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Determining whether software and systems achieve desired emergent properties, such as safety, 

reliability, or security, requires an analysis of the system as a whole. This requires the system to be in the 

latter stages of development, when changes are difficult and costly to implement. In this paper, we propose 

the Process Risk Assessment (PRA) methodology for analyzing and evaluating such emergent properties 

earlier in the development cycle.  Properties such as safety and reliability result from one or more 

development processes put in place to help achieve those properties.  The PRA method analyzes artifacts 

from these processes (e.g., designs pertaining to reliability, or safety analysis reports) to determine: 1) 

whether the process itself is appropriate for achieving the desired property; and 2) whether the process is 

being followed appropriately.  From PRA analysis, process risk can be quantified to indicate whether the 

system will have the desired properties.  We applied this method to evaluate one emergent property, 

software safety, during the early stages of the development lifecycle for a network-centric, Department of 

Defense system-of-systems and several NASA spaceflight projects.  We analyzed the safety processes 

implemented on these projects and their resulting artifacts.  The PRA methodology identified potential 

risks in the software safety process and provided feedback to the projects for reducing these risks. 

  

Categories and Subject Descriptors: D.2.8 [Software-Software Engineering]: Process Metrics; D.2.9 

[Software-Software Engineering]: Management 

General Terms: Management, Measurement  

Additional Key Words and Phrases: Process risk, software safety, risk measurement 

ACM Reference Format: 

Basili, V. R., Layman, L., Zelkowitz, M. V., 20XX. A Methodology for Exposing Process Risk in Emergent 

System Properties. ACM Trans. on Soft. Eng. Method. X, X, XXXX. 

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000 

1. INTRODUCTION 

Development of large systems in the aerospace, defense, energy, transportation and 

related industries is an expensive venture in terms of both time and money.  One 

driver of the cost of these systems is that they often have challenging non-functional 

requirements, such as safety, reliability, security and performance.  These emergent 

properties are particularly challenging to achieve because they evolve during 

development and can only be fully tested when the system is complete.  Corrective 

actions based on the results of final tests or operations are often difficult and costly to 

implement.  Nonetheless, failure to achieve these properties is costly and may be life-

threatening at worst.   

Achieving desired emergent properties is accomplished by applying specific 

processes that incorporate techniques for achieve the property, such as threat 

modeling for security or Failure Modes and Effects Analysis [Maier 1995, Lutz and 

Shaw 1999] for reliability.  These processes must meet three, often unstated, 

assumptions: 

Assumption 1. The process is capable of achieving the property and 

mitigating the risk of not achieving the property;  

Assumption 2. The process is appropriate for the development context; 

Assumption 3. The process is followed correctly.   

 



If a process fails to meet any of these three assumptions, then there is a risk that 

the product will not achieve the desired property.  The purpose of this paper is to 

define a risk measurement methodology for emergent system properties that does not 

focus simply on process conformance, but through its application enables the user to 

identify risks with the development processes and to create responses to identified 

risks throughout the lifecycle.   

 

2. BACKGROUND 

We define two types of risk with respect to emergent properties: product risk and 

process risk.  A product or technical risk is the risk that a system will not achieve a 

desired property, such as functionality, reliability, performance, safety or security.  

For example, an incorrect software implementation is a technical risk that causes a 

rocket to prematurely activate its launch booster creates a safety risk. A process risk 

is the risk created by the (correct or incorrect) application of a process that leads to a 

product risk.  For example, a software tester who writes poor performance tests 

contributes to the risk that the system may not meet performance requirements. All 

software development processes, including processes for mitigating product risk, 

introduce additional risks that must also be controlled.   

Managing product risks associated with emergent properties is particularly 

challenging because these properties are a function of the system as a whole.  It is 

difficult, if not impossible, to test these properties with a high level of confidence 

before the system is completed.  Furthermore, methods for testing properties such as 

security, safety and performance are often ill-defined, immature and non-repeatable.   

Economically, it is much more advantageous to address risks early in the 

development cycle when required changes are easier and less costly to make, 

particularly in large, complex systems.  

Mitigating process risks often takes the form of quality assurance, process 

conformance evaluations, or the application of process improvement frameworks such 

as CMMi [Chrissis et al. 2003].  Identifying the cause of process risk is where most 

projects struggle.  The first instinct is to say “you’re not following the process” or 

“you’re not doing enough of the process” (see Assumption 3, Section 1), and, indeed, 

research has shown that teams who follow process consistently tend to perform 

better [Krishnan and Kellner 1999].  But research has also shown that “even 

companies that use the same development process at the same level of maturity don’t 

achieve the same levels of quality” [Pardo et al. 2011]. While not following a process 

can lead to risk, there are often hidden reasons that correlate with process 

nonconformance – the process is flawed or the context does not allow various steps to 

be performed (see Assumptions 1 and 2).  For example, there may be conflicting goals, 

such as when developers abandon process when faced with an imminent deadline.  

Perhaps an organization’s performance testing guidelines are simply ill-specified and 

uninformative, and thus the performance testing process is ad-hoc and ineffective.  In 

practice, pressing a developer to apply more process may not be the solution; there is 

often an underlying cause for process nonconformance.  

 
2.1 Leveraging Process Artifacts to Identify Process Risk 

Our approach to mitigating those risks associated with emergent properties focuses 

on process risk management.  In particular, we focus on the process artifacts that 

capture information about emergent properties.  For example, design documents can 

provide insight into reliability, and fault tree analyses as part of hazard analysis 

[Dehlinger and Lutz 2004] contains information relevant to system safety.   

The artifacts of a development process contain two types of information that 

provide insight into the process: syntactic information and semantic information.  An 



artifact’s syntactic information is the data elements and their expected compositional 

format.  For example, the syntactic information of a defect report may include the 

description of the defect, the reproduction steps, and a criticality of the defect.  An 

artifact’s semantic information is the meaning or interpretation of the syntactic data 

in the context of development.  Interpreting semantic information almost always 

requires human expertise.  For example, a computer cannot automatically infer the 

risks and necessary mitigating actions required based on the contents of a defect 

report.   

We assert that potential product risk increases when the ability of an artifact’s 

consumer (e.g. developer, project manager, tester) to perform a semantic analysis 

(e.g. to determine if the project is on schedule, to understand the bug) is compromised 

by syntactic problems.  The process artifacts are often the only evidence available 

during development that provide evidence that steps have been take to mitigate 

product risks and that these steps have been applied appropriately.  Insufficient, 

incorrect or missing syntactic information in process artifacts is a strong impediment 

to accurate, useful semantic analysis and is the indicator that we leverage to identify 

and measure potential risk during the development process. 

Our process risk measurement methodology enables users to answer the first 

three questions and provides insights into the fourth question about processes and 

process artifacts:  

1. Do we have any information in the process artifacts?   

2. Do we have enough information to perform a syntactic analysis of the 

data?  

3. Do we have enough information to perform some form of semantic analysis 

of the data?  

