THE SOFTWARE ENGINEERING LABORATORY: EXPERIMENTAL DESIGN AND PROCEDURES

Progress Report 1977%

Victor R. Basili
Marvin V. Zelkowitz
Department of Computer Science
University of Maryland
College Park, Md. 20742

I. INTRODUCTION

A great deal of time and money has been and will continue to be spent in.develeping
softwere. Much effort has gone into the generation of various software development
methodologies that are meant to improve both the process and the product ([MYER, 75],
[BARKE, 74], [WOLV, 72]). Unfortunately, it has not always been clear what the
underlying principles involved in the software development process are and what
effect the methodologies have; it is not always clear what constitutes a better
product. Thus, progress in finding techniques that preduce better, cheaper software
depends on developing new deeper understandings of good software and the software
development process through studying the underlying principles involved in softf_
ware and the development ﬁrocess. At the same time, we musf continue to prodece.
software. |

To gain a better knowledge of what is good in the current methodologies and
what is still needed, and to help understand the underlying principles of the soft-
ware development process, we must analyze current techniques, understandrwhat we
~are doing right, understand what we are doing wrong, and understand what we can
change. | | | -

There are several ways”of doing this. One way is to analyze the development

process and the product at various stages of development. Unfortunately, such

* . .
Research supported in part by grant NSG-5123 from the Natiomal Aeronautics and
Space Administration to the University of Maryland.

-2=

analysis is a tedicus process. But it must be performed if we are to gain any real
insight into the problems of software development and make improvements in the
process. We need to study carefully the effect of various changes in the develop-
ment process or the product to determine whether or mot a particular methodology has
any real effect, and more importantly, what kind of effect ([THAY, 76], [WALS, 77]).

This requires measures of all kinds, quantifiable and nonquantifiable.
Nonquantifiable measures, although subjective, reveal a great deal of information
about the product. We can "see" good design and code that meets the problem
requirements in a eclear, understandable, effective way and is easy to modify and
maintain in unforeseen circumstances. This kind of understanding is.clearly needed,
and clearly fruitfui; it is accomplished by reading and undefstanding the design
and code. Unfortunately, these judgements are not easy to quantify. They require
a greaﬁ deal of time to analyzé énd measure each product, or class of products..

A secondary aﬁproach is.to develop a set of measures thaf'attempt to |
quantify thése qﬁalitative charaétériétics'of good éoftware design and develoﬁment.
Although there is currently no mechanical way of evaluating design, the develop-
ment of éuaﬁtitative measures that éorrelate Well.with sﬁbjective jﬁdgements of
quality can.aid in the uﬁderstanding and evaluation of the product and process.

For example, the "goodness" of a product is related to the time it takes to modify
it and the aspects of iﬁs organizational structure that permit ease of modification
and.eaée of finding and correcting errors where ease is measured in terms of thé
time required, number of places code needs to be changed, etc. The "goodness" of
the development methodology is related to the "goodﬁess" of the product it produces,
e.g., the number and difficulty of finding errors in the product it produces.

| It is Important to understand what charaéferizes classés of problems and
products,-what kiﬁds of problems.are encountered and erroré made in the developﬁent
of a particular class of products, whether or not a particular methodology helps

in exposing or minimizing the niumber or effect of a class of errors, what the

-3~

relationship is between methodology and management control, estimating, ete. A
bettef understanding of the facto-s that affect the development of software and
their interrelationships is required in order to gain better insights into the
underlying principles. The Software Engineering Laboratory has been established,
in August 1976, at NASA Goddard Space Flight Center in cooperation with the
University of Maryland to promote such understanding. The goals of the laboratory
are to analyze the software development procesé and the software produced in order
to understand the development process, the software product itself, the effect of
various "improvements' on the process with respect to the methodology, and to
develop quantitative measures that correlate well with intuitive notions of good
software.

The next section gives an overview of the research objectives and experiments
being performed at thé Laboratory. Section III contains our current list of
factors that affect the software development process or product and are to be
studied or neutralized, Section IV discusses one of the types of experiments
being rﬁn and the last section discusses the data collection and management

activities.

IT. OVERVIEW OF THE LABORATORY ACTIVITIES

It is clear that many kinds of.data can be.gathered and analyzed to develop
quantitative information about the software process and the product t6 which it
leads. The laboratofy has limited funding and persommel and for this reason has
”limited.its scope to studying three very specific areas reiated to reliability,
management,.and complexity.. it.is expected tha£ the.scope will eventuall& expand
as we learn more about the collecfién of valid data and.what can be done with it.
In this section, we discﬁss ﬁhe reégarch éétiviiiés, the claséés of exﬁeiimenﬁs to
| be run; and a:b;ief.bﬁervieﬁ éf the déta ééfivities:. | | R |
Because error—ffee software is as fef éﬁ.ﬁﬁattainéble goél, the reliabilify

study will provide insight into the nature and causes of software errors. We would

-

like to classify errors, expose techniques that reduce the total number or classes

of errors, and detect the effect or lifetime of these errors ([SHOO, 75], [THAY, 76],
[ENDR, 75], [GANN, 75], [AMOR, 73]). We expect to detect the point at which errors
enter the process and the relative costs of finding and fixing them.

