while lLoop.s)
- CALL <ident>).{ (<argument-Llist> }

(Call a procedure.)

- <ident> (((argument—tist)) }'

{Invoke a functione)

- RETURN

" (Return from & procedures)

- RETURN (<expr>)

{Return from a function with & result.)

- ABORT

(Terminate execution abnormaliy.)

Note: SIMPL-T provides no GOTO statemeht.

C. Qéié Structures.

The only data StrbcfurE"supported by SIMPL=-T 1is the .
one-dimensional array. The declaration

<type> ARRAY <ident> (<number-of-elements>)

dectares <ident> to be a one~dimensional array of the specifed

typee. The type can ne any of the threse basic types (INT, CHAR,
or STRING). Array elements are referenced wusing standard
supscript notation:

<idemt» (<subscript=iist>) 0

POCCNET iLanguace Study - PAGE 2-118

SIMPL-T has a parameterized macro facility of the form
DEFINE <ident> = <definE*s;ring>
where the <define-string> is &any character string. Parameters in
the string are dencted by &n, where n is any integer rbétween 1
anag 9. For example: . 7_
DEFINE NUL = “CHARVAL(0)”, /* control characters */
LF = “CHARVAL(10)7, |
MOD = “21-(81/82)#%&2° ~ /* mod function */

The language also has simple I/0 facilities,

E. Runtime Environment

SIMPL-T requires a runtime stack for recursive procedures
and funttions, and for evaluation of string expressions.
However, no dynamic storage altocator is requxred for arrays or

strings.
Fe Szr_'l_a

_ The working ENF. grammar for SIMPL T has approximately 150
product1ons. | |

2e13+20. CHARACTERISTICS

SIMPL~T has few machine dependent features and - could bé

implemented on almost any machine.
Be Efficiency

SIMPL-T has no dynamic arraysy- and no autqmatic type
conversion. AlL type checking is performed at compile time, and
the defauit passing mechan1sm for procedure or function calls is
by values This allows a great deal of work to be done a. compile
time rather than at execution time. The Univac 1100 series
implementation of SIMPL-T'generates code that'is_as efficient as

Untvac Fortran V.

T Level of the Languzge

POCCNET Language Study PAGE 2-119

SIMPL-T is a medium level language.
Do Size of Language and Compiler

The compiler for SIMPL~-T is moderate in size.

R

Es. Special §z§g gem Features

SI%PL—T-hés no special system features, although the two
system programming languages. in the SIMPL family (SIMPL-S and
~SIMPL-X1) provide a number of system features. SIMPL=-XI [HAM76],
for example, provides indirect and absolute addressing, actcess to
' méchine_regi&ters, and interrupt procedures (procedures activated

when a specific interrupt occurs). A one-dimensional array MEM
is wused to provide the abso{ufe_ addréssing feature: MEM(I)
actesﬁes the I-th word in main memory. A similar array MEMB s

. provided tor-accessing byteso.

Fo Error Checking and Rebugging

- - -

SIHPL-T performs complete type~cﬁecking at compile time, and
no implicit conversion between data types'is permitted, SIMPL-T
can therefore detect many errors at compile time that can not be
-detected'by cother Llanguages (such as Fortran, LITTLE, or BLISS),

A number of compiler directives are also available for
debugg1ng SIMPL-T programs, inctudingi.

(1),subscribt checking

2) caserétatemént'checking

(3) calling history

'(4).static and runtime statistics _

(Such as number of statements executed,.
timing estimates for prdcedures, and so
forth.) _ |

(5) value tracing for'program variables

(6) compilable comments |
(The form of é compitable gommen{ is
/+ <indicators> <SIMPL-text> +/ _
where an <indicator> is an integer that can be turned

on or off with other compilgr directives. For example;

POCCNET Language Study o PRGE 2-120

/+ 4 WRITE (“pDEBUG: ON ITERATION",I,"X =",%) +/

(7) cross reference and attribute listings.

G» Design Support

-

{a) modularizy

SIMPL-T allows independent compilation of program modules,

and commumication through external variables and entry points,
(b mocifiability

SIMPL=T has 2 fairly complete set of structured "programming
constructs and a powerful macroprocessor. SIMPL-T prbgrams should

be fairly easy to modify.
,(c}jretiabiiity

The tack of constructs for building more complex data
_structures -may make SIMPL—T-programs longep_thah'necessary and
difficult to read. SIMPL=T has no record structure, and arrays
can only have one dimension, A large portion of a SIMPL-T
program that operates on complex data structures will " therefore
be taken up by segnents 0{ SIMPL stateménts providingiactess
methods for the data structures. Languages with more .complex
data types would provide these access methods automatitally..ln
HAL/S, for example, if.-A and E& are compatible record structures

B; witl copy all of record B into'recqrd

then the statement A
As In SIMPL-T a transfer of this type would have to be simulated

by & numbzr of assignment statements.
He Use

SIMPE~T has been implemented on the Univac 1100 series, the
PDP " 51!45, the Data General NOVAy, ana the CDC 6600. A version
fbr the I3M 360 series is under development. The compiler s
written' Wn SIMPL-T i1tself, so-fhe'compiler can be tranSpbrted to
other machines using standard bootstrapping techniques., In fact,
the same front end (scanner and parser) dis . used on all
ihplementatidns of SIMPL-T. This 'provides 5féndard error

diegnostics for incorrect programs.

POCCNET Language Study : PAGE 2-121

2eté. SPL / Mark 1V

2.74412 LANGUAGE FEATURES

SFL LSO£70] is a Large, high level Llanguage developed by
Systeﬁ bevelopment -Corporaiion in the’ peribd 1967-1970. The
.laﬁguage was designed for aerospace agplications and _combines
many of the features in the PL/1 and JOVI#L tenguages. SPL offers
high Level features like cate tables and matrix arithmetic, és
well as lew devel, ﬁachineforiented features like inline assembly
tanguage and access to machine registers, SPL has five
applicétiom oriented subsets: thé subset chosen for this report
(SPL / Mark IV) was designed for ground-based support computers.
Ih t he re@aindér of this section SPL.I Mark Iv witl be ‘reférred
to as SPL. o

A. Basic Data Types and Qperators

—— -

SPL has nine basic data types: INTEGER, FIXED, FLOATING,
BOOLEAN, LOGICAL (bit string), TEXT (character string), STATUS
(ordered sets of "“states"), LOCATION (typed pointers), and
CONTEXTUAL .(a "universal“:type); The STATUS type is equivalent
te the PASCAL sﬁatar type. CONTEXTUAL ditems can be assigned a
value ofl any type. When a CGNTEXTUAL item X is assigned a vatue
of type T, the type of the item X is assumed to be T until X s
ass1gned 3 new vatue of different type on some subseguent Line in
the progrcam. CONTEXTUAL ‘items are intended to be used for
femporary storége of various types bf'items. -

‘Thé foltowing types of constants can appear in an SFPL
expression: integer, fixed point, ftoating point, boolean,
binary, occtal, hexadecimal, and character string, locationy, and
status, Mixed mode expressions are permitted and automatic
conversiomr is provided betueen all ot the basic data types. '

The operators and the data. types on uh1ch they operate. are
listed below:

arithmetic cperators

POCCNET Language Study : PAGE 2-122

E)

g =y Ky S, %%
REM ~ Remainder functian.

AES ~ Absolute value.

LSH - Left arithmetic shift.

#SH -~ Right arithmetic shift.,

SciL - Scales ean arithmetic expression.

SCLR

Scales and rounds an arithmetitc expression.

logical eaeratofs
LAND, LOR, LXOR, LSH, RSH
- Bitwise ands oOr, éxclusive_or, and_teft'and right
logical shift.
BIT. —_Pseudo—variable for aecessing bit striﬁgs_iﬁ any
type of items - Canrappeaf on lef:ehand.side'bf

an assignment statement.

boolean operators
NOT, AND, OR, EQUIV .
' ~ ALL the boolean operators y{eld‘a.boblean result.

retational operators
| EGy NG, GRy LS, 63, LG

- The retational operators yield 2 boolean result.

character operators
BYTE - Pseudo-variable fqr,accéssing bytes in a
textual 7tem. Can appear on left-hand side

of an assignment statement.

Location aperators
LoC ~ Yields locatioﬁ of an item.
IND - Pseudo- var1able for perform1ng indirect
addressings Can appear on left-hand s1de

ot an assignment statement.

" B. Controls Structures

- - —— -

- IF <boolean-expr> <stmt-list>

(Simple conditionat statement.i

POCINET Language Study - PAGE

- IF <boolean-expr$ THEN <stmt-List>
{ 0RIF_<boolean5expr> <stmt-List>)

L] - [
- - . [3
L3 LI

{ ORIF <boolean~expr> <stmt-list> }
{ ELSE <stmt-list>)
END

2-123

{Conditional statement . If the initial boolean_

expression 1is false then the boolean expressions

the ORIF clauses are evaluated in order until a

true

one -is_ found. _If_ all the boolean expressions are

false then'the ELSE statement is executed.)

- CONDITIONS , 7
<boolean-expr> <indicator-List>

. ® . .
- . [
L} . .

<boolean-expr> <indicator-List>
ACTIONS '
_<stmt>' <indicator-list>

. N
.) .