4. Is the data semantically correct?  

A positive answer to each successive question provides greater insights into the 

development process, with a correspondingly deeper understanding of the risks that 

may be present.  

3. THE PROCESS RISK ASSESSMENT METHODOLOGY 

In this section, we introduce our risk measurement approach, called the Process Risk 

Assessment (PRA) methodology.  The PRA method is comprised of six steps, which 

are applied iteratively to form a risk measurement plan. We explain each step in 

detail and provide an example of applying the methodology from the NASA 

Constellation program to evaluate software safety risk. The six steps are grouped 

into three stages, as follows: 

 
I. Identifying measureable  

insight opportunities 

1. Identify insight areas (e.g., process artifacts) from the 

development process that provide insight into risk areas. 

2. Identify measurement opportunities that provide 

insight into each insight area. 

II. Evaluating the quality 

of information 

3. Develop readiness assessment questions to identify if 

sufficient information exists to implement process risk 

measures. 

III. Measuring,  

interpreting, and 

providing advice 

4. Define goals, questions, and measures for each risk area 

to expose risks associated with process artifacts.   

5. Develop and enumerate models of how the measures will 

be interpreted via threshold values.   

6. Propose responses to identified risks (e.g., decisions and 

actions) in order to mitigate those risks. 

 
The first three steps of PRA determine if process risk analysis has the potential to 

yield meaningful information.  If insight areas or measurement opportunities cannot 

be identified (Steps 1-2) and the artifact’s syntactic and semantic information cannot 

be readily assessed (Step 3), then the development process itself may be a source of 



risk.  The final three steps of PRA define process risk measurements, develop 

interpretations of the measurement results, and establish mitigations for identified 

risks.  For the practitioner, we have defined “keys” to each of the six steps in a table 

format (See Appendix B). 

3.1 Constellation Case Study 

To illustrate the PRA method, we provide examples from applying PRA to identify 

potential software safety risks within the NASA Constellation program1.  The 

Constellation program was a complex system of systems to facilitate the next 

generation of human spaceflight.  We examined three large spaceflight systems in 

the preliminary design stage that contained numerous hardware and software safety 

features.  Safety is an ideal example of an emergent product property that cannot be 

fully tested until the system is operational.  A safety risk is a hazard, which is any 

real or potential condition that can cause:  injury, illness, or death to personnel; 

damage to or loss of a system, equipment, or property; or damage to the environment 

[DoD 2000].   Hazards caused or contributed to by software have become a greater 

concern in systems development as many traditionally hardware-centric systems 

become highly reliant on software.  Catastrophic safety failures due to software are 

well-documented in the literature, e.g. [Nuseibeh 1997, Leveson and Turner 1993]. 

On Constellation, software was safety-critical in numerous areas from propulsion 

and navigation to maintaining a livable environment inside the crew capsule. 

We partnered with the software Safety, Reliability and Quality Assurance 

(SR&QA) group for Constellation to gain insights into potential software safety risks 

associated with the software safety process.  In particular, we focused on the hazard 

analysis process, which is an analysis conducted during the design phase to help 

identify causes of hazardous safety conditions and to develop mechanisms to avoid, 

control, or otherwise mitigate those causes2 [FAA 2008]. The official Constellation 

hazard analysis process, CxP 70038 – Constellation Program Hazard Analyses 

Methodology, prescribes the “methodologies and processes required […] to implement 

a healthy and robust hazard analysis, hazard communication, and hazard approval 

process” [NASA 2009].  CxP 70038 required that software be analyzed for safety-

critical procedures that could lead to a potential hazard.  Our goals were to help 

SR&QA evaluate software-related hazards, to help software quality engineers 

implement software hazard analysis processes, and to demonstrate conformance to 

the hazard analysis processes with respect to software. 

Throughout the development of Constellation, project safety engineers identified 

potential system hazards and created controls (i.e. strategies) for mitigating those 

risks.  Hazards were recorded in a program-wide Hazard Tracking System (HTS). At 

each program milestone review, the development groups presented their hazard 

analyses to the Constellation Safety & Engineering Review Panel (CSERP), who 

reviewed the hazards and evaluated the control strategies, acting as gatekeeper for 

development milestones.   

SR&QA management wanted to understand where in the system software played 

a role in possible hazards, either by causing a hazard or by controlling it.  By 

understanding the role of software in system hazards, SR&QA could identify systems 

and subsystems with the greatest potential software safety risk and take appropriate 

management actions.  The results of the Constellation case study are more fully 

documented elsewhere [Layman et al. 2011]. 

 

1 Although the Constellation program was cancelled, some of the projects are expected to be continued. Our 

results are being applied to other NASA projects as well. 

2 See Appendix A for an overview of hazard analysis. 



3.2 Step 1: Identify Insight Areas from the Development Processes that Provide Insight into 
Risk Areas 

The first step of the PRA method is to identify intermediate outputs of processes.  

These artifacts can provide insights into process conformance and effectiveness in 

achieving the desired emergent properties.  We ask, what potential syntactic and 

semantic information can be gathered from process artifacts to provide risk insight?  

If no artifacts exist that provide insight into risk, then it is likely that risk will be 

present in the system because there is no process or artifact capturing that risk.  The 

first step identifies insight areas at a very high level as candidates for further 

investigation. 

 

Constellation example 

The Constellation SR&QA manager identified the hazard analysis process as a 

readily-accessible source of software safety information early in the development 

process.  Hazard reports are the intermediate output of the hazard analysis process.  

All hazards, including software-related hazards, are stored as hazard reports in the 

Constellation hazard tracking system (HTS).  These hazard reports contained the 

syntactic and semantic safety information that provided insight into potential 

software safety risks.  Based these reports, we identified the following potential 

insight areas: 

• The set of hazards, with its causes, controls, and verifications. The hazard 

reports can provide insight whether the program is adequately identifying 

and documenting the required software safety information; 

• The relationship between hazard causes, controls, and verifications. These 

relations provide insight into whether sufficient actions are taken over time, 

i.e. that the hazard controls are being implemented and verified. 

3.3 Step 2: Identify the Measurement Opportunities that Provide Insight into Each Risk Area 

Second, each insight area is evaluated for measureable indicators of process risk.  A 

measurement opportunity can measure process conformance (e.g. are all of the fields 

in the test results filled in?) or the software risk directly (the number of defects found 

during test).  A measurement opportunity is identified by creating a high-level, 

informal metric based on the information available.  This step identifies (and thereby 

excludes) processes or process artifacts that do not have measureable information.  A 

process that does not have measureable output may represent a risk itself, and is an 

indicator that the process or process artifacts do not contain meaningful information. 

 

Constellation example 

We identified measurement opportunities to help quantify software safety risk based 

on information captured in the hazard reports.   Because we were analyzing hazard 

reports in preliminary design, only the hazard causes had to be well-described 

according to CxP 70038.  The hazard analysis process, together with other NASA 

standards, described what constituted a “meaningful” description of a hazard cause.  