Management of the software development process is as poorly understood as the
technology involved. We believe that a major effort should be expended on this
area. The management aspect of the Software Engineering Laboratory involves the
analysis of the management process, the classification of projects.from a manage-
ment point of view and the development of reasonable management measures for
'estimating time, cost, and productivity ([BAUM, 63], ITAUS, 76]). We will study
the effect of wvarious factors, such as time, money, size, computer access,
.techniques, tools, organization, standards, milestones, etc. We would like to
understand at what point in the development process, estimates become reasonably
accurate, how one can measure good visibility and management control and under
what conditions certain methodologies help provide management control.

Lastly, there is a relation between the development methodology and the:
product it produces. A good methodology should help produce a less complex product
than a "bad" one. We are trying to discover whether the complexity of a software
system can be measured by the structure of the iesulting programs.([SULL, 73],
fHELL, 721, [VANE, 70]). Do various techniques create.a more systematiclstructure,
‘one éhat is easier to.read and maintain, where data and fuﬁction ére localized with
-a minimal éﬁount of intefacti&n between modules? Tﬁé relationshié between various
compléxity measures of progfam structure Wiil bé exémined throughou£ the‘develop—
ment process and such measufes és érror rate, develobment fime,'fhe éccuracy and
:speed of modificatiﬁn ﬁili be corfélated-with ﬁhese ;omplexity ﬁeaéu?és,

":'Projécts are ﬁéing stﬁdigd'at tﬁree levels‘qf control and defgil: écfegning
éxperiments, semi—cqntroi expefimeﬁfs;.énd contrdl éx?eriﬁenﬁs. Thelséreeniﬁg

experiments involve the collection of data on the development of several ground

-5-

support systems used to control spacecraft operations. Their purpose is to
determine how software is being developed now, supply data for a data bank of
information to classify projects for future reference and public availability,
expose the differences between the theoretical application of a methodology and its
practical implementation, discover what parameters can be validly isolated, expose
the parameters that appear to be causing major problems, and discover the appro-
priate milestones and techniques that show success under certain conditions.

The semi-controlled experiments involve the collection of data on several
‘similar attitude determination systems using prespecified development methodologies.
Their purpose is to extend the screening experiments by permitting tighter control
and to permit the monitoring of different development methodologies, comparing the
various factors affected by the different methodologies.

The controlled experiments involve the development of duplicate programs
- .analysis and data base systems with fairly rigid control of many of the factors
--affecting software development. The purpose here is to design usable experiments
for various development factor evaluation that can yield statistically valid
results.

The data activities of the Laboratory include data collection, data
processing, data evaluation, and courses on methodology. Data collection activities
include forms filled out at wvarious points in the development, covering various
aspects of the product} interviews.used to validate the forms and collect infor-
mation not easily filled out on a2 form; and automatic collection of data via the
existing system and program development library when available. The data processing
activity involves engéring-the data into a computerized data base and screening for
.accuracy. The data evaluation activity involves the analysis of the data collected
with emphasis on management, reliability, and complexity. This analysis deals with
simple.raw statistics,-in the forms of counts, sums and ‘averages, derived statistics

in the form of correlations and multivariate analysis of the relationships between

—f—

various factors, and the development of measures based on theoretical models of
program behavior and complexity. The measures will be computed frqm combinations
of the faw statistics and derived statistics.

The simple raw statistics include project attributes such as type of

processing, instruction size, code size, methodologies and techniques used,

resources, total man hours, calendar time, types of computer access, automated alds
and tools, usable items from previous projects, milestones, etc. .Alsco included are
counts of total number of program changes, total errors due to various factors,
‘such as misinterpretation of the requirements or specification, total time spent in
each phase of development, errors found using vafious techniques, total computer
usage, etc.

Derived statistics are used to find relationships among various factors.

These would include the relationship between the number of errors and program size,
between errors plotted against time in development, between various estimates
(e.g., cost, time) which have been reevaluated at various points in the development,
and actuals at the end of the project, noting points at which the estimates become
realistic, and between errors distributed according to the amount of time they
remained in the system, etc.

At the other end of the spectrum, measures are being developed that are
associated with different models of program behavior and complexity which are being
tested against the statistics calculated above. For éxample, various measures
derived from models of complexity will be compared with development time, errors
and subclassification of errors, subjective views of the complexity of various
‘modules, etc., to determine ifuthese measures and models can be validated in a real

'énvi;onment.- Measure of complexity include the number and significance of control
~paths . and &ata bindings based on wvarious criteria for hierarchical decomposition of
'the'program into elgmentary sub-schemes using differgmt formulas to combiqe their

individual evaluations ([SULL, 73], [LING, 77]). .

