3 A Heuristic For
Deriving Loop Functions

Douglas D. Dunlop and Victor R. Basili

Department of Computer Science
University of Maryland
College Park, MD 20742

. D. Dunlop is with Intermetrics, Inc., 4733 Bethesda Avenue, Suite
415, Bethesda, MD 20814,

This work was supported in part by the Air Force Office of Scien-
tifiec Research Contract AFOSR-F#9620-80-C-001 to the University of
Maryland.

ABSTRACT

The problem of analyzing an initialized loop and verifying that
the program computes some particular function of its inputs is
addressed. A heuristic technique for solving these problems is pro-
posed that appears to work well in many commonly occurring cases. The
use of the technique is illustrated with a number of applications. An
attribute of initialized loops is identified that corresponds to the
"effort” required to apply this method in a deterministic (i.e.
guaranteed to succeed) manner. It is explained that in any case, the
success of the proposed heuristie relies on the loop exhibiting a
"reasonable™ form of behavior.

KEYWORDS and PHRASES: program verification, initialized loop programs,
loop functions, constraints

CR CATEGORIES: 5.24

1. Introduction

In this report, we will consider programs of the following form:

<INITIALIZATION STATEMENTS>

while <LOOP PREDICATE> do
<L,0OOP BODY STATEMENTS>
od.

These programs tend to occur frequently in programming in order to
accomplish some specific task, e.g. sort a table, traverse a data
structure, calculate some arithmetic funetion, ete. More precisely,
the intended purpose of such a program is often to compute, in some
particular output variable{s), a specific function of the progran
inputs. In this paper, we address the problem of analyzing a program
of the above form in order to prove its correctness relative to this
intended function.

One common strategy taken to solve this problem is to heuristi-
cally synthesize a sufficiently strong induetive assertion (i.e. loop
invariant [Hoare 69]) for proving the correctness of the program. A
large number of techniques to aid in the discovery of these assertions
have appeared in the literature (see, for example, [Wegbreit 74, Katz
& Manna 76]). - It is our view, however, that these techniques seem to
be more "machine oriented" than "people oriented." That is, they seem
geared toward use-in an assertion generator for an automatic program
verification system. Furthermore, a sizable portion of the complexity
~of these techniques is due to their general-purpose nature. The

method proposed here is intended to be used by programmers in the pro-
cess of reading (i.e. understanding, documenting, verifying, etec.)
programs and is tailored to the commonly occurring verification prob-
lem discussed above. '

An alternative to the inductive assertion approach that is taken
in this paper 1is to invent an hypothesis concerning the function of
the WHILE loop, i.e., its general input/output behavior. Once this
has been done, the loop can be proven/disproven correct with respect
to the hypothesis using standard techniques [Mills 72, Mills 75, Basu
& Misra 75, Morris & Wegbreit 77, Wegbreit 77, Misra 78]. If the .
hypothesis is shown to be valid, the correctness/incorrectness of the
program in question follows immediately. It has been shown [Basu &
Misra 76, Misra 78, Misra 79, Basu 80) that this loop hypothesis can
be generated in a deterministic manner {(i.e. one that is guaranteed to
succeed) for two restricted classes of programs. The approach sug-
gested here is similar to this method in that the same type of loop
behavior seems to be exploited in order to obtain the hypothesis. Our
approach is not deterministic in general, but as a result, is intended
to be more widely applicable and easier to use than those previously
proposed in the literature. ' o

One view of the problem of discovering the genefal input/output
behavior of the WHILE loop under consideration might be to study it
and make a guess about what it does. One might go about doing this by

"executing” the loop by hand on several sample inputs and then guess-
ing some general expression for the input/output behavior of the loop
based on these results. Decisions that need to be made when using
such a technique include how many sample inputs to use, how should
these inputs be selected, and how should the general expression be
inferred. Another consideration is that hand execution can be a dif-
ficult and an error prone task. Indeed, it seems that the loops for
which hand execution can be carried out in a straightforward manner
are the ones that are least in need of verification or some other type
of formal analysis.