Thus, we identified measurement opportunities that focused on syntactic information 

to help evaluate conformance to the prescribed hazard analysis process, but which 

were also related to the quality of the semantic information (i.e. “meaningful” 

information).  Other measurement opportunities were derived from additional 

requirements in CxP 70038. 

Those measurement opportunities were: 

• Evaluate hazard causes, controls and verifications to determine if they 

contain the required syntactic components that are prerequisite for a 

“meaningful” hazard analysis.  



• Count the number of hazards, causes, controls, and verifications that involve 

software to quantify software involvement in hazardous conditions.   

• Verify that each cause is addressed by at least one control and that each 

control is addressed by at least one verification. 

• Count the number of causes, controls and verifications that are “transfers”.  

Transfers are a reference to a cause, control or verification in another hazard 

report (e.g., another hazard report addresses appropriate mitigation of this 

risk).  All transfers must be traced and verified as completed for a hazard 

report to be considered “closed.”   

 

In these first two steps, we have not gathered any actual data; we are only looking 

at the process outputs and their potential to be measured.  The purpose of these steps 

is to understand the development process we wish to measure (e.g. the software 

safety process) and to understand the process artifacts.  These steps may seem 

superfluous, but are necessary.  Too often we assume that a process is producing 

meaningful, insightful information, but this information may not be, in fact, available 

or useful.     

3.4 Step 3: Develop Readiness Assessment Questions to Provide Risk Status and 

Identify If the Insight Area Can Be Evaluated 

In the third step, we determine whether the syntactic and semantic information in 

the process artifacts contains sufficient information to investigate the risk further.  

We propose a set of readiness assessment questions that allow us to gain additional 

insight into the areas of interest, to get a quick and easy status report of the area, 

and to identify whether it is possible to go deeper. What is learned from these 

questions helps tailor the models, measures, and responses applied at a deeper level.  

For example, we might ask “are software safety-related requirements specially noted 

in the requirements repository?” If not, there may not be sufficient information to 

evaluate software safety risks.  Answering these readiness assessment questions is 

an iterative process, as answering one question may lead to others.  Processes and 

process artifacts that do not pass a readiness assessment are indicators that the 

process is not being followed, or that the processes is not well-defined for the current 

context.  In both cases, the project should take steps to correct the development 

process. 

 

Constellation examples 

In the Constellation case study, we developed many readiness assessment questions 

while exploring the measurement opportunities.  Examples of these questions 

include:   

• Can we access the hazard tracking system and hazard reports?  Access 

to the process artifacts was a necessary precondition to any measurement.  

The HTS was made available to us, but the HTS contained hazard reports for 

only one of the three spaceflight hardware project on Constellation that we 

examined (see next list item).   

• Is the content of the hazard tracking system up to date?  The hazard 

tracking system only provided up-to-date hazard reports for one of the three 

spaceflight systems (Project A).  Project B’s hazard reports were in the HTS 

but not visible as the development contractor did not want to release 

“intermediate” versions of the hazard reports.  Project C’s hazard reports 

were created prior to the development of the hazard tracking system itself.  

Since Project B and C’s hazard report were not in the HTS, we could not 

leverage the querying capabilities of the HTS and had to spend additional 



effort collecting all of the hazard reports for the two systems.   However, we 

were able to obtaining the hazard reports for Projects B and C from a Wiki 

containing CSERP review meeting materials.   

• Are the cause, control and verification data complete enough for 

analysis?  For the NASA engineers writing the hazard reports, the goal of 

hazard analysis in the preliminary design phase was to identify and describe 

all potential failure causes and to develop preliminary controls.  As this was 

still early in the Constellation program, verifications were not yet specified 

nor required by CxP 70038.  As such, we could not measure them. Most 

causes and controls were specified and thus could be analyzed, though some 

were still works-in-progress and had a “To Be Determined” placeholder. 

 

In addressing the readiness assessment questions, our first observation, as stated 

above, was that few of the hazards had been entered into the HTS by safety 

engineers – we had to obtain the hazard reports from the CSERP review materials.  

However, keeping the HTS up to date is an easy first step in mitigating hazard risks 

and increasing the effectiveness of the hazard analysis process.  The HTS has the 

capability to track “transfers” in hazard reports automatically, making traceability 

maintenance a much lower cost than the manual effort required of engineers working 

only with word processor documents.  Furthermore, the contractor withholding 

intermediate hazard information from the HTS prevented SR&QA management from 

easily assessing the progress of the hazard analysis process. 

3.5 Step 4: Define Goals, Questions and Metrics for Each Risk Area to Expose Risks 
Associated with Process Artifacts 

Having determined in steps 1 to 3 that we have sufficient information to make 

deeper risk assessments, in the fourth step we set goals for identifying specific 

software risk based on the syntactic and semantic information available in the 

development process artifacts.  We develop a set of questions that will help determine 

if those goals are being met, and we identify formally the metrics we will use.  This 

step is an application of deriving goals, questions, and metrics in the GQM approach 

[Basili and Weiss 1984].  Goals and questions should focus on the application of the 

development process and the expected information in the process artifacts.  The 

premise of our methodology is that information in process artifacts should meet the 

expectations of the processes, and, if not, there is risk that the process is not 

appropriate for achieving its goals or that the process is not being applied 

appropriately.     

GQM questions can be asked about process risk, such as “is all of the information 

in a software safety requirement recorded?”  We can also ask if the content of these 

safety requirements is semantically meaningful.  Goals and questions can be asked 

from a more product-oriented perspective as well, such as “which parts of my system 

have the most software safety risks?”  By answering these questions with metrics, we 

enable quantifiable comparison, measurement repeatability, a baseline for measuring 

future changes, and well-defined targets for future efforts. 

 

Constellation examples 

SR&QA identified several goals for software safety risk analysis based on the hazard 

reports.  After applying PRA steps 1-3, we worked with SR&QA to specify two goals 

for analysis.  

By understanding the role of software in system hazards, SR&QA could identify 

systems and subsystems with the greatest potential software safety risk.  To this 

end, we created the following GQM approach to characterize software’s prevalence in 

hazards: 



Table 1. Goal 1 - Prevalence of Software 

Goal 1 - Prevalence of software 

Analyze the available set of hazards reported for Projects A, B and C in order to characterize them with 

respect to the prevalence of software in hazards, causes, and controls from the point of view of NASA 

quality assurance personnel in the context of the Constellation program. 

Questions 

Q1-1. What percentage of hazard causes are software causes?  

Q1-2. What percentage of the hazards is software-related? A software-related hazard has at least one 

software cause or software control. 

Q1-3. What percentage of hazard causes have software controls? 

Q1-4. What percentage of hazard causes are non-software causes (e.g., hardware, operational error, 

procedural error) with software controls? These causes represent potentially “hidden” software 

risks.  For example, if a software control is monitoring a hardware condition, then if the monitoring 

software fails there is a risk that the monitor will fail to detect an actual subsequent problem.  