I1I. FACTORS

There are a large number of factors that affect the software development
process and software product. Initially, we are interested In a list of potential
factors to establish the kind of data that needs to be collected. Next, we are
interested in the kinds of factors that we can reliably measure. From this
measurable set of factors, we would like to isolate those that appear to have a
major impact on the development process and product, i.e., those whose use or
nonuse show large variation in our measures. Finally, when we have a better under-—
standing of the factors affecting the software development process, we want to
quantify them in some way by perturbing them to study their effects or neutralizing
them to make sure they are not affecting factors that are under study.

Qur. procedure is to start with as complete a list of factors and categories
of factors as possible. We expect continually to build, iterate, and refine this
list through the activities of the laboratory. The development of reporting forms
and automated tools have helped define the list of factors that we can isolate.

The screening experiments will help further isolate those factors which we can
measure and those that appear to be contributing strongly to the various measures
associated with errors, complexity of program structure, management difficulties,
etc. The controlled experiments will be used to demonstrate the effect of the
various factors that have been shown worth isolated study.

A list of factors is given below, catégorized by -their association to the
problem, the people, the process, the product, the resources, and_thec tools. Some
factors may fit in more than one categor& but are listed only once.

A. People Factors: These include all the individuals involved in the

- software development process including managers, analysts, designers,
programmers, librarians, etc. People related factors that can affect
~the development process include: - number.of people, level of expertise

of the individual-members, organization of the group, previous experience

-8-

.with the problem, previous experience with the methodology, previous
experience with working with other members of the group, ability to
communicate, morale of the individuals, and capability of each
individual.

B. Problem Factors: The problem is the application or task for

which a software system is being developed. Problem related factors
include: type of problem (mathematical, database manipulation, etc.),
relative newness to state of the art requirements, magnitude of the
problem, susceptibility to change, new start or modification of an
existing system, final product required; e.g., object code, source,
documentation, etc., state of the problem definition; e.g., rough
~requirements vs. formal specification, importance of the problem, and
constraints placed on the ‘sclution.

C. Process Factors: The process consists of the particular method-

~ologies, techniques, and standards used in each area of the software
development. Process factors include: programming languages, process
design languages ([VANL, 76]), specification languages, use of
librarian ([BAKE, 75]), walk-throughs ({BAKE, 75]), test plan, code
reading, top down design, top down development (stubs), iterative
enhancement ([BASI, 76]), chief programmer team ([BAKE, 751),
‘structured flowcharts, hierarchical input/output charts ([STAY, 76]),
data flow diagrams, reporting mechanisms, structured programming
([MILL, 72},,[DAHL, 72]), techniques ([HAMI, 76]), and milestones.

D. Product Factors: = The product of a software development effort is

.. the software system itself. Product factors include: ' deliverables,
" gize in lines of code, wordsg of memory, etc., efficiency tests, real-
- time requirements, correctness, portability, structure of control,: -

- in-line documentation, Structure of data, nﬁmber:of.modules, size of

-

modules, connectivity of modules, target machine architecture, and

overlay sizes.

E. Resource Factors: The resources are the nonhuman elements

allocated and expanded to accomplish the software development. Resource
factors include: target machine system, development machine system,
development software, deadlines, budget, and response and turnaround

times.

F. Tool Factors: The tools, although also a resource factor, are listed

separately due to the important impact they have on developmeht. Tools
are the various supportive automated aids used during the various phases
of the development process. Tool factors include ([REIF, 75], [BOEH, 751,
~[BROW, 731): requirements analyzers (e.g., PSL/PSA [TEIC, 77], system
'design analyzers, source code énalyzers (e.g., FACES [RAMA, 74]), data-
_base systems (e.g., DOMONIC [DOMO, 75]), PDL processors; automatic
-fIOWCharters, automated development libraries, implémentation languages,
:analysis facilitieé, testing tools ([RAMA, 75], [MILL, 75]), and main-

tenance tools.

IV. THE CONTROLLED EXPERIMENT

This section deals predominantly with the purpose, design and problems
involved in organizing a controlled experiment. The purpose of the controlled
experiment is to isolate the effect of specific factors, in our case mostly software
.development techniques, on the development process. The idea is to design as air-
tight as possible a valid, usable experimental paradigm for methodology evaluationm.
Cleariy, regardless of the statistical significance of the results of one experi-—
ment, one needs to run- several such experiments to accumilate substantial confidence
‘in the interpolations made from tﬁose results.

The current design involves the use of two programming teams, both assigned

the same project tasks. Both groups, the experimental (1) and control {(2) will be

=10~

treated in identical fashion as much as possible, with the sole systematic exception
being the experimental treatment. The experimental group will be assigned a task A
which will be used as an indicator of their "normal" behavior. Tﬁey will then be
trained in a specific methodology. The methodology will be reinforced in a session
analyzing the development task A but in the new methodology. They will then ber
given a second task.B in which to practice the methodology. They will then be
assigned task C with the specification that they use the newly learned and
practiced techniques., _In parallel, a control group, group 2, will also be given
task A, followed by session analyzing the development of A using the methodology
performed on A, followed by task B, followed by task C. The difference is that
group 2 has ne training session.