<stmt> <indicator-list>
ELSE <stmt> '
END. -

in

FOR
<

<s

IDec?sion,tab[e'for creatiﬁg_é-tabulaT solution to a
COmplex' decision probleﬁ. The"table.describéslthe
conditions'épp(icabte to-the problem and ‘the actibns
to be taken in responsé to the conditions. The
indicator lists in the CONDITIONS and ACTIONS sections
are composed of indicators Y (yes), N (no), and blank
(doésn't app[y)Q The indicator N can only be used in

the CONDITIONS section.)

<var> { = <init-value> } { BY <incr—expr> 3

WHILE <pboolean-expr> 3 { UNTIL <coolean-expr>)
' : ' ‘<numeric-expr>

tmt-tist> END

POCCNET Language Study - PAGE 2-124

{For loop. If the <init-vaiue> c¢lause is not
specified then the current value of the Loop variabple
is used, and if the BY clause 1is not specified the
loop variable is not automatically inbrEmented on each
iteration of the loop. The value of the loop variaole
and the <incr-expr® can beé éltered'by the loop body.
The clause UNTIL <numeric-expr> is equivalent to UNTIL
<var> EQ <nhumeric-expr>. '

An abbreviated form of the FOR loop 1is provided
for processing tables <(discussed in section D. Data
Structures). The statement -

FOR <var> = <tabte-dame> <stmt=1ist> END
is equivalent to :
FOR <vyar> = fleﬁgth—of*tab[e> - 1 BY -1
WHILE <var> 6Q 0 <stmt-list> END ..)

- FOR <var> = <for-clause>

ALSO <var> = <for-clause>

L]] []

» -

) . ’ .
ALSO <var> = <for-clause>

<stmt-list>
END
(Paraliel FOR loop. ALL of the Lloop variables are
incremented on each iteration of the loop. The
<for-clauge> centains the <init-va[ue>} BY,.HHILE, and
UNTIL clauses of the ordinary FOR statement.)
- LOBP WHILE <boolean-expr> <stmt-list> END
‘ UNTIL _ : _
(White and until Loop with the test performed before
execution of the Loop body.) .
"= ON <Qootean?expr> <stmt-List> END
<ipterrupt-name> .
(Feature for handting abnormal tenditidns. The
(pedlean-expr> is,autoéaticaLLy evaluated whenever the

first operand 1in the expression (which must be a

POCCNET Languace Study PAGE 2-125

variable) is'assigned a new vaelue, The wvariable can
be assigned:a new value by an SPL statement or by some
haraware .event. - It the <boolean-expr> evaluates to
true or if the specified interrupf cccurs then the
<stmt~dist> s executéd . The SPL ON stetement is
simitar to PL/I ON-conditions, although SPL provides
nd way of selectively enabling or disabling ON-
variables, or for . changing the '<stmt-list> to be

executed for a given conditionm or interrupt.)

-~ UNLOCK <interrupt-name>
LOCK . -

(Enables or disabtes the specified interrupt., The
LOCK and UNLOCK statements cén_ also be used for
reserving hardware registers.) |
- 6010 <label> :
= <lgtation-variable>
- (Unconditional transfer. The location variable is
‘assumed to contain the.address of some SPL statement
"label) '

= 60TO0 <switch-name> (<ihteger~expr>)
(Computed goto, - The <switch—-name> must Have been
declared with a statement of the form
SWITCH <switch-name> = <{abel-list>
'On execution of the 60TO statement the value i of the
Tinteger—expr> is used to select the i-thllabel,_and a

branch is hade-to the selected label .}

= REFURN {_(<result~expr?) 3
(Return from a procedufe or function with an.

optional result.)

= STOP { (<iLabel>))
(Halts execution. A “continue operation" after the
‘execution of a STOP statement uill.-resuLt in. a
transtfer qf'controt to the statemeht following the

STOP statement, or to the specified label.)

POCCNET Languazge Study - PAGE 2-126

- TEST { (<FOR-loop=-variable>) 2

(Continues the next iteration of the innermost WHILE,
UNTIL, or FOR loopy or the innermost FOR loop having

the specified loop variable.)

- WAIT .

(Repeats execution of an IF, WHILE, or UNTiL statement
untit the conditional expression s satisfied. The
statement is intended to be Qéed-to halt the execution
of a program until some eiternaL event has-occhrred.
For examplie, _ | o

IF. STATUSREG EQ X“2C° THEN WALIT)

= PROC s<proc=name> { (<input-parameter-{ist>

-

INL INE
{ <type> X { REENTRA
‘ o RECURSI

>

= <output-pafameter—list>) Y

{data-dé;tarations
ENDDATA '

Istmt-list> .
EXIT (<r95utt—expr>))

(Procedure or function definition. = Procedures,
functions, &and statement labels can be passed as -
procedure parameters. Alternate exits from 2
procedurs are possible by branching to a statement
label parameter. Both procedures and functions ‘¢an
have multiple entry points. The EXIT clause at the
end ot a function definition ihdicatesrthe 'eprGSSion
to be returned by the function, although the EXIT

expression can be overridden by a8 RETURN statement.)

= e<proc-name> { (<input-arguments> = <gutput-arguments>))

{Invoke a procedure or function,)

CLOSE <close~name> <stmi-{ist> END

(Parameterless, internal subroutine that can. be

defined within another procedure.)

POCCNET Language Study PAGE sei27

- GOTO <close-name>
(Call a CLOSE subroutine., Control will resume at the
next statement when the CLOSE routine has finished

execution.)
Co Daty Strugturgs

SPL has three features for constructing more complex data

structures from the basic data types:
(a) arrays

Arrays are declared with a2 statement of the form

ARRAY <ident> (<dimension-list>) <type> { QER%EM)

The Ttype> can be any of the basic data types, and the
optians ~MEDIUM and DENSE affect the packing density of the
arraye. Arrays can have an arbitrary number of 'dimensions.
?he <dimension-~List> can opticnally contain implicit
subscripts for .each of the dimensions, These dimplicit
subscripts are wused as the defagtt_subscripts whenever an
array variable is used without explicit subscripts. For
example: ' - '

ARRAY MC1 10, 4 10) INTEGER * Matrix with implicit

FOR I = 0 BY 1 UNTIL 10 " subscripts. "

ALSO J = 0 BY 1 |

M o=1 ' : _ " Equivalent to - oo

END ' : L (S TR S oo,
Array ingexing rbegins at 0O, and array elements are

referenced’ usihg the standardg 5ubspript operator <ident>
(<subscript-Llist>) . The following operators are ‘availaple
for manipulating arrays, matrices (2 dimensional arrays_or 2
dimensional subsets of arrays), and vectors (rows or columns

of matrices):

- Assignment.
== : - Exchange.

- Vector and matrix addition.

+
-
!

M

- Vector and matrix dot producte

(b3

POCCNET Language Stugy . PAGE 2-=128&

R] - Yatrix inverse.

TPOSE - Matrix transpose function.

AN - = {ross product for 3~D vectors,
tables

SPL has a table dats structures almost identical to the -
JOVIAL/J3B teble. Tébles are declareg wifh a statement of
the form o | .

TABLE <icent> ((<implicit-subscript>) 3 <table-length>

{ SERIAL 2} { ggﬁégﬁ'} <i£em~declarations$
TIGHT :

The implicit subscript is used whenever the table identifier
is_uséd a subscripte. - The default method for :a110cating
tabies ds by "col&mns", thai ié, fhere'is'a contiguqus_block
ot <core for the first iteh in all tablé entﬁies,,andther
block for all the second items,_énd'so forth. _if_the SERIAL

optien is specified, however, the table will be allocated by

tabtle entry. For each table entry there wiill be'a block 6f
core long encugh to contain atl the items in,the_ehtry. ‘The
options MEDJIuM, DENSE,. and TIGHT affect the packing density
of the table., The items in the (item-decLarations>'Lfst can
be any of the basic data typess but item namés ﬁus:_“be
distinct between tables. o |

An élfernate version of the table declaration gives the

' ~programmer complete control over placement of items within a

table entry. The number of words per table entry and the
pitacement of each item (worgd position and starting Dbit
within the word) is directly specifiede. The étorage for

items can overtap.

Tables can be accessed in any of the fo{louiﬁg four ways:
<table-name> -~ hccesses entire table.
<téble-name> (<subscript>) - Accesses all of the specified
R entry in the table,
<item-name> ' - Accesses ‘an entire cbluhn of

the table.
<item-name> {(<subscript>)

Accesses a single item in the

POGCCNET Lenguage Study ~ PAGE 2-12¢

.specified table entry.
The assignment operator =, the exchange operator ==, and the
relationat operators E@, NG cen be used to copys exchange,
of coempare tables or table entries. The assignment operator
can also be used to copy columns of a table. Finaliyy the
functions NENT and NWDSEN are provided for determining the
number .of entries. in a table and the number of words in a
table entry.

{c) record structures

Record structures are declared with the statement

<ident>. DECLARE <member-declarations>
The members in a record can be arrays, tables, or any of the
‘basic. data types. The identifiers used for members need not
‘be disstinct from idéntifiers_'declaréd_ elsewhere. The -
operator is used to access members in a record: o

L s

‘<retord-name> <member-name> e

C. Otber Feagures

. SPL has an OVERLAY statement that - is equivalent to the
Fortran EQUIVALENCE statement, and extensive facilities . fbf
seduentia&_llo (including pfogrammer specified bleocking factors,
record ~ format, error exits, data conversion, and statements for
opening anmd closihg files). ' '

Simple replacement matro; can pe definea using the DEFINE

.stafement

DEFINE <ident> AS'<chaEacter—string>
Atl occurrences of thé identifier are replaced by the character
string. SPL. also has a CONSTANT dectarafion for declaring
program constantis, ahd an implementation depehdent COMPDOL
feature that. is similar to the JOVIAL COHPDOL.file.