Thus, this software control can again be the cause of a hazardous condition.  

Metrics  

M1-1. The total number of hazards, causes and controls 

M1-2. The number and percentage of software hazards 

M1-3. The number and percentage of software-related hazards 

M1-4. The number and percentage of software causes 

M1-5. The number and percentage of software controls. 

 
Given SR&QA’s second goal of identifying the systems and subsystems with the 

most risk, we identified several subgoals, one of which was to evaluate whether the 

syntactic and semantic information in software causes of hazards adhered to 

established NASA guidelines.  If software cause descriptions do not syntactically 

conform to the information required by process standards, then there is a risk that 

not enough semantic information is captured to adequately describe the hazard 

cause.   
Table 2. Specificity of Software Causes 

Goal 2 - Specificity of software causes:  

Analyze the software causes in a sample set of hazard reports for Projects A, B and C in order to evaluate 

them with respect to the specificity of those software causes and hazards from the point of view of NASA 

quality assurance personnel in the context of the Constellation program.  

Questions 

Q2-1. What number and percentage of software causes is well-specified according to the Constellation 

hazard analysis methodology requirements? 

Q2-2. What number and percentage of software causes is partially-specified? These causes lack certain 

pieces of information needed to evaluate their quality. 

Q2-3. What is the number and percentage of software causes is generically-defined?  A “generic” cause 

(e.g. “the software fails”) is not specific enough to identify any control strategy. 

Metrics 

M2-1. For each hazard report, count the number of L1 causes 

M2-2. For each hazard report, count the number of L2 causes 

M2-3. For each hazard report, count the number of L3 causes 

 

• L1: a specific software cause or sub-cause3 for a hazard, which must include all of the following: 

o Origin – the CSCI (e.g., software component) that fails to perform its operation 

correctly  

o Erratum – a description of the erroneous command, command sequence or failed 

operation of the CSCI 

o Impact – the effect of the erratum which results in the hazardous condition, and if 

known, the specific CSCI(s) or hardware subsystem(s) affected 

• L2: a partially-specified software cause or sub-cause for a hazard, which specifies one or two of 

the origin, erratum or receiver at the CSCI/hardware subsystem level. 

• L3: a generically defined software cause or sub-cause for a hazard, which does not specify the 

origin, erratum or receiver at the CSCI/hardware subsystem level. 

 

3 Many software causes contained a number of “sub-causes.” Sub-causes were identifiable by either: 1) 

explicit enumeration in the cause description by the hazard report author; or 2) separate paragraphs 

describing errors by different CSCIs.  Because sub-causes described different software behaviors, each was 

measured for its specificity. 



 

While Goal 1 and Goal 2 both deal with syntactic information in the hazard 

reports, Goal 2 begins to bridge the gap between complete syntactic information and 

meaningful semantic information.  The syntax for a “well-specified” hazard cause (as 

inferred from NASA standards) enables meaningful semantic information (though 

does not guarantee it).   

3.6 Step 5: Develop Interpretation Models and Threshold Values of Measures 

Using the metrics developed in Step 4, we need to interpret the data.  What are 

good values and which values represent risk? For example, for Goal 2 above, what 

percentage of “generically-defined” (L3) software causes is too high, and what are the 

implications for the project?  Ideally the interpretive models are based upon 

thresholds established from prior projects.  If no such data exists, experts can provide 

proxies for the thresholds.  One side effect of the PRA method is that the collected 

data can be used to create baselines that can be used as thresholds in future projects.   

 

Constellation examples 

We analyzed a total of 154 hazard reports for the three Constellation systems: 77 in 

Project A, 57 in Project B, and 20 in Project C.  The analysis of each hazard report 

was performed manually by reading the text of the causes and controls.  In total, over 

2000 causes containing nearly 5000 controls were examined. 

Goal 1 did not have an interpretation model, per se, as it was meant to provide a 

description of software’s role in hazards to provide stakeholders with an 

understanding of the importance of software safety.  Table 3 provides the statistics 

that answer the questions in Goal 1. 
Table 3. Measuring the prevalence of software 

 Question Project A Project B Project C 

Q1-1 
What percentage of the hazard causes are 

software causes?   
15% 12% 17% 

Q1-2 
What percentage of the hazards is software-

related? 
49% 67% 70% 

Q1-3 
What percentage of the causes has software 

controls? 
29% 23% - 

Q1-4 
What percentage of hazard causes are 

hardware causes with software controls?   
14% 11% - 

 
The analysis began with finding syntactic keywords (e.g. “software”, “flight 

computer”) that gave an indication that a cause or control was software-related.  We 

found that 49% of Project A’s hazard reports, 67% of Project B’s hazard reports, and 

70% of Project C’s hazard reports were software-related.  This indicates that software 

is a safety-critical aspect of the overall system and over half of all hazard reports are 

software-related.  The importance of software clearly demonstrates the need for a 

strong software development process with adequate control and verification.   

Goal 2 provided insight into the execution of the hazard analysis process itself.  In 

this example, we create an interpretation model for the question “what percentage of 

software causes is generically-defined? (Q2-3, M2-3).  

 

Interpretation model: if L3 > 0 then additional work is required to 

better specify those software causes and those causes must be-

revaluated for specificity at a later time; otherwise the causes are 

ready to be evaluated for quality by domain experts.  

 



A “generically-defined” cause is not specific enough to specify a design feature or 

operational procedure that could function as a control strategy.  Thus, all generically-

defined causes should be improved to be better specified.  In the three Constellation 

projects, Project A had 38 L3 causes (29%), Project B had 37 L3 causes (22%), and 

Project C had 16 L3 causes (29%).  None of the projects met the criteria of the 

interpretation model.   

At its core, Goal 2 examines process conformance by looking for syntactic 

information in the cause description.  Many causes did not follow the prescribed 

syntax, and the resulting semantic information was insufficient for identifying 

controls. As discussed early in the paper, the initial reaction may be to say “you’re 

not following the process correctly.”  However, SR&QA personnel acknowledge that 

non-conformance in this case was not necessarily a failure on the part of the safety 

engineers; the integration of software safety with traditionally hardware-centric 

system safety processes (such as hazard analysis) was still a work in progress.  The 

guidelines for specifying software causes were scattered over five different standards 

and process documents, and each project reported and scoped software causes 

differently.  In this case, the lack of process conformance was partially attributed to 

needing process guidance for the current context. 

3.7 Step 6: Propose Responses to Identified Risks 

The goal of this step is to propose actions to be taken in response to any identified 

risks.  If the interpretation models indicate that the process is not being followed 

and/or not producing the information expected, stakeholders must endeavor to 

understand why the process is not being followed.  Again, this may be more than a 

compliance issue, and could result from inapplicability of the process to the current 

context or an ill-defined or not sufficiently defined process.  In such a case, additional 

training may be necessary for the developers, the process may need to be refined with 

input from the practitioners, or entirely new techniques may need to be applied that 

are more suitable to the context.  Responses to identified risks may also focus on the 

product, such as increasing the amount of testing for high risk components or 

requiring additional review of proposed architectures.  