This design gives us several points of comparison. We can discover any
differences in the capability of persomnel by comparing data from project A for
both groups. The two groups can then be more honestly compared on project C by
statistically controlling_for any differencgs observed in project A. The design
was developed to minimize sevefal problems which often jeopardize the validity of
experimental designs ([CAMP, 66]).

The experimental group and control group will each consist of three
programmers, working approximately half time on each of the tasks assigned. This is
the normal operating environment at Goddard; most programmers work on more than one
task at a time. Task A is about a three or four man month effort, with a deadline of
‘about two calendar months. It is necessary to have a minimum of three man months to
make the project amenable to a three man effort. At the same time, since the project
~is to be duplicated and the design is still experimental, it is difficult to argue
fof too large a'projeét bééause of cost.

g After task A has beeﬁ_ccmpleted, the experimental_gréup will'undergO"
' training in a particular set of structufed design énd programming techniqqes. The

‘training will consist predominantly of a'one_ﬁgek'course'whiCh R

-11-

will cover the topies shown in the following outline:

Day 1: Introduction, functional model of structured programming,
process design language, reading structured code, laboratory
exercises in the given techniques.

Day 2: Management and estimating problems, proving correctiess of
‘structured design, writing structured programs, laboratory
exercises.

‘Day 3: Documentation, stepwise refinement, stepwise reorganization,
laboratory exercises.

‘Day &4: Organizing for structured programming, modularization, top
down development, stubs, program development libraries, walk
throughs, laboratory exercises.

Day 5: Project control, iterative enhancement, case studylanalysis,

laboratory exercises. |

This course is offered on a continuing basis and the experimental group will
be members of a larger class of approximately 25 people. This approach was chosen
to help minimize any special group interaction effect on the experimental group.

In order to help insure that the group understands the new methodology,
there will be a one or two day special training session with the group in which the
design of the code analyzer from task A will be reanalyzed within the framework of
- the' newly learned methodology. To compensate for this special group activity and

‘design analysis instruction the control group will be exposed to a similar |
~ experience. -Even though they will not be given a course, they will have a similar
one or two day session in which they will review their design of the code analyzer
- with respect to their particular design methodology. -

' Ciearly,zit takes time and practice to achieve a reasonable amount of skill

in the use of a new set of techniqﬁes. It is difficult for us to estimate how long

it will take for the programmers in the experimental group to acquire a sufficient

-12-

amount of skill to show an improvement, if there is going to be one, over the
previously acquired technique skills, before we can attempt to test the use of this
new skill. To compensate at least partly for this uncertainty, task B will be
assigned. Its main purpose is to give the experimental group experience with the
newly learned methodology. Task B consists of a one to two man month effort. Both
groups will perform task B. Task C will be used to perform the comparison between
the two groups. It also consists of one or:two three. man month systems, most likely
ground support systems or subsystems.

A major advantage of this design is that it permits us to analyze the
differences between the two groups with regard to task A, working in their own
self-defined environment. Measures on task C can then be statistically adjusted
by performance on task A.

During the entire duration of the control experiments, regular meetings will
be heid with each of the groups to answer any of their questions on how the
reporting forms should be filled out and to gather extra information that is either
not clearly specified on the form or was not obtainable from the forms at all.

These interviews will also be used to help validate the information that is on the
filled out forms. To help eliminate any biasing here, all interview questioms will
be written down and the same questions will be asked of both groups.

There are several problems that arise in trying to implement the design in
a.'real world" enviromment. A couple of these will be discussed. One problem that
arises in the development of real large scale projects is that the specifications
'-_ére not always well defined. 1In this case, a project monitor, who is not a member

. of the group, will be used to answer questions about. the specifications and make.
decisions about what is really meant.. There will be two different project monitors,
one for each group. This is to help guarantee that any information learned by the
“monitor will not be passed_oﬁ unconsciously to the:other group. When a quésticn

~arises about interpretation, raised by one of the .groups, the contract monitor will

~13-

consult with the other contract monitor to see if it has been resolved; if not, he
will resolve it. If it has been resolved, he will be told how it was resolved and
then give a resolution to his group. Thus, if the methodology used by one group
helps. them understand where the specifications are unclear earlier in the develop~-
ment the other group will not benefit from this information. The only problem
here is that the two groups may develop slightly different systems. In this case,
we will go to outside arbitrators and to the project monitors to determine that
both systems meet user requirements satisfactorily.

There is also the problem of keeping the experiment secret. That is, we
do not want either group to know that the other is doing the exact same task and
that they are being compared on certain measures of management control, religbility
and the complexity of the final project. For this reason, we selected programmers
from isolated, but hopefully similar groups. One group consists of programmers
employed by a contractor. The other group is internal to NASA. They have both
been told that they are being carefully monitored because we are interested in the
effect of the forms and whether they can be filled out accurately. They know
another group is also doing a "similar" set of tasks and our interest is in whether
the forms get filled out in the same way.