The language provides default declarations for undeclared

~variablesy, and the programmer can change the default to any of"

the basic data types at any point in an SPL program. " Finally,
the SDC implementation of SPL 7 Mark IV has compiler directives

permitting the wuser to write portions of an SPL program in the

POCCNET Language Study . PAGE 2-130

JOVIAL ltamguages.
E. Runtime Eovironment

SPL requires a runtime stack for programs using recursive or

reentrant procedures and functions, and seguential - I/0 routines.

Feo-Syntax

The BNF gremmar for SPL has aporoximately 400 productionse

2e76e24 CHARACTERISTICS

SPL has & large number ‘of machine dependént features,
'fncluding tﬁe‘function BIT fof-at}essing bit strings; the OVERLAY
statement, user specified table al location fnord'posftion‘and bit
position within & word), tﬁe hardware stateménf, and intine

_assembly Language,

B. Efficiency

SPL permits efficient -pfoéramming. The - language -pfoyides
high level operators (including matrix arithmetic and direct
aésighment of arrays and tables), a structured control structure
"that permits befter optimization, many features for minimizing
storage regquirements (the OVERLAY statement, user deiihed_tabies,
‘packing densities), the INDEX statement for frequently accessed
variablesy;. and the ability to generate intine éssémb(y code . ’&0

runtime stack is regquired for noh—-reentrant procedures.

C. Level of the Language

SPL is & high level laﬁguage, atthough it also 'provides a

large number of lLow level features.
Do Size of the Language and Compiler

SPL i@ & Large language and witl.require-a large compilers

POCCNET Language Study PAGE 2-131

- SPL has many features that would be helpful 1in systems
programming, including _ ’

(a) Pointers, tables, and record structuress

(b)) Recursive, reentranty or inline proceduress Procedures can
have multiple entry points ahd zlternate exits. A programs
can abort to a procedure many "levels"™ back up the <calling
chaia,.by branching to & statement Label passed as an input
parameter. ' |

(d) Thé OVERLAY statement, anc usef' defined table allocation
permitting the overlaying of dats items and access. to a
block: of core under varying data formats.

(e) The ON statement for ihtercepting interrupts and abnormal
conditions. ' | . '
(f) The HARDWARE statement for defining machine registers and
cther hardwWware, and the DIRECT'statemeht for inline assembly

Language. ‘ ‘

(g) The LOCK and UNLOCK statements for reserving hardware
registers, enabling and déséblfng interrupts, and
establishing_reaéiurite protection‘fdr areas of memory (for

o machines having 2 memory protection facility).

(h) T he INDEx-statement for requesting that frequently accessed
variables be allocated in the fastest storage locations
available. |

In generatly SPL - requires carefutl programminge Automatic
conversion 'is peformed bewteen the basic types, and cefault.
deciaratiens are provideds This will tend to hide & number of
programming errors such as misépéllings., Location variables can
be usec to alter instructions or to branch into a data area,
Finally, the -language 'haé many system features the permit the
user fo directly access hardware facilities.

SPL has two compiter directives that would be helpful in’
debugging and improving SPL 'pfograms. The TRACE di556tive'is
used to trace the valus of selected program variables and the

ftow history of statement labels for setected zreas in a program.

POCCNET Language Study : PAGE 2-132

The TIME directive enables the programmer to determine the

execution time of any olock of SPL statements.

€. Design Support

(2) modularity

SPL s quite modular. The languege has internal and external
procedures and fuhttions, the (CLOSE routine for nested
procedures, & structured control structure, and the COMPOOL filLe.

Independent compilation of procedures and functions is permitted.
{b) modifiability

- The tanguage has a varietyKOf basic data'types; high level
operators, the CONSTANT - attribUf& for dgclaring program-
.sonstants,sthe DEFINE stétement'for qe;{afing simple macrosy, . and
a structured control structure. All of these featurss would make
SPL programs easier to read anﬁ modifys. .7. '

‘However, SPt also has many machine dependent features that
permit bit hacking, overlaying of agate areas;-aﬁd-inline assembly
tanguage. Use of these features in a program would make
modifisation or transportation to other machines'diffitu{i. The
language also permits programs to be written that are .no; “seif
documenting"., Implicit subscripts are pro&ided fbr arrays ahd
tables; automatic type conversions are performéd, and default
- declarations 'sre " provided for wundeclared 'variabtes; The
statement GOTO A in an SPL program ¢tan be an unconditional bfanch
to the statement tapeled A of e call of a :parameterléss-

procedures,

(c) reliabildty

SPL provides many low level features that perm%t efficient,
machine dependent programming at the expense of reLiability. ALl
of the system features require czreful programming. Abtdmatic
type conversions and default declarations will also tend tc hide

Program €rrors.

He Use

POCCNET Language Study - PAGE 2-133

~ SPL has been implemented on the IBM 360 and 370 series and
on the (BC 6000 series. The compiler was developed by SDC using
the transtator writing system (WS«

PCCONET Language Study 7 PAGE 2-134
2e15s STRLMACS
2e15.1+ LANGUAGE FEATURES

STRCMACS [BAR743 is a set of macros providing structured
programming constructé for IBM 0S/7260 assembLy language. The
macros, which were developed by C, Nrandie.Barﬁh at dedard Space
Flight Center, are placed in the 0S/360 macro Lib?ary and invoked
automatically during the aSséany of an STRCMACS oprograme No
preprocessor step is requireds In the remainder of the section,
STRCMACS ailt be considered to be ther structubed-:programming

macros plus all the facilities of 05/360C assembly language.

A Basic Data Iypes gnd Qperators.

STRCMACS is a macro assembly IahQUage opefating_IOnu 32-bit

words, and no type checking 1is pefformed. The operators are the

05/360 assembly language dinstructions. The idinstruction set
" provides instructions for manipulating bits, characters,

integers, and floating point, double precision, extended

precisiony and decimal numbers.

Bs Control Structures

- BLOCK
<instruction-1>
L]
<ins{ruction—k>
BLEND

(Compound statement or code biock,)

-~ IF <test expression>
<instruction List>
{ ELSE
<instruction List>)
FI _
(Stanagard conditional statement., The <test expreésion>
~is composed of machine instructions for'-settfhg the

ctondition tode and mhemonics (from the extended

POCCNET Languesge Study PAGE 2-135

branch-on-condition mnemonics) specifying under what
conditions the "“then”™ part of the if statement is to

be executed., Tests in the test expression may be

combined using the <connectives AND and ORe. For
example: _
CIF (LTR,3,3,P) . - if register 3 > O

IF (TM{8(1),%"807,0),0R,(CLC,SIZE,=C MAX ~,EQ)
- if high order bit of
word at 8(1) is set,

or if SIZE = “MAX -

DO FOREVER |
<instruetion-list>
0b |
(Unbounded repetition.)
o HHILE, <test expression> .
UNTIL |
<instru:tibn list>
(Standard w«hile and repéat loops. . The <test
expression> s identical to the one described for the

IF construct.)

DOCASE <case var>
CASE <instruction List> ESAC

| CASE <instruction List> ESAC
ESACOD '
DOCASE <case var>
CASE <case value List> <instruction list> ESAC
_ CESE <case value Llist> <instruction tList> ESAC
ESACOD

DOGASE&

CASE <test expression> <instruction list> ESAC
L . .
L

POCCKRET Language Study: - PAGE 2-13¢

CASE <test expression> <instruction List> ESAC

ESACOD _ _
{Case and Select constructs. In the first two forms
the <case wvar> is wusec to select one of.the'CASE
rbtoéks. for execution, The <case wvar> can be 3
register or a memory Location, énd can be a byte,
halfwora, or fultword in length. 1In the first form of
the DOCASE the <case var> is'used_directly to select a
CASE block (if <case var> = i then the i-th CASE block
is executed)s In the se cond form,'the <case wvar> s
comparegd sejuentialliy Qith the <case vélue4{i5t>s; the
CASE block whose <casé value tist> contains the <case
var> is executeds In the third form of the DOCASE
there s no <case vaf>; the <test expfessions> aré
exetuten sequentiéLLy until one of the tests-spcceeds}
The CASE block contaihing ;he'5udceeding test is then

executed, ' ' _ _

In any of the three forms of ihe DOCASE construct
one of the CASE blocks can have the'misc qberand_ (for
miscellaneous). A CASE block with this attribute is
executed if no other CASE blocks in. the DOCASE are

executeds .

exahpte: _ _ _ _

' ‘case block _ block will be executed if
CASE 2 : ' <case var> = 2
CASE 3,¢(5;,12) : <casé ﬁar>J='3,5,6,.b.,12
CASE “=7,7<>" s <case var> = ‘=7 or “<>°
CASE (“I117,7157) <case var> = ‘117 ,.44,7157
CASE (LTRyB,48,22 register 8 =0 :)

- <lLabei> PROC 4 <options> }
Cinstruction list>
CORP <label>
(Procedure construct. The procecure can . be .ca(ted
using the 0S5/360 CALL macroe The <options> cperand
allows the user to specify standard or non-standard

Linkages, dynamic saveareass & procedure idéntifier‘

POCCNET Language Study PAGE 2-137

string, base registers, and so fortha.)