Not identifying any risks at this step does not mean that there are no software-

related risks. It only means that the development team seems to be following the 

process in a reasonable manner. Specific risks may not have been identified because 

measurable process artifacts were not present. Furthermore, technical risks (i.e. the 

system may not operate as expected) may still be present in the details of the design 

or implementation that is being worked on.  

 

Constellation examples  

SR&QA integrated the percentage of software-related hazards (along with other 

measures related to Goal 1) into a risk scorecard of the systems and subsystems with 

greatest potential software safety risk.   This scorecard can help manage safety 

support effort.  The data related to Goal 1 were used to inform other members of 

Constellation program management as to the importance of software in overall 

system safety.  These metrics results were surprising to many.  The risk scorecard 

was to be used to track the evolution and improvement of software safety risk over 

the course of the project.  Unfortunately, the program was canceled shortly after this 

analysis, and thus we could not observe how the data would be used as part of 

proactive program management.  The following response is a notional example of 

what project responses might look like: 

• Allocate the available work hours for software safety assurance according to 

the rank order of subsystems with the most software-related hazards. 

 



The responses to risks evaluated in Goal 2 focused on improving the quality of the 

software cause descriptions.  As described in the previous section, the process risks 

associated with Goal 2 were largely attributed to project safety personnel being 

unfamiliar with the hazard analysis process and how to incorporate software safety 

into that process.  As such, the responses to these risks focused on process 

improvement and providing better support in both training and in the HTS for 

reporting software causes.  Notional example responses to Goal 2 include: 

• If the software cause does not specify a specific origin (i.e. “the software 

fails”), then assist the project safety engineer to differentiate between the 

architectural components of the software (e.g. the propulsion control system, 

the avionics component). 

• If a hazard report contains L2 or L3 software causes, have the project safety 

engineer who authored those causes rewrite them using the “User Guide for 

Specifying Software Causes” we produced with SR&QA as guidance and 

reevaluate at the next Technical Interchange Meeting. 

4. UNCOVERING PROCESS RISKS USING THE PRA METHOD – CASE STUDY RESULTS 
AND LESSONS LEARNED 

We have applied the PRA method to evaluate software safety on three projects to 

date: 1) the Constellation study in the previous section; 2) a large, network-centric 

US Department of Defense system-of-systems; and 3) a NASA-developed satellite.  

Descriptions of the DoD and NASA satellite systems are provided in Appendix C.  In 

all three case studies, the programs relied on hazard analysis to describe, analyze, 

and reduce software safety risks.  By applying the PRA method, we uncovered a 

number of process risks in each project with respect to the application of hazard 

analysis to software safety4.  In this section, we identify three process risk “themes” 

that were common across the projects and thus provides guidance to other programs 

implementing software safety analyses to help avoid these risks.   

 

1. The inability to track software hazards and software safety requirements 

against the backdrop of system hazards and system safety requirements.  On 

Constellation and in the DoD project, software safety risks were often not specifically 

marked or headlined in the hazard reports.  Identifying which hazard reports 

described software was time-consuming: different hazard report authors had 

different writing styles and sometimes different terminology, and the hazard reports 

themselves could be significantly lengthy5.  Software safety management personnel 

were forced to manually collate and track this information, which became an 

expensive, but necessary, requirement for proactive software safety management 

across these large projects.   

On all three programs, many hazard controls were not identified as software-

related even though the controlling mechanism included software, and the 

corresponding software requirements for implementing the control were not marked 

“safety-related” as required.  The inability to easily identify software causes and 

controls and the non-uniformity of the syntactic content in the hazard reports also 

became apparent when applying Steps 4 of the PRA.  As we mentioned, the PRA 

method is iterative, and Goal 2 in the Constellation study was created in response to 

this observation.  

 

4 The specific process risks for the DoD and Constellation case studies are described in Basili et al. [2008] 

and Layman et al. [2011] respectively. 

5 The Constellation hazard reports, for example, had a median length of 36.5 pages (min: 8, max: 152, 

mean: 43.2). 



The safety analysis processes did not adequately distinguish between software 

and non-software safety concerns.  This forced software safety management to 

manually collate and track this information, which became an expensive, but 

necessary, requirement for proactive software safety management across these large 

projects.  Tracking software safety concerns would be easily enabled if safety 

requirements, hazards, and other safety analysis artifacts contained meta-data (e.g. 

a checkbox) indicating whether or not those items were software related. 

The differences between software and software related hazards were not handled 

adequately. In the hardware realm, if a hardware control was specified, then there 

would be a control to ensure that the original hardware control did not introduce a 

new hazard. This was evident in the hazard reports of the NASA satellite. But for 

software controls to hardware causes, no such control was included to ensure that the 

added software did not introduce new risk. 

 

2. Inadequate traceability exists between safety requirements, hazards, causes 

and controls.  In all programs, bi-directional traceability is required between safety 

requirements, associated hazards, causes, controls and verifications to ensure that 

safety requirements have been implemented.  In all programs, bi-directional 

traceability was not present in the artifacts we examined.  Retroactively inserting 

this traceability as the project nears completion (as is the historical practice) is 

expensive. In the Constellation and DoD programs, the hazard reports contained 

sections for safety requirement references, though these sections were not filled in or 

were marked as “To Be Determined” (TBD).  The NASA satellite program contained 

some references to safety requirements, but the hazards were not completely filled in 

or were marked as “TBD”.     

On Constellation, we observed a number of hazard reports where the internal 

references to other hazard reports’ causes and controls (i.e. “transfers”) were missing 

or incorrect.  Even when the references were correct and up-to-date, significant 

manual effort was required to build the dependencies between causes and controls 

across hazard reports.  Across the three Constellation systems, 23-31% of causes and 

11-22% of controls were transferred.  While necessary and appropriate in documenting 

hazards, transferred causes and controls represent added risk because they inhibit 

traceability and require more effort to understand and maintain.  On the NASA 

satellite program, an external document was used to keep track of software causes 

and controls across hazard reports, somewhat lessening the traceability burden.  

 

3. Inconsistent scope and unstructured details when describing hazards, causes 

and controls.  In both programs, safety engineers wrote their hazards, causes and 

controls in unique ways.  This made consistent evaluation on the part of safety 

management difficult.  For example, on Constellation, the content of the hazard 

reports differed substantially between the three spaceflight systems and among 

hazard report authors within the same program.  All three of the spaceflight systems 

approached software hazard analysis differently – some hazard reports described all 

software issues under one large cause and control, while others spread software issues 

throughout multiple causes.   

For example, a cause reading “Generic avionics failure or software flaw causes 

improper operation of control thruster” certainly involves software, but it is not 

scoped to a particular software component as required by NASA procedure.  