Our method is similar to this technique in that we attempt to
infer the general behavior of the loop from several sample loop
behaviors. In contrast, however, the sample behaviors are not
obtained from hand execution, rather they are obtained from the
specification for the lnitialized loop program. In many of the ocases
we have studied, the general behavior of the loop in question iz quite
easy to guess from these samples. This is not to say that the 1loop
computes a "simple" function of its inputs or that the loop neces-
sarily operates in a "simple" manner. Much more accurately, the ease
with which the general behavior can be inferred from the samples is
due to a "simple" connection between a change in the input value of an
initialized variable and the corresponding change caused in the result
produced by the loop. We will expand on this idea in what follows.

2. Constraint Functions and Loop Functions

The verification problem is represented as follows:

{X=X0 & X0 ¢ D(f)}
X = K(X);
while B(X) do
X := VH(X)
od
{Vv=r(xX0)}.

X represents the state of the program and may be viewed as a vector
containing values for each of the variables in the program. K and H
are state-to-state functions corresponding to the effects of the ini-
tialization and loep bhody respectively. B is a predicate over the
state. The program is to produce in the output variable(s) V, a func-.
tion f of the input state X0. D(f) stands for the domain of the func-
tion f, i.e. the set of states for which a value of f is defined.

If 3 is the set of all conceivable program states and T is the
set of values that the variables V may assume, { has the functionality
f :38~->T. In order to verify a program of this form, we choose to
find a function g : 8-> T that describes the input/output charac-
teristics of the WHILE loop over a suitably general input domain.
Specifically, this input domain must be large enough to contain all

‘the intermediate states generated by each loop iteration. If this is
-the case, the 1loop is said to be closed [Basu & Misra 75, Misra 78]
for the domain of g.

. .

We briefly consider two alternative approaches to synthesizing
this 1loop function g. The alternatives correspond to the "top down"
.and "bottom up" approaches to creating inductive assertions discussed
in [Katz & Manna 73, Ellozy 81]. In the "top down" alternative, the
hypothesis g answers the guestion "what would the general behavior of
the 1oop have to be in order for the program to be correct?" If such
an hypothesis can be found and verified, the correctness of the ini-
tialized loop program is established. If the program is incorrect, no
such valid hypothesis exists. In the "bottom up" alternative, the
hypothesis g answers the guestion "what is the general behavior of the
loop?" In this case, a valid hypothesis always exists. Once it has
been found and verified, the program is correct if and only if the
initialization followed by g is equivalent to the function f.

The two approaches attack the problem of synthesizing g from dif-
ferent directions. The M"top down" approach works from the function
specification, the "bottom up" approach works from the code. The
advantage of a "top down" approach is that it is usually easier to
apply in practice because the verifier has more information to work
with (i.e., specification and code vs. just code) when synthesizing
the hypothesis. The disadvantage of such an approach is that it may
not be as well-suited to disproving programs. This is because to
disprove a program, the verifier must employ an argument that shows
that there does not exist a valid hypothesis. The method described in
. this paper is based on the "top down" approach. We will return to a
discussion of this advantage and disadvantage later.

Assuming the above program is correct, several properties of g
can be deduced. First '

(1) X0 & D(f) -> f(X0)=g(K(X0)).
That is, for inputs satisfying the program precondition, the initiali-
Zation followed by the loop yields the desired result. Secondly,
since the loop computes g, the "iteration condition™ [Misra 78]

B(X1) -> g(X1)=g(H(X1))

of the standard technique for showing the loop computes g must hold
[Mills 75, Morris & Wegbreit 77, Misra 78]. This implies

B(K(X0)) ~> g(K(X0))=g(H(K(X0))).
Combining with (1) yields
(2) X0 € D{f) & B(EK(X0)) -> F(X0)=g(H(K(X0)})).