- EXET <label> ‘ _
(Exit the specified blocke.)

- ONEXIT
<instruction Llist>
{ ATEND
<instruction List> 2,
0D |
(STRCMACS distinguishes between normal exit of a DO
Loop by failure of the loop test and abnormal exit by
the execution of an £XIT macro. The ONEXIT ... ATEND
‘construct can be . appendec to .any cof the 90 loop
constructs. 1f the Loop is terminated abnorma(ly,then
the ONEXIT <instruction List> ds executed and the
ATEND <instruction List> is skipped, IF the loop
terminates normally onlyrthe ATEND,<ihstruction list>

is executed.)

C. Dats Structures

An STRCMACS program can wuse all of the 0S/7360 assembly

language dinstructions,

- —— - - - -

As an assembly language STRCMACS will run on a bare machine,
Fo Syntax

The STRCMACS macros are transtated into éssembly language by
the 05/360 assembler. There is no compilter for STRLMACS. '

2¢15.2. CHARACTERISTICS

A. Machipne Dependence

- —-——

POCCNET Languace Study : PAGE 2-138

The STRCMALS macros are designed for the IBM 340 seriesa

Hduever, similar macros could be designed for any machinc.
B. Efficiency

STRCMACS is.as efficient as assembly tanguage.
o Level |

STRCMACS'iS.a very Low levef.ianguage.

D. Size of Langusge ang Comp

fte

ter

STRCMACS is implemented by a smail number of-matrds, and is
therefore quite smatdl. |

W e o

STRCMACS has no special constructs or data strucfures' for.
_systems proogramming. However, the user has access to the full set

of 057360 assembLy Language instructions.

- - - e o

The STRCMACS macros will br0dyce diagnostic messages at
assembly time if an error is detected. However, no runtime error
checking 4s performed. A few features are'provided-for débuggiﬂg
STRCMACS programs. Any PROC can specify the foltowing debug
opfions: (1) LISTBLOCKS =~ Llists the static nesting, name, and
block number of all blocks in the PRCGL; (2) PROCNAMES - generates
an in~line character string for the proceduré 6amé to aid in
locating procedures in an ABEND dump; (3) PROCCOUNTS{ BLOCKCOUNTS
,? - counts the number of times that each block in the PROC is
executed; (4) PROCTRACE - maintains the calling history of the
Llast 257 blockse | ' o

G. Design Support
(a) modularity

STRCHACS supports independent assembly of programss and
provides cémmunication through external wvariables or COMMON

_btocks. The language is also considerably more structured than

POCCNET Lenguage Study PAGE 2=13¢

ordﬁnary assembly lanoguage.
{b) modifiability

STRCMACS is_essentiat@y an assembly languages Althouoh the
structured -programming ccnstructé are a vast improvement over
ordinary assembly Llanguage, STRCMACS programs will still be
difficult to modify. ' '

(c) retigbiiity.

Altheugh the structured constructs are an ‘improvement,
STRCMACS will - still have the same reliability problems as
assembly Languzge. No type checking of any sort 1is performed,
all the operators (machine instructions) are low level, and there

~are no data structuring facilities.

He Use

STRCMACS is implemented on the IBM 360 series. Since " the
structured programming constructs are .not machine dependent, and
since the -number of macros s smaill, STRCMACS could be

implemented on other machines without any significant efforte.

POCCNET Lenguage Study 7 ~ PAGE 3-1

3. POECNET REQUIREMENTS

In this chapter we examine the specific . requirements of
POCCNET CLDES762,DES760] and its applications softwaré. POCCNET
is a hardwarelsoftuare system that will support . the deveiopment
andg operétion of Payload Operations Control Centers (POCCs)
during the 1980°s. In order to implement the POCCNET system,
software must be developed for the distributed computer netuork
and the standardized applications software., . We will therefore
give a bfimf description of each of these areas. _ _

The - §0CCNEI network is composed. of five functional
subsystems: an Applications Processor (AP) sdbsysfem, .an
Interprocess Communication v(IPt) subsystem, a"bata Base (DB)
éubsystem, an Interface'subéyétemp and a Control.subsystém. . The
AP subsystem 1is composed of general purpose minicomputers with
operating systenms capéble of }unning POCC softuaré;, ”Thé iPc
subsystem handles ali message transfers within the netuork, and
the DB subsystenm pfovides on-~iine sforage for the POCCs and the
NEtworks The standardized applications software for'POCCNET:is
also hanaged By the DE Subs}stem. ' The Intérface SUBsystem
provides communication between POCCNET and the outside uoftd
(which includes human UusSers, tetemetry ahd__commandé, and 'otﬁer
computer - systemsJl. Finally, the tontrQL subsystem directs and
monitors the operation of the entire POCCNET sySfem. . '

" The package of standardized applications software will
provide software that implements functions coﬁmon'to many POCCS.
This ihctpdes POCC application programs; program deuelopmeﬁt
tools, and related software. : ' ' _

The implementation Language (or group of laﬁguages)‘fdr
POCCNET will therefore have to suphort atl of ihe',follouing
application aréas: (1) general systems programmfng, which is
required throughout POCCNET; (2) real-time processihg_ for
time-critical operations in the IPC and Interface subsystems; (3)
‘data-base processing for the DB subsystem; (4) ‘numericat
processing for massaging spacecraft cata, simulatiné telemetry,

and so forth; (5) data formatting and conversion for the

POCCNET Language Study 7 PAGE 3-2

Interface subsystemes This involves primarily bit and character

string processinge.

for

each of these application areas we would Like &

programming language that proﬁided the foltowing features:

(1) general systems programming

(a)
i)

{c)
{(d)

(e)

Cf)
(g)
(h)

i)

bit and character string maniputation
some ability to perform absolute and indirect addressing

{such as pointers or the SIMPL-XI MEW array)

record structures and one~dimensional arrays

ability to suppress type checking, so that a block of
core can be accessed under varieps data formats
exception handling by ON-~conditions or interrupt
procedures ' _

reentrant or recursive procedures and functions

dynamic storage allocation '

roncurrent processes and controlled data sharing between
Brocesses | '

access to operating system facilities

(EJ real=-time processing

(&)
(b)
(;)

atl of the features of géneral systems programming

kigh efficiency

real-time scheduling of'processes (schedule at a certain

time, in s certain number of clock ticks, and so forth)

(3) data-base processing

(&)

i)
{c)

(d)

protection mechanism for files and individual data
élements |

garious-fiié organizations and access methods

good data structuring_ capabilities; possibly a data
abstraction feature -

facilities for defining a data-base management system

(4) numerical processing

o {a)
(o)
(c)
(g

variety of arithmetic Uata types and precisions
gser control over precision _ _
ability to intercept underflow and overflow conditions

array, matrix, and vector data structures

POCCNET Language Study o PAGE 3-3

(e} Library of mathematical functions and subroutines

(5) data formatting and conversion

(a) bit and character string maniputation

In addition to the requ1rements for the separate appl1cat1on
areasy, there are a group of features that should appear . in any

POCCNET implementation Language. These_featuhes include integer,

- floating pointy and character dats types; control stfuctures for

- structured programming; afrays'and record structures for building

data strumtufes; @ macro processor; ang some form of INCLUDE
statement for copying commonly used source files into a program.
A data abstraction facility would also be very helpfu{,_”although'

(S=4 and Concurrent PascaL are the only Languages in'this study

“that provide such s feature.

In agditien to having atl of 'the above éapabilities, the
scientific programming notation shoulgd possess. certain
characteriisticse. - Among other things 4t should support -ease of
program expressibnr the writing of Ccrreﬁt, efficient, -and

portable code, and the reuse of atgotithmé written in ites Let us

‘consider these characteristics one at a time.

7 One would tike to express 'the algorithms in a natural
manner. This implies the. notation should be natural to the
problem area. For example within the general problem area of
maihematics thérs .is‘ a specialized and different mathematical
notation for the algebraist and'anaiyét. Each aids in éxpressing
the problems of the particular ares exblicftly ahd,precisely and
in an easy to communicate form.

Correctness of a program 1is cef?ned as the ab1lzty of the
program to perform consistantly with what ue perceive to be its
funpt1cna{ spe;1f1cat1ons. The programming ‘language should
support the writing of correct prbgrams. " The language "should
simplify rather than complicate the understanding of the problem
solutione The complexity in understanding a program should be

due to the complexity inherent in the algorithms, not due to the

'notatTOn used. The notation should be <clear and simple. A

language natural to the problem area aids in correctness as it

POCCNET Language Study _ FAGE 3-4

makes the statement of the solution easier to reac and
understand, The easier it is to reac and understand a solution

atgorithmy the easier it is to certity its correctnesss. Aids in

- making a program readable are structuring it from top to bottom

and breaking it into small pieces.s In order to achieve the "goal

of supporting . correctness,y & language should be simple, contain

well-understood control and dste structures, permit the breaking

~up of the algorithm dinto small pieces using procedures and

macros, and contain high~level problem ares oriented tanguage

primitives. _
A. program is considered efficient if it executes at as fast

a speed and in as small a2 sbape as 1s necessaryes The Llanguage

- should permit the efficient execution of programs written in it.