From what has been said, it is clear that it is difficult to design a
controlled experiment in a real enviromment. There are too many factors that cannot
be measured accurately or completely contfolled, such as programmer ability.
Designs must be devised that minimize these problems. It is difficuit to Implement
e design since it is difficult to control all the factors in a real enviromment;
e.g., contracting software so that it be performed in a certain way, guaranteeing
that the same people will be available throughout the experiment. |

However, the authors believe that 1t is 1mportant to perform such studies,
creatlng the most controlled env1ronment p0551ble, if we are ever to galn any real

- insights into the effects of various software methodologles on the development

~14-

process and the resulting product. We feel the design proposed in this paper is

a reasonable first attempt at approximating an effective experimental design in the
given environment. It is clear that much will be learned about the development of
program development experiments and it is hoped that a great deal will be learned
about the development process. We hope to continue to reﬁort onn the progress,
problems, errors and successes of running controlled experiments in this area and

hope that we can gain from the efforts of others as well.

V. OPERATTONAL ASPECTS OF THE LABORATORY

After being in operation for a year, we are now starting to process the data
necessary to perform these evaluations from about a dozen NASA projects. From the
experience gained by collecting data from these projecté, our data gathering process
has évolved into a moré effective operatiomn. | |

As NASA software is develoﬁed, auxilliary data for fhe laboratory are
produced which passes through four distinct phases: project development, déta
collection, data processing an& data evaluation. This section describes the
organization of the laboratory and how we have handled some of thesé operational
aspects.

NASA/GSFC launches approximately 25 ﬁnmanned satellites per year and most
of these include the development of ground support software requiring about six man
ﬁears of effort. These software pfojects.generélly take about a year and involve
. from 8 to 15 people, most of whom are working on several such projects simultaneoﬁsly.
'The projects are éupervised by.NASA/GSFC personnel with most of the éctual.deﬁeiop—
ment by employees of an outside contraétor. ” | |

NASA and contractor management were eager.to participate in this study, but
~ were concerned that the.impact én éurrent develbpﬁent scheaules.and:éosts Be |
ﬁiniﬁal; In ofder'té ﬁiniﬁiée this‘impact, We.decided early to.uée a set of.
féporﬁiﬁg forms as the basic data gaﬁhering mechahiém._ it was Hoped.that the forms

. could.be fiiled out easily, would not interfere with current techniques, and would

-15-~

not involve much overhead, yet would still give an accurate picture of development
progress.
The laboratory was organized in August 1976 via a research grant to the
University of Maryland. Currently, personnel include 5 employees of NASA/GSFC,
2 faculty and 9 students at the University, and approximately 75 programmers
employed by the contractor on the projects that we are monitoring. The two major
tasks of the laboratory are project management and data evaluation. The day-to-
operational aspects currently are broken down into four areas:
1.. NASA/GSFC personnel are the interface between the contractor and the
laboratory. They are responsible for project development and for con-
tractor compliance with laboratory requirements. They are supervising
spacecraft projects as part of their normal workload in their normal
environment. |
2. The main research resﬁonsibilities are being performed by the
authors of this report dlong with several graduate students. In additionm,
some of the NASA personnel are involved in this activity.
3. In order to evaluate the collected data, laboratory software for a
PDPli~based system is being developed. This is being performed by two
student programmers under faculty supervision.
4. The day-to-day data collectiom is currently being handled by one NASA
~employee and four university undergraduate students under the supervision
of a graduate student.
Given this structure, data flows through the laboratory as outlined by

Figure 1:.

-16-

1. Contractor sends
forms to NASA

2. TForms are duplicated => 3. One set microfilmed

4. Forms encoded and entered
in PDP1l data base

5. Research queries
d/ investigated

" 6. Laboratory software
_develo?ed
!

¥

7. Project statistics produced

FIGURE 1. LABORATORY DATA FLOW

1. The contractor, about once a week, sends all forms for all projects
that have been filled out to NASA/GSFC (Figure 1.1).
2. The forms are duplicated at NASA (1.2), and one set is sent to be
microfilmed for archiving (1.3).
‘3. The other set is sent to the University of Maryland where it is encoded
onto coding sheets and entered into a.PDPll data base (1L.4). -As wil1 be
explained later, the data is read four times before being'entered'into the
data base. Thus we believe that we have eiiminated virtually all clerical
errors in the process.

While the above are continuing operations, the following tasks are of
a research nature and occur periodically: |
4. The graduate students develop queries about aspects of the data to be

tested against our collected data (1.5). At the same time, special purpose

detail.

17—

laboratory software is developed for use in Fhe laboratory (1.6). This
includes enhancing the data base system, programs to validate the data
and special purpose routines, such as a plotting package.

5. The queries are run against our collected data and statistics about
project attributes are produced (1.7). The output is either a list of
factors fulfilling the query, a table of statistics, or a plot of one

factor versus another (generally some factor versus time). Some of the

factors that we are measuring include size, cost and time, Less

tangible factors include level of specification and development technique
used.

Later sections of this report will describe most of these steps in greater

Most of the fall of 1976 was devoted to developing the set of reporting

forms to capture the data on each project, with the first projects submitting

completed forms as of December, 1976. A set of seven forms have been developed.