Predicates (1) and (2) can be rewritten using a new, universally quan-
tified variable as follows: = ' '

(17) X0 € D(f) & X=K(X0) -> g(X)=f(X0)
and
(2°) X0 6 D(f) & B(K(X0)) & X=H(K(X0)) -> g(X)=f(X0).

If the above program is correct, then the function g that the loop
computes must satisfy (17) and (27). We call (1°) and (2°) con-
straints, since they serve as constraints or requirements on the loop
function g. (1°) views the program as initialization followed by the
loop -- as a single entity. (2°) views the program as initialization
followed by the loop body followed by the loop -- again as a single
entity. In a sense, we are using the well known fact that if condi-
tion B(X) is true, then the programs

. X 1= H(X);

while B(X) do : while B(X) do
X 1= H(X) X := H(X)
od; ods

are equivalent for the input X. One could derive other constraints as
well {and we will, later on), by looking at the loop as two separate
iterations followed by the loop, etec.

Thus far, we have developed two constraints (1) and (27) that
the 1loop function g must satisfy. The constraints represent subsets
of g. We are interested in them because, if the first few iterations
of the loop are in some sense representative of all iterations, then
it might be possible to generalize the constraints to g in a rela-
tively straightforward manner. We believe that this is indeed the
case, and we have developed some promising heuristies for it. We
present these heuristies in the next section, but first let us look at
a specific example to make these ideas more concrete.

Example 1 - The following program performs z := vO¥Kk for v0>=0:
{v=v0 & v0>=0}

z 1= 03
while v

od
{z=v0¥K}.
For this program, the two constraints (1°) and (2°) are

Clt v=v0 & vO>=0 & z=0 -> g(z,v,k)=v0¥k
C2: v0>0 & v=v0-1 & z=k -> g(z,v,k)=v0*k.

Here, we have used the specific variables to represent the state. The
domain D(f) of the program iz given by the precondition. The predi-
cate X=K(X0) of constraint (17) is z=0. The function f computed by
the loop is v0¥k. Note that the function g is written as a function

bl

of all the variables used in the loop

Now let us try to generalize constraints C1 and C2 in order to
arrive at a possible loop function g. First, since v0 does not occur
as an argument of g, it may help to eliminate it. This is possible
because the antecedent of each constraint completely defines v0 for
that constraint. We therefore rewrite C1 and C2 as

=0 & z=0 -> g(z,v,k)=v¥k
=0 & zzk -> glz,v,k)={v+1)#k,

Next, note that argument z of g does not appear to help define g -- it
does not appear in the function expressions v¥*k and (v+1)*k, The
appearance of zzk in the antecedent of €2 indicates that we might be
able to introduce =z into the function expressions. First, rewrite
(v+1)*k as v¥k+k:

C2: v>=0 & zzk > g(z,v,k)=vEk+k.

Then, an occurrence of k can be replaced by z, yielding one of the two
possibilities:

=0 -> g(z,v,k)=v¥z+k and v>z0 ~> gl{z,v,k)=v¥k+z,

Both are generalizations of €2, but only the second is also a general-
ization of C1, 30 we take this latter function as the definition of
the function g. With it, we can prove the above program using the
standard techniques of [Mills 75, Misra T78].

This example shows how the constraints derived from a loop with
initialization can be generalized to the loop function g. At first
glance, the general problem of generalizing a set of constraints to
some desired function may seem too difficult. However, in the limited
context where the constraints are derived from an initialized loop and
the function te be derived is the loop function, it may be possible to
develop heuristics for generalizing a function g from a set of con-
straints. The methods of computation of many loops that ocecur in
practice have enough similarities to make such heuristies useful.

In the next section we introduce a four-step method for deriving
the funection g from the constraints. This method was actually just
used on the previous example, and we will illustrate its use on many
other examples in this paper.