" The higher level the algorithm, the more information s exposed

for optimization and the better jab a compiter can do on
improving the ' code generaied, On the other hand,- high tlevel
often implies general apptiéabiiity in prdef to handle the
majority'af cases. This can often imply an inefficiency for =
particular. ébplication. - For exampley <consider a language in
nhich matrices have been defined as a primitive data type with a
full set of cperators including matrix multiplication. The
multiplication'operation has been defined for the ogeneral case.
Suppose the pafticular subproblem_ca{lé for the multiplication of
two triangular'Maifices. Using the standard built in operator is
ineffic{eat. One would like to be able tq‘subst{tute & more
efficient_ multiptltication algorithm for the particutar case
invo{ved.'.-aut this imblies that the Language permits the
redefinition of Llanguage ppimitives at Lower Lgvets of

abstraction. That isy the prbgrammer should be atble to'express

‘the algorithm at 2 high level and 'theh, atter the Llower level .

design of the algorithm primitives for a particular application
when it is necessary for reasons of efficiency. '

A language supports portability when it permits the writing

of algorithms that can execute on different ‘machinese.
‘Portability is 2 difficultt subtle problem that invoilves several.

. diverse . subproblems.: The numerical accuracy of arithmetic

POCCNET Language Study o PAGE 3~5

compufatians can vary even on mechines with the same word size.
Téchniqges for dealing with this problem inctude variable length
arithmetic packsges or & minfmum precision (modulo word size)
specificationse. Another problem a&area of portébitit} is text
processinge. 0One way of dealing with this prob(em-is to define a
high-level. string data type which is word size independent. -A
third area of problems involves inter facing gith 2 variety of
hest machine systems. One method of handﬁfng this is to define
programs to ‘run on some Llevel of wvirtual machine that is
acceptable accross the various machine architectures and sjstems
and then to define that virtual machine on top of the host system
for each of those architectures; This s commonly done wusing a
runtime Library. In general the_highér tevel the algorithms, the
more portable 'they ane.. Houever, more portability often meaﬁs
less efficiency. A language’ that supports. pdrtabilitx should
contain ene of the above mechénisms for transpdr;ing nuherical
" precision accross machine architectures, high level ‘data types,
the ébility to keep nonportable aspects in oné ptace,_and a macro
facility for parameterizing packété of infofmafibn modulo word
.sizgar .

Software is reusable if it ‘can be wused accross several
different projects with similar benefits, In order.for Softﬁéfe
to be_reusabie, its function must be of a reasonably _genéral
nature, e.g., the sguare root and sine funétibns; it must be
written im a general way and it must have a good, simple,
straightfoward set of specifications. 'The_afea of scientific
prograﬁming has & better history of reusable software'than' moste.
Consider as examples some of the libraries of numpricai'ahalysis
routines. This is due Llargely to the easily recogﬁizabte,
general nature of many Scientific functions and the simplicity of
their specifications. However, there are _whole areas .of
scientific software development that do not have a histroy of
reuse, such as telemetry'softsare. _ , '

Software written fn a general way may perform Lless
‘efficiently than hand~tailored software. However, +f it fs we ll

written 4t shoula. be possible to measure it and based on these

POECCNET Language Study PAGE 3-¢

measures modify it slightly in-the appropriate places to perform
to specification for tnb particular appLicétion. |

A good, simple, straightfoward set of specifications is not
easy to accomplish, especially when the nature of the function is
complexs A good high Level algorithm can help in eliciting that
specification. - Specifications for software modules should aiso
include an analysis of the algorithms €400y the efticiency of the
algofithm with respect to the. size of the input datae. The
langhage"shoutd support the development of a good library of
.wéll-specjfied software modules that are easy to modify if the
time and space reguirements are off. It should also be capable
of interfacimg efficiently with other i anguages and of expressing
 atgorithmsfso that the essential function is clear and of s

general nature.

S

POCCNET Language Study . PAGE - 4-1

4o LANGUAGE FEATURE TABLES FOR THE LANGUAGES

4¢1. INTRODUCTION

Chapter ¢ containad a discussion of the Vcritefié _used- for
evaluating the fifteen languages, énd the pretiminary evaluations
of the languages themselveé. This chapter contains a_series of
tacles that summarize the evaluations in Chapter 2, .as well as
adding seme new information about the Languages and POCCNET
requirements discussed in Chapter 3. Each table 1is devoted to
cne cf the following: 'POCCNET . requirements: mddularify,
‘modifiabitity, reliability, data 'sfrutturing, charactér strin§
processingy oit string 'proceﬁsihg, numefica{- processingy
efficiency, special system features, and error qheckihg and
debuggﬁng. . Each table contains t he primahy tanguage features
thét'influence.thé POCCNET reguirement, and -indicates for each
iénguage feature the presence (X) or absence (;l_bf'that_feature
in the lamguages. Footnotes are added to the en& of'Somégof “the
 tabtes ta provide additional information about a laﬁguage—or
language feature. ' n_ o

' The following abbreviations are used for the languages in
the tables: BL (BLISS-11), € (C), CP (CONCURRENT PASCAL), FL -
(FLECS), HS (HAL/S), IF C(INTERDATA FORTRAN V), J4S (JOSSLE), Jv
(JOVIAL/J3B), LI (LITTLED, PA (PASCAL), ‘P4 (PREST4), sI
(SIMPL-T)s. and SP (SPL / Mark IV). The language_STRCMACS_iS not
éncluded in the tables because it only provides sfructured

control structures (no data types or data structures),

POCCNET Language Study

4ale MODULARITY

Language Feature

Structured control structure

Independent compilation of
programs

INCLUDE feature [1]
 cOMPOOL files
Globat or COMMON data

" Controlled access to shared
dgata [2] ' o

Data abstraction facility

Btock structure [31

~Notes:

BL

CF C4
X X
« X
. .
X X
X X
X X
X X

Languages

FL HS IF JS JV L1

X X o X X X
¥ oX X X X X

T S
e X e . X .
X X X X X X
° X ® . . ®

[1] Some feature permitting source text from a program

-Library to be included into a Programse

-£21 Such as the HAL/S UPDATE block.

 [31 JOSSLE is @ block structured leanguage, but it restricts

the inheritance of globa(variableso,

See discussion of

"KNOWN statemgnt'in the Chapter 2 evaluation of JOSSLE.

" PAGE

FA

P4

4-2
S1 SP
X X
X X
. X
X X
. X

POCCNET Language Study

be3s MODIFIABILITY

Language Feature

Structured control structure
INCLUDE feature [13

toMROOL files

Data abstraction facility
Simple replacement macros [2]
Parameterized macros

Conditional comp1lat1on cf
source text

- High level data structures
and operators

CONSTANT declaration

Notes:

8L

CP C4
X X
X X
& v
* .
X X
X X

Langbages

FL HS IF JS JV LI

X X .« X
® L] - L]
- X + *
&) X L] .

[1] Some feature permitting source text from a pragram

tibrary to be included into a program.

[2] mMacros that do not permit parameters.

>

B T

PAGE

PA

P4

4-3
sI SP
X X
[} E]

.« X
X X
X .
X .
. X
. X

POCCNET Language Study

4obe RELIABILITY

tanguage Feature

Structufed control structure
Full type éhecking £1] |
INCLUDE feature (2]

Data abstrection facility
COMPOOL files |

High level data structures
and coperators

CONSTANT declaration

Few machine-dependent features
_Standardized cutput listings
Debugging aids [3]

Few compiler-supplied defaults

Notes':

"BL

CP C&
X X
X

L] &

X X
X X
X X
X X
a - []

. X
X X

Languages

FL HS
X X
e X
[) *
« X
e X
e X
X X
X X
L [

IF JS Jv LI

L [x o
® L] x -

(13 Including type chécking of procedure parameters.

(2] Some feature permitting source text from a program

Librar{ to be included intec a program.

£33 LITILE and SIMPL-T provide many debugging aidss the

other languages provide-only a fewa

PA

PAGE

P4

1

4 ~4

SP

POCCNET Langusge Study FAGE =5

Le5. DATA STRUCTURING FEATURES

Language Feature ' lLanguages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Array data structure X X X X X X X X X X X X X X
Array assigmment operator _ . s 'X X o X o X ; e X . e X
Array comparison operators . s X X e X » e s = ‘. . . o
= and "= : . - .
-Record data structure [1] « X X X o . X e a « X
Record assignment operator s XX e X e XX e X e e
Record _comparison operators .« . X X s X e 4 :X o X . ..‘ o
= and "= ' : : '
' Untyped pointer variables [2] X . . e e e X e e e s e e

.Typed pointer variables [3] . X _.". e X e X e X e X
Address tunction for pointers X X o ¢ o x.:x ﬁ. P
Dynamic storage altocat1on t e s s e . » I S .
usrng pointers [43] e - ST

Set data type e e X X s e .« . . . O
Set assignment operator e s XX . :, T T
Set relational operators e e XX e e e e e e X PR
= and "= .

Various set operators [5] e e X X e e e el o o X 4 e .
Data.abStraction.facility « . X. X o o o e . .
Notes;

[11 JOVIAL only has a table data structure (tables'Can'on(y be forméd

from simple items, so that

o

JOVIAL table can not contain another

‘table or an array as one of its items). | ' '

L2 Pointers in INTERDATA FORTRAN V can only be used to fetch data
_indirectly, they tan not be used to store data indirectly.

{33 The JOSSLE*pdinxer type is really a table index (subséript) and
not a génerai pointer. ' ' , .

[4] Such as the JOSSLE ALLdCATE statement or the PASCAL function NEW,

(5] Such as set union, intersection, comptement, and membership.