These forms can be divided into two classes - those that describe attributes of

a project and are filled out relatively infrequently, and those that monitor

progress and are filled out frequently. The forms that describe attributes of a

project are the following:

1. Generzl Project Summary — This form is filled out at each project

milestone, and there are from five to ten milestones in the lifetime of

a project (every six to eight weeks). This form describes the overall

" pProject structure, and the techniques used in its development. Such

- factors as project size, complexity, estimated milestones, required

standards and documentation are given. How these change over time is

one of the areas that we are investigating,

2, Component Summary - This form is similar to the general project

summary except that it describes only one small section of a system

~18~

(e.g., function, subroutine, COMMON block, etc.). This form is filled
out when that particular component is first designed in the design phase
of the project and again when it is completed.

3. Programmer Analyst Survey - This form is used to collect general

background information on project personnel, and is filled out only once
by each programmer. It is used to compute a profile of project personnel
in order to be able to compare two projects more equitably.

The forms that monitor project progress are the following four:

- 4. Resource Summary - This form is filled out weekly by the project

manager and it lists the hours spent by each individual on the project.
Since this information is already collected for accounting purposes,
little additional effort was added. In addition, NASA/GSFC adds to this
form a count of the total computer time used by the project and the total
number of runs, as reported bﬁ the NASA computation center.

5. Component Status Report - This form is filled out weekly by each person

.on the project. It lists the number of hours spent on each component and
- the activity performed on that component (e.g., design code, test, etec.).
Besides some of the obvious statistics we expect to obtain (e.g., number
of hours spent in design vs. test vs. code, etc.}, we can also use this
form to verify the techniques used in project development. Unfortunately
terms like '"top down," “structured programming," "walk throughs,".and
. "code reading' have become general purpose buzzwords with different . ier-
. interpretations. One of the results that we expect to get from the
. component status report is to be able to ciassify the techniques that are -
© being used rather than the ones we are told are being used. We can obtaiﬁ
this information by notiﬁg when certain activities occur for each cbmponent.

‘6. ~Computer Program Run Analysis -~ This form is filled out for each

computer run. . It is mostly a checklist of activities performed (e.g.,

~19-

compile, execute, utility, ete.). In addition, the error message and
component terminating the run is listed. This will be correlated with

the following change report form.

7. Change Report Form - For each change in the source code for a

component (either to fix an error or to implement some change in speci-
fications or design) a change report form is submitted listing the change
and the reason for it. Since a form of this.type has been in use for

some time in this particular NASA environment, little additional work was
added to existing NASA projects. One limitation, however, is that changes
are not reported for any component until that component is placed into the
project library. Thus, while we are getting all of the errors found in
‘integration testing, we are not (except for a few of the monitored projects)

getting much from the module design and development phases.'

DATA COLLECTION

Broadly stated the purpose of the data collection phase is to transmit
the raw data on each monitored project to the laboratory for processing and
analysis. The primary requirement for each monitored project is to develop
spacecraft support programs; therefore, the primary goal of the NASA/GSFC
personnel is the management of project development on schedule. However,

“actual program development is by an outside contractor whose main goal is
to deliver such projects on time in order to meet contractual obligations.
‘Finally, the third group invelved in the laboratory is the University of

- Maryland which is primarily interested in the analysis and measurement of
- the development process.

This tﬁree group organization increases the impartiality of the
research group with tﬁe contractor group since it is independent of NASA

'agd not involved in rating contractor performance and evaluating .

. eontractual arrangements. However, it does add communication problems.

—20-

to report back any data that can be identified to specific individuals.
All programmer names are encoded in our data base, and all data reported

back to the contractor {and to NASA also) is of a summary nature.

DATA PROCESSING

In the data prbcessing phase, the data on the projects must be
transcribed oﬁto coding sheets and entered into a PDP1l data base. Such
isgsues as data validity and completeness are of primary importance in
this phase. |

The raw data is checked four times before being entered into the data
base. The forms are first enéoded onto coding sheets and then checked
for errors by a second pefsoﬁ. The coding sheets are then tyfed into the
computer and run through a special program which further checks for errors
(e.g., format errors or improper fiélds such as a wrong component name in
a certain project) and converts the data into a format suitable for inclu-
sion into the data base. The output of this program is again verified
against the coding sheets to further check for typing errors. By the time

‘that the data is in our data base, we are confident that what has been
" entered is an accurate translation from the original forms. Whether these
‘forms accurately describe the actual project, however, is another issue.

- Forms validity is perhaps the hardest problem that must be tackled.
Unfortunately, there are few general standards applying to all NASA/GSFC
projects, and one of the requirements on the laboratory is to measure
‘current techniques without impacting most projects. Thus, forms are filled
out with varying degrees of completeness, and we must be careful in applying
results across several projects. In one such case, there is about a factor
~.of three in number of forms submitted between one;projeét and others of a

similar size.