Furthermore, inconsistent structure and vocabulary precluded an automated 

syntactic analysis of the safety artifacts.  This was not simply a matter of non-

conformance to the safety analysis processes, but was the result of different 

interpretations of processes that were not concretely defined.  Many hazard reports 

placed all software causes and most software controls under a single cause labeled 



“Software-based error.”  In many cases, this cause had a single control with multiple 

pages of software design and operational information.  This large control then had a 

single verification.  This single control, while highly detailed, presents risk in that 

software design and behaviors will not be individually verified.   A constant challenge 

faced by safety engineers is appropriately separating complex hardware and software 

functionalities into multiple causes and controls.  Complex causes and controls 

introduce risk that some individual risks may not be well understood.  However, 

creating controls also entails significant additional verification effort that may yield 

little return if the cause/control was largely covered elsewhere 

These themes may be indicative of large engineering projects being developed by 

many organizations. Our observations indicate that simply defining a development 

process is not sufficient to identify safety (or any other kind of) emergent risk. 

Management, measurement, and feedback of the process actually being used is as 

important as defining a proper process in the first place. 

4.1 Lessons Learned for Implementing Software Safety Analysis Processes on Future 
Programs 

All of these programs were attempting to integrate software safety with traditional 

safety processes that originated in hardware and system reliability.  For all 

programs, elevating software safety to a level of importance equivalent to hardware 

and system safety was challenging.  Defining how software should be incorporated 

into traditionally hardware-oriented analyses (such as hazard analysis) is still very 

much a work in progress.  In these traditional hardware-oriented environments, 

software is often viewed as just another black box hardware component.  However, 

many high-profile system safety disasters (e.g. Ariane 5 [Nuseibeh 1997], THERAC-

25 [Leveson and Turner 1993]) can be attributed to defects in the software and 

software processes that propagated throughout the system.  The analysis, detection, 

and mitigation of software risks are not isolated to the software, but involve the 

entire system engineering process.   

Software risk analysis is not the same as hardware risk analysis.  Software failure 

rates are difficult to predict, and mitigation strategies for hardware failures (e.g. 

redundancy) often do not apply to software.  Furthermore, software controls are 

difficult to specify because software properties and constraints are not well 

understood early on.  The Ariane 5 disaster [Nusebeih 1997] is an example where a 

runtime control (e.g. testing for overflow) was intentionally disabled to meet 

performance requirements.  Software safety risk management should not be isolated, 

however.  The interaction of hardware and software is a source of risk, and software 

failures will almost always manifest in some loss of system function.  Software safety 

risk management must be integrated in the overarching system safety process in 

such a way to account for the unique ways that software risk must be managed, 

while recognizing that software safety risk is of equal importance in the overarching 

system safety process.   

From our results of applying the PRA method on the three programs, we have 

identified the following lessons learned for future software safety-critical programs. 

 

1. Provide explicit guidance for applying safety analyses to software.  

Assuring software safety is not as simple as saying “apply the hazard analysis 

process to software”.  As we observed in the Constellation case study in particular, a 

lack of consistent understanding of how to apply hazard analysis to software led to 

both over specified and underspecified software cause descriptions.  The CSERP 

review was not interested in reading about state-transitions in software that would 

undoubtedly change, nor was a description of “the software fails” good enough.  The 

safety engineers often spent several iterations simply getting the description of the 



cause to be acceptable before an analysis of the actual design features (i.e. the 

controls) could even begin.  Providing guidance to the safety engineers on how to 

specify software causes saves time and effort on the part of the engineers because it 

reduces the number of iterations required to get the syntax correct and the semantics 

meaningful. For the Constellation program, we developed a two-page guideline for 

the various development teams to use in filling out hazard reports. Although current 

NASA guidelines give the contents expected in hazard reports, they do not give a 

clear indication of the level of detail or the format of this information.  Our guideline, 

when followed, provides consistency across development teams, which allows CSERP 

to more readily monitor process risks across multiple developments.   

 
2. Plan for automated analysis and traceability and promote usage of the 

HTS capabilities.  In our studies, we observed inadequate planning in the use of 

the hazard tracking systems, which impaired the ability to track and measure 

software safety risks.  Ostensibly, the hazard tracking systems were designed: 1) to 

capture the hazards in a consistent format; 2) to house the syntactic data of the 

hazards to enable rudimentary searching, filtering and analysis.  The value of the 

HTS as a management tracking system is further increased by providing automatic 

support for traceability between hazards and hazard attributes.  In the NASA 

satellite program, no hazard tracking system was used.  In the Constellation and 

DoD programs, it was clear that goals for searching, filtering and analyzing hazard 

reports to support risk management were not considered.  For example, there was no 

way to identify software-related hazards among the set of system hazards, despite 

the fact that software safety management was handled by special groups in each 

program.  Several hundred person-hours were spent by us to analyze the 

Constellation hazard causes and controls to identify merely if software was involved.  

However, as we were able to demonstrate in a prototype HTS, adding a checkbox 

next to each cause or control denoting “this is software-related” enabled an 

automated search for software causes and controls that took mere seconds instead of 

hundreds of hours.  And even though there was such a box in the DoD system for 

hazards in general, software-related hazards were not identified properly even when 

it was clear that software was the cause or control of the hazard.  

In Constellation and DoD, the traceability features of the HTS were not used by 

the safety engineers, who preferred to author the hazard reports in a word processor 

and then copy and paste in the HTS.  The HTS could provide a number of useful 

features regarding traceability, such as verifying that references and links are still 

valid, automatically updating traceability links, and detecting dependencies.  

Leveraging these capabilities would avoid process risk and unnecessary effort. 

3. Require software safety management and measurement in the acquisition 

process.  The vendor acquisition process must promote the importance and iterative 

measurement of software safety.  On programs as large as Constellation and the DoD 

system, the development effort can include dozens of vendors over several years.  The 

sources of information that can be used to measure software safety are limited to the 

process artifacts that are provided by these vendors.  In the Constellation program, 

for example, the hazard reports were only required to be available for milestone 

reviews.  Such milestones could occur months or even years apart, and were not 

necessarily available on demand per the contract.  As such, NASA’s oversight and 

direct involvement in the software safety assurance process was somewhat limited.  

As another example, if one wishes to track defects over time, then visibility must be 

provided by the vendor into their defect tracking database (or some proxy).  If this is 

not written into the contract, then there is a risk that such information will be 

unattainable and the associated risks not measurable. 



5. CONCLUSION 

We have seen that the PRA method can uncover potential process risks and provides 

a means for evaluating emergent properties early in the development cycle. We have 

learned several lessons and observed some limitations in applying the PRA method 

over the course of these three studies.   

5.1 Lessons Learned about PRA 

The PRA method is both an evaluative method of a process, and a method to improve 

the process while it is being applied. PRA is most effective as a quality assurance 

activity where the methodology is applied by people familiar with but outside of the 

process.  The first assumption of applying the PRA method is that there is a process, 

whether it is implicit or explicit, that can be analyzed.  Ad-hoc methods of achieving a 

desired product property are not candidates for the PRA method of detecting process 

risk.    