POCCNET Langusage

bebs CHARACTER STRING PROCESSING

Language Ffeature

Character data type [11]

Character str1ng data
type [21 :

ASSTQnment'dperator for
strings

Concatenation operstor
Substring pseudo-operator [3)]
Substring function only . |
Length function

Character search function
CINDEX)

Retatignat pperators =, =

Retational eperators <, >
<=, 2=

Conversion between character
and integer data type

Notes:

BL

CP (4
"X ¢
] X
P ¢
. X
. X
° ‘e
. X
X X
X .
X X

Study

l.anguages

FL HS
&]
. X
. X
.« X
¢ X
. X
. X
X X
X X
. X

IF JS JV LI

[L] [] -
L] X x L]
. X X X
s X . X
e o X X
- x » []
L] [] [] L]

X X X
X e .
e X X X

PA

PAGE
P4 S1I
° X
® X
. X
e X
. X
- .
© X
. X
| S &
X X
. X

[1] Fortran has no phafacter data type, but permits characters
to be packed into INTEGER variables,

provides character string operators.

£ITTLE

type, but they do permit character arrayse.

is typeless but

23 ¢, CONCURRENT PASCAL, and PASCAL have no- character string data

£33 A substring pseudo-operator can appear on the left-hand side of

an assignment statement,

bt

SP

POCCNET Language Study

4eTe BIT STRING PROCESSING

Language Feature

8it data type [13
ANDy, ORy NOT functions
SHIFT function '

Bit substring pseudo-operator

~Concatenation operator

Relational eperators =, "=
Relational aeperators <, >

=y 2= i

Notes :

{11 BLISS-11 is typeless but

BL ¢ CP C& FL

e e e e e
X X o o 4
X X « &
X &« o & s
e s e s e
X o o e a
X o ¢ o e

it provides bit

INTERDATA FORTRAN V and SIMPLT-T have no

provide operators or functions for manihulating bits in integer

expressionsa.

Languages

HS IF 4SS JV LI

X .
X X
.« X
X X
X .
X
[] -o.

manipulating operators.

X
X

X

X
X
X

X

A A -4

P A

PAGE 4-7
P4 S1 sSpP
° e X
N X X
. X x
o O ¢
° ° .
o X X
. X X

bit data type but they

POCCNET Languazge Study

4.8, NUMERICAL PROCESSING

Language Feature. ' . Languages

| . BL € CP €4 FL HS IF JS JV LI PA
Integer dats type - X X X X. X X 1X X X X X
Floating point data type e X XX X X XX X . X
_Fixeg‘bdfnt data type e e e X e e e e X e
Complex data type e« o e X X & X 4 e e s
Double precision floating s X o 4 X X X ,l X .

point “type

Variabte precision for all e e e X e a o e _. .9 .
numeric data types '

Automatic canversion betueen o X w X X X X & X o o
the numeric types - . -

Generic numerical functions e e XX e X . X X 4 X

CAbility to 3nterCEpt underflow . . o, X e X . .. ;: . .
or overflow cond1t1ons ' '

Matrix or vector dats type (1) ¢ « « X « X e s s s @

Matrix and vector assigrment e s s X .'_X-'.-'a e e e
cperator) : : ’ :

Matrix. and vector relat1onat . e e X + X . s e .

operators Ty =
Matrix a.nd vector dot prOdUCt . . . X s X
Vector cross. product e e e X . X e e e e a

Matrix inverse, transpose; and » o+ « X . X e * & o o
trace B

FOR or DG Loops (2] XX X X X X X .« X X X

Notes: _ .

[1] SPL has no matrix type, but it provides many operators for
manipulating 1 6r 2-dimensional sections of arrays;. _

[21 FLECS, INTERDATA FORTRAN V, LITTLE, and PREST4 require the
0o loop incfement to be positive. CONCURRENT PASCAL and PA

only permit +1 or -1 a2s the Loop increment.

PAGE

PL

SCAL

4 -8

S1 SP
X X
. X
. X
L[] 3
. X
. X
X X
. X
* L]
. X
. X
. X
. X
. X
. X

POCCNET Language Study PAGE 4-=9

4.9. EFFICIENCY

Language Feature | Languages

"Bl C CP C4& FL HS IF JS JdV LI FA P4 51 SP

Uses runtime stack X X « X S S S T S
Uses dynamic storage aliocator e e e s a e « X e . X . . e
Uses system monitor for e e X X & X s 8 & s &+ & & @
runtime scheduling
. Structured control structure X X X X X X « X X X X X X X
High level data structures = .+ o+ X X o+ X o X X o X o
and operators '
User reguested pack1ng : e . . . e X . . X - X . e X

densities [1

Bit packing feature in tables '+ ¢ « X & o o« o X & o &+ o X
or structures (2] :

:OVERLAY or EQUIVALENCE‘stmt ' - . . . X . X i X . . X o X
INLINE attribute for e s s X e e s e« X e e « . X%
procedures and functions [3]

Compiler directives. for XX . o X } . = « = . . X
requesting fast storage [41

Iniine assembly language X o o X o s X 4o e e e & o X
Notes:

[1] Such as the table or record attributes MEDIUM, DENSE, TIGHT,

[2] User al{ocat1on of data 1tems within tables or records, including
word and bit positione. _ _ - ,

- L33 INLINE attribute to force procedures or functions to be expanded

inline instead of generating a calling sequence.

(43 Such as the HAL/S TEMPORARY statement and the C REGISTER statement.,

POCCNET Language Study o PAGE 4=-10

4,10, SPECIAL SYSTEM FEATURES

Language feature ' ' Languages

BL € CP C4 FL HS IF JS JV LI PA P4 SI SP

Record structure [11 e %X XX e X . X X . X .'_.
Bit manipulating features XX . X . X X X X X e e X X
Character manTpuLatTng X X X X X X X X X X X %X X X
features [21 ' ' _ I : :
Pointers or_indirect . X X e o ¢ X X X e o X & .. X
addressing E -

Access to machine régisters X + « X s a - X
inline assemsbly language: X e e X e X T e e e e
Reentrant or recursive X X X X s X e o X & X & X X
procedures _ _ ' R

Exception handling X« o« X . X e e s & e s . X
constructs L[43 : : ' - o ' - -
Spec1al subroutine X o & X . X . e e e e e e

tinkages [51 .
Dynamic storage aliocation [&] . . ° o o e . X . . X - . .
Concurrent pracesses e e X X e X e e e eie e

Real~time s:hedul1ng of . s s e X o X .6 o s s
processes

Ab1l1ty t0 #ccess a nldck of X o X X X fx X .. X X ._.X e X

3§a‘é2“§$:“a”’”g care | |

Notes: : 7 N _ _

£13 JOVIAL only has a table data structure {tables‘can enly be formed
trom simple items, so that a2 JOVIAL table can not conta1n another
‘tacle or an array as one of its items), _ :

[21 The fortran languages FLECS, INTERDATA FORTRAN V,,and‘PﬁESTﬁ
provide i1nadeguate character manibulating featuresa.

£33 Pointers in INTERDATA FORTRAN V c&n only be used to fetch data
indirectly, they can not be used to store data indirectly.

[4] Such as ON-conditions or signal handlers. '

£51 Subroutine linkages to other languages (like Fortrén}.PLiI.

- ~assembly languagel), or user control over the subrputine linkage

(how arguments are passed, which registers are alteredy how result

POCCNET Languege Study PAGE 4—-11

is returnedy; and so forth). -
61 Such as the JOSSLE ALLOCATE statement or the PASCAL function NEW,

{7) Without usdng assembly language routines.

4+11s ERROR CHECKING AND DEBUGGING

Language Feature o " Languages

BL C CP €& FL HS IF JS JV LI PA P4 SIZSP

CompLete'type checking [11] . X X X e X e X e 4 X eoX .
Pabtia{ type checking only T ¥ « X & e« X . X

No automatic conversions ' X o X e 4 e e X . X X « X
between the basic data types '

‘No default type declarations X o X X o o o X & X X . X

Exce_pt‘ion-ha’ndlin_g . X . e X . a X . . . * . . « X
constructs 23] - : -

Debugging aids:

Subscript checking | e e s X d e XX e X . e X
‘Variable tracing - e o e 6 2 e X e e X e X X X
. Calling history ' s e s s s s & e e X « & X X
| Execution-time statistics . e . .._ . . ,' X o« &« X X

Conditional compilation 4 & & o o & X o X « . 4 X o

feature

Nofes:_

(1] Includirg procedure parémeterS'and pointer variablese

2] Such as ON-conditions or signal handlers.

POCOCNET Language Study o PAGE 5-1

5 RECOMMENDATIONS

5ete Introducticn

Based oh our study of POCCNET requirements. and our

evaluation of ‘the languages, we have concluded that none of the

. fifteen Languages'can satisfy atl of the reguirements. The

appliéatian areas within POCCNET a2re diverse and there are too
many additional constraints on the implementation Llanguage.
Since nome of the Llanguages satisfy all the'reQUiremeﬁts, 8

tanguage {(or gr0u§ of Languages) should be chosen fhat' #atisfies

most of the POCCNET requirements at @ Low coste

The requirements 2f the POC£NET'$mpiementation tanguage were.