-21-

The impact on projects brings to mind an example of the kind of
problems we are faced with. One project manager has been reluctant to
participate since his project is late and he sees no apparent benefit from
participating in this research. While this group blames the forms for any
increased lateness, they Were already behind schedule before the forms were
Instituted. NASA/GSFC believes that this group has always been poorly
organized and the problems with the forms only points out this problem and
is not the cause of it. For well managed projects, the filling out of the
forms is no more complex than any other administrative &etail of a task.

This example shows one of the dangers in interpreting our collected
.data. Since forms may be the first to go when a project falls behind
schedule, or since the more organized programming mind will process forms
‘ﬁore accurately, the data may be biased towards projects that are on time
' This may lead to the unsubstantiated positidn that simply filling out of
nwéorﬁs helps projects remain on schedule. While we believe that this may
.be true, it will be difficult to claim such interpretations.

The impact of the forms themselves is something which we would like to

- ...but cannot ignore. The contractor has asked for a 10% increase in costs

for filling out of this data. While we do not believe that such estimates
are realistic, NASA has agreed to it for now in.order'to develbp a valid
data base. | |

.Another problem with fhe forms was their generality. In order to have
é standard data base, a general purpose set of forms has been developed.
Unféftunately, not every quesfion is applicable in all situations. This
adds overhead tb.filling 6ut the forms since programmers do not know how
to énswer some of the questioﬁs. In our ﬁéxt:iteration of the forms, we
iﬁtend.to abstract the typical answers being given at.presént and make the

forms more of a checklist.

—272-

Given the completed forms, the next step was to encode them into the
INGRES PDP1l data base ([HELD, 75]). Once in the data base, the first
task has been to preserve data validity. In addition, special programs
have been written to check for missing data. For example, since forms are
uniquely numbered, missing numbers are easily spotted and usually mean
missing forms. Also some forms are to be filled out weekly so it is easy

" to spot missing ones in that sequence.

DATA EVALUATION

The data evaluation phase consists of developing measures to evaluate
“the methodologies used on the projects. One technique recommended by the
contractor was to provide instant fgedback of the data on the forms. This
was to help keep.up the enthusiasm of the programmers for the entire
endeavor. Since we did not want to report back any information that could
be used for personnel evaluation, we designed some general.purpose reports
which give summary totals about each project. |

The next step was to start developing more complex validity checks on
.the computerized data base. This has been the major emphasis of the
laberatory for the last few months. Due to the large variation in pro-
grammer performance, we are trying as much as possible to make sure that
what we have is correct., Comparing similar data in different ways on
_different forms is one way we are checking for_consisteHCy. For example,
programmer times from the resource summary and from the_component status
‘report can be compared. Also,.error runs from the computer program fun
: analysls form can be compared to the number of change report forms submitted.
.'_Looklng at gross data on projects that have not been monltored is another
technique. Also, interviews With some qf_the contractor persgnnel has

been used to validate certain answers.

-~23-

INGRES queries are now being written to extract detailed information
from the encoded data. A plotting package has been implemented to plot
project characteristics. We are currently at the stage where some of

these queries are being tested on the data base.

VI. ~ SUMMARY

As this report describes, the Software Engineering Laboratory has been in
operation for a year and is clearly a very complex operation requiring constant
attention to detail and solving the many small and large practical problems as they
arise. More effort than we originally planned is going into day-to-day operation
and maintenance. Forms and data base validity have become the critical section
through which all laboratory activities now depend.

We have been developing a prototype laboratory which cén be used to perform
the needed experimentation in order to develop theories of program development.
Althoqgh developed within the NASA framework for software developﬁent, we do not
believe that the problems we encountered or our solutions to them are unique.

Given such care in maintaining the data, we believe that the data which is being
collected is valid, useful, and should lgad to important insights abqut program

development.

Y

ACKNOWLEDGMENTS

The efforts of this laboratory has involved the efforts of many people,
including Robert W. Reiter, David L. Weiss, Howard J. Larsen, Charles L. Wolf,
Frank McGarry, Richard des Jardins, Walter Truszkowski, Robert Nelson, and

Keiji Tasaki.

REFERENCES

[AMOR, 73] Amory, W., J. A. Clapp, A Software Errer Classification Methodology,
: MTR 2648, Vol. VII, The Mitre Corporation, June, 1973.

[BAKE, 75] Baker, F. T., Structured Programming in a Production Programming

‘ Environment. TInternational Conference on Reliable Software, Los
Angeles, April 1975, (Sigplan Notices 10, 6, Jume. 1, 1975, pp.
172-185).

[BASI, 75] Basili, V. R., A. J. Turner, Iterative enhancement: a practical
: technique for software development, IEEE Transactions on Software
Engineering, 1, No. 4, December 1975, pp. 390-396.

[BASI, 77] Basili, Victor R., Zelkowitz, Marvin J., et al., The Software
Engineering Laboratory, University of Maryland Computer Science
Techmical Report, TR-535, May, 1977, 104 pages.