If the process you wish to study is implicit, making it explicit can reveal undefined 

“grey” areas, differences in interpretation, etc.  In both our Constellation and DoD 

studies, we received valuable insight from software safety personnel involved in 

program management, but were not performing the safety analysis itself except in a 

review capacity.  From these individuals, we obtained insight into the goals of the 

safety process and insights into applying those processes in their respective contexts 

that were invaluable in interpreting the risks we observed.  Expert domain 

knowledge is necessary to interpret the semantic meaning of technical artifacts, but 

the risks we uncovered in the processes did not require significant technical expertise 

but a thorough understanding of the process requirements and goals.  However, 

interaction with the experts is critical to validate goals, to verify findings, and to 

create willingness to adopt proposed responses to risks. 

The PRA methodology is iterative.  For a given application, readiness assessment 

questions may not pass, thus requiring you to start over in identifying insight areas.  

The metrics you interpret may raise further questions (e.g. after counting the 

number of software defects, what is really needed is how severe they are), causing 

you to reformulate goals and questions.  It is very likely that the process artifacts 

that you plan to examine (e.g. safety requirements) do not contain the information 

you desire or the quality of information is poor (both of which are indicators of 

process risk), and thus you will need to rethink potential insight areas while also 

looking at how to improve the process.   

Step 3, asking Readiness Assessment Questions, although a simple step, found 

significant risk in the projects we studied.  This step is crucial to challenging the 

assumptions of most risk models (as described in Sections 1-2).  We believe, from 

anecdotal evidence, that these assumptions do not hold true across a large number of 

software developments, and are the sources of significant development risk.  Step 3 

should always be completed using actual project data before proceeding to steps 4-6.  

Step 3 may cause you to reevaluate steps 1 and 2 regarding where you can look for 

data and what’s important. In the DoD study, we could have saved significant effort 

since the data required for steps 4-6 was simply not available. For Constellation, 

asking readiness assessment questions resulted in changing the method for obtaining 

the hazard reports we needed to evaluate. 

Models and interpretations help shape goals.  Goals, measures, models will vary 

according to when the measurement takes place as the process can have different 

expectations/outputs at different points in time.  For example, all the projects we 

studied were in the preliminary design phase when only requirements and high-level 

designs were available for safety analysis.  The responses to the identified process 

risks were to improve the process and provide process support, and the response to 

product risk is to change the design of the system.  At a later stage of development, 



say testing and verification, one could obtain more concrete metrics on the state of 

system safety with respect to actual system behavior.  At that point, the responses 

are more limited in that changing design and implementation will be extraordinarily 

expensive (especially in a large system).   

5.2 Summary 

The PRA method helps address and respond to software development process risk in 

achieving emergent system properties, such as reliability, safety and security.  Our 

six-step method does this by challenging the following assumptions in the application 

of development processes:   

• The process is an effective way of achieving the property and of mitigating 

the risk of not achieving the property; 

• The process is appropriate for the development context; 

• The process is followed correctly. 

 

The PRA method provides visibility into process risks throughout the 

development lifecycle by measuring process conformance through the analysis of 

syntactic and, possibly, semantic information contained in intermediate process 

artifacts.  It is important to note that the PRA method does not and cannot provide 

any assurance that the emergent property exists, e.g., that the system is safe. It only 

provides indicators that there is a risk that the product will not satisfy the emergent 

property, i.e. that the system will not be safe. It provides insights into why and how 

the exposed issues might be fixed while the system is still under development.   Thus 

this approach is meant to be used in conjunction with methods that test the final 

product for the emergent property. 

We have applied the PRA method to three case studies of software safety 

processes on the NASA Constellation program, a large, network-centric Department 

of Defense system of systems and a small NASA satellite program.  We uncovered 

several risks in the software safety processes of these programs.  The risks in these 

processes shared overlapping themes: difficulty in identifying and tracking software 

safety concerns; inadequate traceability from safety requirements to design controls; 

and inconsistent scope and detail in reporting safety concerns.  The feedback to the 

system engineers or the QA team was deemed valuable and work was underway to 

make the modifications presented. 

As part of ongoing and future work, we will apply our process across a larger 

number of case studies, environments and organizations to both show that the 

process does find safety risks, and to understand how prevalent these risks seem to 

be across the industry.  In addition, we are currently applying the PRA method to 

identify process risks in achieving other emergent system properties, such as 

reliability and security. 

APPENDIX A – THE HAZARD ANALYSIS PROCESS 

Because both of our case studies focus on the hazard analysis process, we describe 

some common hazard analysis concepts.  While the official documentation of the 

Hazard Analysis Process for the DoD and NASA programs differed, the following 

concepts are common to both. 

Hazard analysis is a top-down approach to system safety analysis. A hazard is 

any real or potential condition that can cause:  injury, illness, or death to personnel; 

damage to or loss of a system, equipment, or property; or damage to the environment.  

An example of a hazard might be “Avionics on-board computer hardware failure 

leads to loss of mission.”  A hazard is accompanied by a list of systems, elements and 

subsystems that cause or are affected by the hazard, a detailed description of the 



hazardous condition, and information regarding the likelihood of the hazardous 

condition occurring. 

Hazards analyses focuses on the identification of several important properties: 

• Causes – The root or symptomatic reason for the occurrence of the hazardous 

condition; 

• Controls – An attribute of the design or operational constraint of the 

hardware/or software that prevents the cause from occuring or reduces the 

residual risk to an acceptable level; 

• Verifications – A method for assuring that the hazard control has been 

implemented and is adequate through test, analysis, inspection, simulation 

or demonstration. 

 

Figure 1 illustrates the conceptual organization of a hazard.  Each hazard (e.g., 

engine failure) has one or more causes (e.g., failure with fuel line, software turns off 

engine).  Each cause has one or more controls that reduce the likelihood that a cause 

will occur or mitigates the impact should the cause be realized. Controls often 

represent new requirements for the system (e.g., backup computers to account for 

software failures, redundant hardware).  Each control has one or more verifications 

(e.g. test, inspection, simulation or demonstration) to ensure that the control is 

appropriately implemented.   

 
Figure 1. Hazard Structure 

 

It is important to note that, in the DoD and NASA case studies, software is never 

a hazard; hazards all represent physical events that may harm the mission.  

Component failure (e.g., degraded thruster performance) or external events (e.g., 

hitting space debris, impact of weather, cosmic ray impact) may impact a mission, 

but software itself is not a hazard.  However, software, as well as human error or 

component failure, can certainly cause a hazard (e.g., the software shutting a fuel 

valve at the incorrect time).   

In the both the DoD and Constellation programs case studies, all hazards and 

their associated causes, controls and verifications are stored in a database called the 

Hazard Tracking System (HTS).  Each such hazard is stored as a Hazard Report 

(HR) in the HTS.  These process artifacts are rich in safety information and provide 

insight into areas of technical risk.  They are also evidence of how the hazard 

analysis process is applied on the different projects. 