~discussea in Chapters 2, 3, and 4. .They included supbbrt for the

five application areasy and additional constraints such as
machine independence, efficiency, and modifiability. However, we’

should also <consider the 'costs associated with each of the

“fifteen danguages. Language costs can be subdivided into

start-up costs, devetopment 'and_testing costs, and maintenance
costss The étart-up costs for the POCCNET tanguage - inclﬁde the
co#t of obtaining .qnmpilers, trzining 'personnél in the new
language and design methodology, and GEVéLOping .qther' language
tools (such as macro proceséors, debugging aids, and special
linkers or loaders), Start-up cost will therefbhe 'ﬁe directly
aftected by the comptexity of the language and the avaiLabiLity
of compilers for the language. ' '
Development and testing costs will be affected by the design
support and debugging features in the "language. ~These dnclude
features supborting reliabitity, hodularity, modifiability,-
readabilityy and error checking/debugging'aids.. Type checking of

procedure and function parameters will speed the dintegration

testing of prograem modules.

Maintemance costs will be affected by the readability and

mooifiabilkity of +the Llanguages <Languages that are not machine

POCCNET Languszge Study PAGE 5=2

dependent will require fewer software changes 28 new hardware 3s
addec to POCCNET. Documentation aids such as cross reference and
attribute Llisting, static and execution-time program statistics,
and standarddized output Listings would also Llower the cost of
maintainimng POCCNET software. | _

Another factor to consider is the relatively Llong Llife of
POCCNET. The netuwork s expected to support GSFC POCCS
throughout the 1986°s. Over such a tong peridd the developmenf,
testing, and maintenance costs will greatly exceed the start-up

costs associated with the implementation language.

5s2¢ Language Recommendations

At this point we will diSCUSS' cur conclusions ~ and
recommendaxions about the fifteen languages. The lahguages fall
pafurally into five_gro&ps: (1) the SIMPL and PASCAL families;
(2) the high lLevel Languages CS-4, HAL/S, JOSSLE, JOVIAL, and
SPL; (3) the Fortran languages FLECS, inTERDATA FORTRAN V, and
PREST4; €4) fhe low to medium level languages BLISSy €y and
LITTLE; (5) the macro assembly Llanguage STRCMACS, We will

discuss each of these groups in turn,
5¢3. Families of Languages

As discussed previously, there are & number of appltication
areas within POCCNET. | These "range from real-time and general
systems programming up to numerical and data base prpcessing.‘
POCCNET poses additicnal cdnéfraints. on the implementation
languagey dncluding machine independence, re[iability, and
modifiabiiity; Based on ouf EVa(uation of the languages, none of
them meet all the POCCNET requirements. Moreovers it is Likely
that any lianguage that did satisfy all 0f the requirements would
be too large and contain -too many contradictory features
[BAST76bl. The runtime environment needed to support such &

language would be complex and inef ficient. What we would Like

POCCNET Language Study . PAGE 5-=3

instead is a set of languages, each tailored to one particuler
subepplication. However, there are several drawbacks te building
a large set of independent lanyuages. For one thing, the design
anac deveiopment ot new programming languages Qoutd'bé fraught
with many problems sin;e eacth language would be an entirely new
design experience, Secondly; .if these Llanguages were truly
different in QEsign, it would reguire the user 1o L&érn several
totally different notations for Sotving'the different aspects of
the problem. Thirdly, there would be a proliferation of
languages and compilers to maintain. : |

One possible approach that minimizes somer of 'the"ébove
drawbacks is the dévelopment of a family of programming Languages
and compilerss The basic idea behind the family is that all the
‘tenguages in the family‘contain a tore design uhich‘tonsists of =&
minimal set of common languége features and a simple common.
runtime enyironmeht. This core design defines the base language
for which all the other Languageé'ih the famiﬂy.laré' extensions.
This also guarantees & basic common &esign for the compilers.
The pasic family concept can bé viewed as 'a tree structure - in
‘wihich each of the languages in a subtree isg an extension of the

Language at the root of the subtree. For examplg:
L4 L5 Le | | |
L2 i3
L1

In this case the language L4 = LZ U {new features of Léde

‘Using the family approach permits the devetopmentiof 59verat
application area languages, minimizing the difference between the
languages and the compiler design effort,. Since - many of the
constructs for various appLicatﬁOns contain a sim%larity of
design or. interact with the envirbnment in similar: wéys;
experience derived from one design and development effort can be .
directly applied to another. Since the best choice of ‘notation
-for a particular application area may not be known a priori, the

family joes permits scme experimentaticn without the. cost of a

POCCNET Language Study _ PAGE 5=¢

totatly new language and compiler developmente.

There are several approsches to minimizing the compiler
development for a family of Languages. One . can develop an
extensibie language and build the family out of the extensible
base Llanguage. The extension 'Ean be made either by a data
abstraction facility as in CLU [LIS74] or by some form of full
tanguage exfénsion as in ELF [CHE68). The famity of compilers:
can also be built using s translator wrifing system or by
extending some base core compiler, as was done with the SIMPL and
the PASCAL familie s. A combination of two of the above
te:hnique; is recommended here, and they will be discussed a
little more Fully . |

In the core extensible compiler approéch, the base compiler
for the base Laﬁguage is extended for each new Language in the
family, creating a family of compilérs. In order to achieve the
resulting family of compilers, the core compiler must be easy to
mocgify and easy to extend'with new‘features., Oné.experience with
this tecﬁuique, the SIMPL famity of Ladguages and compilerss has
proved reasonably. successful with respect to extensibility due to
the wuse of specialized software aevelobment techniques during
compiler development. '

Using the core extens{ble cbmpiler approach, the compiler
C(L) for a new language in a subtreé.is-buitt from the compiler
for the language at the root of the subtree. This is done by
mak ing 'madifications (@Qg)_ to that compiler to hermit it to
handle the new features of the extension language. For the
family in the previous exémple we have |

CCL4) = C(L2) mod {4 fixes) U {new L& routines}
" where the set of L4 routines repfesents the code for the L&
extensions to L.dy and the set of L& Tiies fepreseﬁts the code for
modifying the- L? compilef to add those extensions. The key to
good extensible compiler design is to minimize the number of
modifications (fixes) and maximize . the number of independent

routines. ' | o
Using & date extension approach, new. data types and data

“structures can - be added to the Language using & built~in data

POCCNEYT Language Study o PAGE 5-5

ébstraction facilitye. In order to -achieve reasconable
extensibitity, the facility should be weasy to use and permit
efficient implementation. Experience with forms of data
abstraction facilities in CS-4 and CONCURRENT PASCAL have
demonstfated_the benefits of this approache. ‘

7 Here the effectiVé compiler for a néw language 1is a&again
built from the compiler for its immeciate ancestor in the tree.
This i1s dane 'by . edding & new set of Ltibrary modules tHat

represent the new datsa tybes and structures and their associated

operators and access mechanismssy respectively. Fof example,
CCL4) = CLL2) U {Lé4 Liorary modules). ‘
Each of the two techniques has different assetse The core

extensible compiler approach permits full languageiextensidn,

-including new control structures and modifications to the runtime

environment. It offers the most éffitienCy and ‘permits 2 Cfutl

set of specialized error diagnoétics to be built 4n. - The data

definitiomat aporbéch can be used only for data exfénsions, but
these arfe by far the most common in the range of subapplication.

It is also a lot easier to do and can be performed by the average

‘programmer, where the compiler extensions ‘require more

specialized training. ldeally, the first approach should be used
for . appiicéfion extensions and the second. for smaller
subapplication extensions., 7 B |

Ltet us now épply this family cbncept‘to the POCCNET ’system
and . consider how the varioﬁs app;ication-oriented language
features could be distributed atross several Llanguages . in the

family. There would be a Llanguage in the . family for each

- application, i.e«y, @8 systems programming language, a8 numerical

analysis Language, g data pase language, a graphics Or'disptay

'tanguage, and so forthe Each language would be built out of some

base {anguage (which may in fact be the system languaéé). The
application language may have seversl extensions, each of which
adds on some higher level set of primitives. For example, some
set of standardized atgorithms could be defined as a2 set of
primitive operations in the language. The family +tree for the

language may take on & form such as-

POCCNET Leanguage Study PAGE &5-6

AL{n;
L.
L]

NAL . ALLTD DBL
Numerical Application Data Base
Analysis. Language Language
Languagse :

SL
. System
Base Language Language

in géneralq the spplication languages can be just =as high an
extension of AL(1)Y as is apbropriate for the sophistication of
the user. The syétem is then modulafiéed.so_that each module s
programmed in the appropriate languagesy ee«gey a numerical
analysis‘modute in the numericatl aﬁalysis language NAL. Each of
these__:modules can inter face with the others through' an

interfacing system. The inferface system is'part of the basis

“for. the famity of [anguageé and contains among other things the

'compilérs for the languéges.-The interface system could be built

into the IPC or Interface Subsystems of POCCNET.

It is. clear that the famiiy of tanéhages concept permits‘the
incorporatiaon of the variéus capabilities required for the
POCCNEI system. This concept also. rates well with respect to
design support, retiability, efficiency, machine independence,-
and réusabilitye '

With respect to ease of expression, algorithms are written
in® 2 notation which is'épeciatized fo the applicétion. Since
each lLanguage is reasonably independent of the appiicéfion tevel,
prihitivés in one notation can be fine~tunea without affecting
the brimﬁtives. of another application. This permits a certain-
amount of expefﬁmentation, ang primitives c¢an be varied iith
expefience. ' '- _

High Level, application—oriented primitives méke & solution
alecorithm easier to read and understand and.therefore eaéier to
verify as correct. ‘The specialized notation raises the level of
the executing algorithm to the tLevel at which the solution is
developeds Debugging features will be improved, because the
compilers for thé_ individual tanguages can tailor error

diagnostics and recovery'to the particular application.