[BAUM, 63] Baumgartnmer, J. S., Project Management, Richard D. Irwin, Inc.,
' 1963. _ .

fBOEH, 75] Boehm, B. W., R. K. McClean, D. B. Urfrig, Some Experience Aids to
the Design of Large Scale Reliable Software, IEEE Transactions on
Software Engineering, 1, No. 1, March 1975, pp. 125-133.

[BROW, 73] Brown, J. R., A. J. DeSalvia, D. E. Heine, J. G. Purdy, Automated
software assurance, Program Test Methods, Prentice Hall, 1973, pp.
181-203,

{CAMP, 66] Campbell, D. T., J. C. Stanley, Experimental and quasi-experimental
desipgns for research, Chicago, Rand McNally Publishing Co., 1966.

{DAHL, 72]) Dahl, O., E. Dijkstra, C. A. R. Hoare, Structured Programming, New
York, Academic Press, 1972.

[DOMO, 751 Domonic User Guide, Advanced Technology Group, Data Processing Center,
Texas A&M University, 1975.

[ENDR, 75] Endres, A. B., An Anély31s of Errors and Their Causes in System
: Programs, IEEE Transactions on Software Englneering, 1, No. 2,
June 1975, pp. 140-149.

[GANN,
[HAMT,

[HELD,
[HELL,
[LING,

[MILL,
[MILL,

[MYER,

[RAMA,
[RAMA,
[REIF,
[SHOO,

[STAY,
[SULL,

. [TAUS,

75]

76]

751

72]

77]

72]

75]

75}

74]

751

751

751

761

73]

76]

~25-

Gannon, J. D., J. J. Horning, Language Design for Programming
Reliability, IEEE Transactions on Software Engineering, 1, No. 2,
June 1975, pp. 179-191.

Hamilton, M., S. Zeldin, Higher Order Software - A Methodology for
Defining Software, IEEE Transactions on Software Engineering, 2,
No. 1, March 1976, pp. 9-32.

Held, G., M. Stonebraker, E. Wong, INGRES ~ A relational data base
system, National Computer Conference, 1975, pp. 409-416.

Hellerman, L., A Measure of Computational Work, IEEE Transactions on
Computers, 21, No. 5, 1972, pp. 439-446.

Linger, R. C., Mills, H. D., Structured Programming Theory and
Practice, Addlson Wesley, 1977 (to be published).

Mills, H. D., Mathematical Foundations for Structured Programming,
FSC 72-6012, IBM Corporation, Gaithersburg,. Maryland 20760,
February, 1972

Miller, E. F., Jr., Methodology for Comprehensive Software Testing,
Interim Report Rome Air Development Center, RADC-TR-75-161, June,

1975, AD# A013111.

Myers, G., Software Reliability Through Composite Design, New York,

~ Mason Charter, 1975.

Ramamoorthy, C. V., S. F. Ho, FORTRAN automatic code evaluation
system (FACES), part I. Memorandum No., ERL~-M-466, Electronics

- Research Laboratory, University of California, Berkeley, August, 1974.

Ramamoorthy, C. V., S. B. F. Ho, Testing Large Software with Automated
Software Evaluation Systems, IEEE Transactions on Software, 1, No. 1,
March 1975, pp. 46-58.

Reifer, D. J., "Automated Aids for Reliable Software," An Invited
Tutorial at the 1975 International Conference on Reliable Software,
21-23 April 1975.

Shooman, M. L., M. I. Bolsky, "Types, Distribution, and Test and
Correction Times for Programming Errors,” Proceedings 1975 Conference
on Reliable Software, April 21-23, 1975, pp. 347-362.

Stay, J. ¥., HIPO and integrated program design, IBM Systems Journal,
15, No. 2, 1976, pp. 143-154.

Sullivan, J. E., Measuring thé complexity of computer software,
Mitre Corporation, Report MIR-2648, Vol. V, June 1973.

Tausworthe, R. C., Standard Development of Computer Software, Part 1
Methods, Jet Propulsion Lab, Calif. Institute of Technology, Pasadena,
California, July, 1976.

[TEIC,

[THAY,

[VANE,

[VANL,

[WALS,

[WOLV,

77]

761

701

76]

771

721

—-26—

Teichroew, D., E. Hershy, PSL/PSA; A Computer-aided Technique for
Structured Documentation and Analysis of Information Processing Systems,
IEEE Transactions on Software Engineering, 3, No. 1, January 1977,

PP. 41-48,

Thayer, T., et al., Software reliability study, TRW Defense and Space
Systems Group, Nationmal Technical Information Services AD-A030-798,
August 1976.

Van Emden, M. H., The hierarchial decomposition of complexity,
Machine Intelligence, 5, 1970, pp. 361-380.

Van Leef, P., Top-down development using a program design language,

IBM Systems Journal, 15, No. 2, 1976, pp. 155-170.

Walston, C. E., C. P. Felix, A Method of programming measurement and
estimation, IBM Systems Jourmal, No. 1, 1977, pp. 54-73.

Wolverton, R. W., The Cost of'Developing Laige Scale'Software, TRW
Software Series TRW-85-73-01, March, 1972. o Co-