Appendix B – PRA TEMPLATES 

 
Step 1: Identify insight areas 



Inputs 

• The property you want to measure 

• The processes associated with achieving that 

property 

• The intermediate outputs of each step for each 

process 

Outputs 

• The set of process outputs or artifacts that 

should give us the most information about the 

effectiveness of the process for achieving the 

property, including: 

• The format of the output 

• Rationale as to how these outputs are of value 

for identifying the risk of non-conformance or 

evaluating the effectiveness of the process 

Activities or Questions to ask 

• What are the process outputs created during application of the process? 

• What kind of information does each output provide? 

• How does that information grow or change over time? 

• Can I use this information to gain insight into whether the process is being performed 

appropriately and if the process is achieving its goals? 

• Is it feasible to analyze the insight area given the current timing during the project? What is the cost 

of analysis?  

 
Step 2: Identify measurement opportunities 

Inputs 

• Process outputs/artifacts identified in step one 

Outputs 

• Potential metrics based on process 

outputs/artifacts 

Activities or Questions to ask 

• What can I measure that will provide insight into process conformance? 

• What can I measure to determine if the desired product property (e.g. safety, performance) is being 

achieved? 

• What can I measure to evaluate if the process is sufficient for achieving the desired property? 

• Can we identify potential bounds that provide insight for our goals? What is good or bad? 

 

Step 3: Develop readiness assessment questions 

Inputs 

• Proposed measurement opportunities and the 

associated risks they measure 

Outputs 

• Advice on how the intermediate outputs and 

metrics can be used to identify process risk 

• A high-level assessment of process 

conformance risk, i.e. are the processes 

producing meaningful outputs? 

Activities or Questions to ask 

• Examine the process artifacts and try to apply the proposed metrics.  Can I apply the metric? 

o Is the information accessible and available? 

o Is the information in good enough form that it can be measured? 

o Is the information complete? 

• If I can apply a metric, then it will be a candidate for future measurement. 

• If I cannot apply a metric, why not?  

o Why is the information inaccessible? 

o Why is the information in such a poor state? 

o Why is the information incomplete? 

 

Step 4: Define goals, questions and metrics 

Inputs 

• A set of proposed metrics that have passed the 

readiness assessment check 

Outputs 

• A GQM structure with specific goals, 

questions and metrics 

Activities or Questions to ask 

• Apply the GQM method to derive a goal template, the questions, and what measures are needed. 

o What is the object of study? 

o What is the specific focus of the measure? 



o What is the purpose of the measure? 

o Who is the person who needs to make a decision about the results of this measure? 

o What are the context variables that might influence the interpretation of the results? 

o Given the goals and questions, what are the metrics? 

 

Step 5: Develop interpretation models and define threshold values 

Inputs 

• A set of goals, questions and metrics to be 

collected 

Outputs 

• A set of models that provides indication that 

there may be a risk 

Activities or Questions to ask 

• Define a set of measures and interpretation models for those metrics, based upon what data is 

available or can be assumed, to provide indicators that there is a risk that the process is not being 

followed and the product is at risk of not satisfying the particular property. 

o What is the expected value of that metric and possible margin of error, i.e. what is the 

range of values that would be acceptable? 

o Do historical data exist for any of the metrics? 

o Are there proxies for the bounds on these metrics? 

o Can we gather any expert opinion on the bounds? 

 

Step 6: Propose responses to identified risks 

Inputs 

• Metrics and an interpretation model 

• Data from intermediate project artifacts 

Outputs 

• Advice on what the project should do if we are 

outside the acceptable bounds and there is a 

risk 

Activities or Questions to ask 

• Provide expert safety engineer advice on what to do under the circumstances 

 

 

 

APPENDIX C – DOD AND NASA SATELLITE PROJECT DESCRIPTIONS 

DoD Program 

The DoD system was a large, network-centric system of systems with a potentially 

large number of software safety risks that safety engineers needed to track and 

verify before the system was deployed [Basili et al. 2008].  In this system, software 

was critical in assuring the safety of DoD personnel6. The development process was 

expected to follow the traditional Defense Acquisition V-Model and the safety process 

[MIL-STD-882].  Because of the cost and complexity of developing this system, safety 

risk management was integrated throughout the lifecycle, since design and 

architecture changes late in development would be prohibitively expensive.  Our goal 

was to develop an approach that provided the software safety engineer with early 

warning signs of safety problems throughout development by tracking process 

conformance across the multitudes of subsystem development.    

We applied the PRA early in the DoD program’s lifecycle, when only 

requirements, preliminary designs, and the safety processes were available to help 

gauge software safety risk.  We applied all of the steps of the PRA before we had the 

opportunity to look at the data.  As a result of this application of PRA, we modified 

the PRA to be an iterative process where steps 1-3 were performed (sometimes 

repeatedly) prior to steps 4-6. 

As in the Constellation program, the DoD program development process included 

hazard analysis for system safety.  A program-wide hazard tracking system was also 

in place, which was used as the basis of data for the PRA. However, in asking the 

readiness assessment questions, we found that the HTS contained little data.  The 

HTS was viewed as a storage repository rather than an analysis tool by the engineers 

 

6 We are legally unable to provide a more informative description of the system. 



– something to be used as a library after the fact rather than a tool to support safety 

understanding.  Consequently, very little useful hazard information was available.   

Hazard data was unavailable, difficult to extract because of a multitude of formats, 

and no automated syntactic analysis of the data was available. There was insufficient 

information to identify a sample set software hazards or requirements for more 

detailed semantic analysis as the HTS and requirements management systems did 

not distinguish between software and non-software hazards and requirements.  The 

entire collection of hazards and requirements was simply growing too large (already 

several hundred hazards) for us to perform our analysis given our available 

resources.  

 

NASA satellite project 

The NASA satellite is a joint project that partners with other international space 

agencies.  Because satellites are unmanned, the safety risks are considerably fewer 

in number than on a manned mission such as Constellation.  In addition, the launch 

of an unmanned earth satellite is a relatively mature technology that is well 

understood.  Most of the safety risks occur during the pre-launch and launch phases, 

when explosions, structural collapses or the release of toxic fuels can potentially 

endanger the lives of workers on the ground.  In this satellite, most of the software 

safety risks concerned the flight computer’s involvement in controlling propulsion 

and in activating onboard instruments.   

We applied the PRA method to the hazard analysis process during Phase II of 

development where the system design is reviewed and approved so that fabrication 

can proceed.  These hazards differed from Constellation in that they were more 

mature and provided more clear descriptions of hazard controls.  The satellite had 23 

hazard reports, 5 of which were software-related.  Each of the five software-related 

hazards had one software cause.  We identified 12 non-software causes that 

contained software controls.  In the five software-related hazard reports, 17% of the 

causes were software causes, but 57% of all causes were software-related (having a 

software control). 
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