POCCNET Langusge Study . PAGE 5-7

_ Eech language 1is small eand retatively simple, so that
compilation of programs is very efficient. Each language is not
compticated by @ mix of features whose interaction may complicate
the Vruntime environmenty, and a simpler runtime enﬁirohment
implies more efficient executions Language features are
spéciatized to meet oné specifﬁc apptication and don”t have to'be
generalized. inefficient versions of the feature. If' neceséary,
the programmef can always use one ¢f the lower Llevel languages to
improve or fine-tune an algorithm. . 7

Higher level primitives will make prdgfams more portéble.
‘The hierarchy with respect to the datas abstractions permits'the
localization of the machine dependent'aépects_of the'program; and
these localized sections tan be recoded wheﬁ fhe program is
-transported to a différent'_machine. And"uith.regard te the
development of reusable softhare, eéch'applicatiOn area ‘has”'its
own ltanguage: Thus, needed submoﬁutes are written in the target
appticatian,notafibn rather than the host .apblication. notation.
This makes it easier to recognize the essential function df_the
submodule and easier to write if in a more generatty ‘applicable

‘Waye

Our primary recommendation s that POCCNET be imp{emenied
uﬁing ‘s family _of languages. Two such familiés {PASCAL énd
SIMPL) were examined in this study. Houever,"since neither of
these families ‘aﬁ they currently exist uit{_satﬁsfy_ali'of the
reqﬁirements of POCCNET, we recommend fhat'one of the families be
impfqvéd for POCONET. The compilers for both tanguages are
uritten in. a- high level lahguage (PASCAL and SIMPL~T) and both
were designed to be modifiable and machine independent,

_ The two majof deficiencies in the PASCAL family.are the lack
of external procedures (programs must be compiled én masse) and
the Llack of "adjustable™ arrays or strings as formal procedure
parémeter&e PASCAL requires the length of formal array or string
parameters. to be declared at compile time, so there is no uay‘ to
write a PASCAL procedure that will manipulate arrays ér strings
of arbitrary lLength., #e would recommend that external procedures

be added to PASCAL, and that sdjustable arrays and strings be.

POCCNET tanguage Study _ PAGE 5-8

provided wusing the '#"~bound of PL/I or by passing in the array
or string dimensions, as is cone in Fortran. At least one
implementation of PASCAL on the IZM 360 series already provides
external procedures and functions [RUS7637. The usefulness of
CONCURRENT PASCAL for systems progfamming would also be increased
by the addition of 2 bit string cata type.

The SIM?L family could be improved by the additxion of record
structures and multidimensional arrays {(both df these extensions
have already 5een ‘designecl). The system features in SIMPL~XI
could alse be extended for POCCNETs The addition of a ocata
ébstractian facility would greatly imbrove the entire SIMPL
family. ‘ Finally, these éhanges' would not require complete
reworking of the compiler, since the SIMPL compiler was .
specificatlly desighed'to be extendible. ' '

'5.4.. Use of a Single Language

The ge;ond alternative for a POCCNﬁTsimptementaticn tanguage
is ‘to use a siﬁgle {anguage that meets most of the POCCNET
reguirements., Any of the tanguages CS-4, HAL/S, JOSSLE,
JOVIAL/J3B, and SPL/Mark IV could be used to implement most of
POCCNET. | '

We facbmmend thai HAL/S be <chosen over the other four.
languageé;. HAL/S has few machine dependent features,-it-is
etficienty: and it haé many system features (inc[uding recordé;
pointers, reat-time- Orocess schedu[ing, and exception handling
statements). The language also has featurés that would improve
the . reliability and modifiability of pfograms,-inctuding ful bt
type checking, COMPOOL files; & macro processor, -and structured
cohtrot. structures. HAL/S has been implemented on the IBM 360
serfes, the Data General Nova, and the Shuttle flight computer.

Although the (S=-4 Languagé has many nice featqr9$ {such as -
-data abstractions);. the Language is curfentty under develdpment
and no compiter is available. Fer this reason, we can not
recommend CS=4 for use in the POCCNET system. SPL is judged to

be equivalent to HAL/S in power, but: the_'Language has many

POCCNET Language Stugy o PAGE 5-9

features that woulc decresse the retiability of programs. SPL
'provides many low ltevel and machine dependent features, automatic
type conversion between all of the .basic data types, default
declarations of variables, and “implicit” subscripts fof arfays.
SPL was therefore ‘judged fo De inferibr to HAL/Se F{natly, the
JOSSLE - and JOVIALIJBE languages are proper subsets of HAL/S and

were therefore eliminatede.

565 Usgiof Fortran

Because of its widespread use in the computer ihdustry, this
report must discuss the possfbiliiy of wusing Foftran' 88 the
FOCCNET implementation language.. - Fortran varﬁants ‘have been
implemented on zilmost afl commercial computer systems. Atthough
there are many minor differences be tween the imp(ementations,
Calmost ail implementations support the 1966 ANSI Standard
Fortrane In addition, the Fortfan_language 4s more widely known
than any of the other tanguages in this studye. _Thu$; the use of
Fortran as the POCCNET implementation language would probably
“permit a shorter start-up time and a lower initial cost thén the
other Languages., _ _

' Despite the lower initial cosi,-ue recdmmeﬁd'ithaf Fortfan
not be used for POCCNET. Over the course of a tong_pfoject like
POCCNET, 4t is tikély that the cost of softuware deve{opmeht. and
maintenance will greatly exceed the initial start-up coste This
is cruciab, because Fortran provides few featufes:-that support
the develepment or maintenance of programs. The {anguage'has few
controt ‘structures, so that GOTO and IF statements'musf—be us ed
to simulate jt-~then-else statements; uhikg Loops, case
statements, etce No bit or character data type is-provided. Bit
and character data must therefore be stored in INTEGER variables,
and it Dbecomes impossible to entorce type chécking betﬁeen the
integer, bit, and charzcter data types. _Fortran also doesn”t
.perform type checking for subfoutine or fuhction paraheters, s0
integration testing of Fortran programs becomes more difficult,

The only data structure provided by FfFortran is'the array: the

POLCNET Language Study PAGE 5-10
ftanguage has no record structure for forming Logical groupings of
data. Finaldy, Fortran has noc macro facilities; no CONSTANT
statement for defining progrém parameters, and no INCLUDE feature
for copying source files into a program. The Llack ¢f these
features wild make Fortran programs longer than necessary andg
difficult to_read, modify, or debug.

Finatdly, Fortran doces not provicde the system features - that -
are reguired of the POCCINET implementation Laﬁguage. Fortran has
no pointers, Eecords, reentrant proceduresy access te machine
registers, concurrent processes, or exception handling features,
Some of these features can Dbe simu{éted by caltling assemoly
-languagelnoutines, but with considerable Lloss in-efficiencye For
all theée reasons, we feel that Foftran would be a poor choice
for the POCCNET implementation language . '

If Fertran is chosen as the"implemenXation language {in
spite - of ~our recommendations), we strongly advise that a
IQFEprocessor be used to provide cohtro& structures for structured
programming. Two such preprocessors.:(FLECS and PREST4) were
examined im this study. Since PREST4 forbids the use cf sonme

Fortran constructs (FLECS does not) and provides fewer new

'._cqntrol structures than FLECS, we recommend that FLECS be thosen

-1 t he Foctran preprocessore FLECS is written in fortran and s
~available from its author, T. Beyer, at a nominat cost ($100).

Many other. Fortran preprocessors are also avaitable [MEI753],

Seb6s+ Remaining Languages

- The remainihg languages were eliminated early in the study
‘when it Dbecame clear that they did not come close to satisfying
alirthe requirements of the POCCNET systeme. The languages
BLISS-11 and LITTLE were consjdered to be too low-level for
general use in POCCNET. Both of these tanguages are typeLess,-
systems implementation languagese. Nhile-the tanguage € provided
many Low-Lkevel features within a typed, medium level language, it
_Qas-rejected because of 1its terse and frequently unreadable

syntax.

POCCNKNET tLanguage Study - PAGE 5-11

Finally, some portions of the POCCNET system may be written
~in @ssembly tanguage where time or space efficiency is criticale
For these portions, WE recommend that the vendor”s éssembly
language ©bDe augmented " by a set of structured macros simitér to
STRCMACS . Macros of lthis type cén greatly imbrove the
readability of asssembly language programs. The structured macros
cen be expanded during the norma! assembly step if fhe assembly'
language provides.a macro facility, or during a preprocessor pass

§f no such facility existss

S5e7 s Sumpary

To summarize, on the basis of our study none'of the fifteen
languages meet all of the ' requirements for 'a POCCNET
implementation language. Our primary fécomméndation .is " that a

‘family ot languages be developed for POCCNET by modifying the
PASCAL or SIMPL familiese . If & singte implementation lahguage is
to be used then we recommend that the NASA Shuftlé lénguage HAL/S
be chosen. We recommehd that Fortrén notf'bé- used. as _ihe
'impiementation language. Finally, if.'Fortran or ‘assembly
language are used in POCCNET then preprocessors should be-used to_

provide structured control structures.

POCCNET Language Stuagy PAGE 5=12

th-th-that”s all folks!