3. The Technique

We describe the four steps using the multipliecation program of
Example 1: '

{V:VO & VO):O}

z 1= 03

while v £ 0 do
Z = Z + k3
v 1= v - 1
od

{z=vO¥*Kk}.

Step 1 : RECORD - This step consists of recording the constraints
using the templates (1°) and (2°). As a notational convenience, we
dispense with the state notation and use program variables (possibly
subscripted by 0 to denote their initial values) in these constraints.
The terms X0 6 D(f) and f(X0) come from the pre and postcondition for
the initialized loop respectively. The term X=K(X0) is based on the
input/output behavior of the initialization, and the terms B(X(X0))
and X=H(X(X0)) together describe the input/output behavior of the ini-
tialization followed by exactly one loop iteration. The constraints
for the program are as follows:

Cl: vO0>=0 & v=v0 & 2z=0 -> g(z,v,k)=v0¥k
C2: vO0>0 & v=v0~1 & z=k -> glz,v,k)=v0%*k,

We make the following comments. First, g is defined as a function of
each program variable that occurs in the loop predicate or loop body.
Second, note that in C2, the term v0>0 captures both X0 € D(f) (i.e.
v0>=0) and B(K(X0)) (i.e. v0#£0)., As a final remark, we will use the
phrase function expression to refer to the term iq'the consequent of a
constraint that defines the value of g {e.g. vO¥k in both C1 and C2
above).

Step 2 : SIMPLIFY - All variables that appear in the constraint
but not in the argument list for g must eventually be eliminated from
the constraint. On occasion, it is possible to solve for the value of
such a variable in the antecedent and substitute the equivalent
expression for it throughout the constraint. To illustrate, in C1
above, v0 is a candidate for elimination. We know its value as a
function of v (i.e. v0=v), hence we can SIMPLIFY this to

Cl: v>=0 & z=0 -> g(z,v,k)=v¥k.

In a similar manner, the second constraint can be SIMPLIFIED to (using
vO=v+1)

C2: v>=0 & z=k -> glz,v,k)={(v+1)*k.

Step 3 : REWRITE - Variables that appear in the argument list for
g but not in the function expression are candidates to be introduced
into the function expression. Each of these variables will be bound
to a term in the antecedent of the constraint. The purpose of this
step is to rewrite the function expression of C2 (based on the proper-
ties of the operation(s) involved) in order to include these terms

-6-

into the function expression. In the following step (see below), the
result of REWRITE will then be used to introduce the necessary vari-
ables into the function expression. To illustrate, consider the above
SIMPLIFIED C2. The variable z is a candidate to be introduced into
the function expression (v+1)¥k. It is bound to the term k in the
antecedent. Thus we need to introduce an additional term k¥ into this
function expression. One way to do this is to translate the expres-
sion to v¥ksk. Based on this, we REWRITE C2 as

C2: wv>=0 & zzk -> g(z,v,k)=v¥k+k.

Step 4 : SUBSTITUTE - In steps 2 and 3, the constraints are mas-
saged into equivalent constraints in order to facilitate step 4. The
purpose of this step is to attempt to infer a general loop function
from these constraints. We motivate the process as follows. Suppose
we are searching for a particular relationship between several quanti-
ties, say E, m and ¢. Furthermore, suppose that through some form of
analysis we have determined that when m has the value 17, the rela-
tionship E=17¥(c*¥*2) holds. A reasonable guess, then, for a general
relationship between E, m and ¢ would be E=m¥*{c¥%2}, This would be
particularly true 1if we had reason to suspect that there was a rela-
tively simple connection between the quantities m and E. We arrived
at the general relationship by substituting the quantity m for 17 in
the relationship that is known to hold when m has the value 17.
Viewed in this light, the purpose of the constraint C2 is to obtain a
relationship that holds for a specific value of m (e.g. 17). The step
REWRITE exposes the term 17 in this relationship. Finally, SUBSTITUTE
substitutes m for 17 in the relationship and proposes the result as a
general relationship between E, m and ¢. In terms of the multiplica-
tion program being considered, the SUBSTITUTE step calls for replacing
one of the terms k in the above rewritten function expression with the
variable z. The two possible substitutions lead to the following gen-
eralizations:

v>=0 => g(z,v,k)=v¥k+z
_and

v>=0 ~> glz,v,k)=v¥z+k.
Both of these (necessarily) imply (i.e., are generalizations of) C2,
however, only the first is also a generalization of C1. Hence this
function is hypothesized as a deseription of the general behavior of
the above WHILE loop.

We have applied the above U steps to obtain an hypothesis

v>=0 <> g(z,v,k)=v*k+z

for the behavior of the loop

Since this description is sufficiently general (specifically, since
the loop is closed for the domain of the Ffunction), we can
prove/disprove the correctness of the hypothesis using standard verif-
ication techniques [Mills 75, Misra 78]. Specifically, the hypothesis
is valid if and only if each of

- the loop terminates for all v>=0,

- v=0 -> zz=v¥k + z, and

- v*¥ 4+ z is a loop constant (i.e. vO¥k0 4+ zO=v¥k + z is a loop
invariant)

hold. We remark that the loop hypothesis is selected in such a way
that if it holds (i.e. the loop does compute this general function),
the initialized loop is necessarily correct with respect to f.

We emphasize that there are usually an infinite number of gen=-
eralizations of the constraints C1 and C2, and that, depending on how
REWRITE and SUBSTITUTE are applied, the technique is capable of gen-
erating any one of these generalizations. For example, REWRITE and
SUBSTITUTE applied to the multiplication example could have produced

| C2: v>=0 & z=k -> g(z,v,k)=
vEk + 3%k o+ k*k*(v-T7)/(U%Kk) + KkE¥K/(k¥*K)
- k®u®R¥® (v-T)/(U%¥Kk¥k) - k*Fk¥K*3/(k¥k)

and

v>=0 -> glz,v,k)=
vEK + 3%z 4 z¥2¥(v.T7)/(4%k) + z¥z¥z/ (k%K)
- z%z%z%(v-T)/(U¥Kk*K) . z¥z%¥z*3/(k*k)

respectively, where "/" denotes an integer division (with truncation)
infix operator that yields O when its denominator is 0. This last
function is also a generalization of C1 and C2.

It has been our experience, however, that many initialized loops
occur in which there exists some relatively simple connection between
different input values of the variables constrained by initialization
and the corresponding result produced by the WHILE loop. Most often in
practice, these variables are bound to values in the antecedent of C(C2
that suggest an application of REWRITE that uncovers this relationship
and leads to a correct “hypothesis concerning the general loop
behavior. In the following section we illustrate a number of applica-
tions of this technique.

B

4. Applications

Example 2 - The following program computes powers of integers.
This example serves to illustrate the use of the technique when the
loop body contains several paths:

fe=e0 & d=d0 & d0>=0}

wi=13

while d # 0 do
if odd(d) then w :
¢ = c¥cy d 1= d/2
od

{w=c0 #% 40},

=w * ¢ fi;

The first constraint is easily RECORDED:
d0>=0 & c=c0 & d=d0 & w=1 -> g(w,c,d)=c0%¥¥%d0

and SIMPLIFIES to

C1: d>=0 & w=1 => glw,c,d)=c¥*¥4,

Since there exist two paths through the loop body, we will obtain two
second constraints. The first of these deals with the path that
updates the value of w and is executed when the input value of d is
odd. The constraint is-

d0>0 & 0dd(d0) & w=c0 & c=c0¥c0 & d=d0/2 -> glw,c,d)=c0¥*d0

which SIMPLIFIES to

C2a: d>=0 & c=w*w -> g(w,c,d)=w¥*(d¥2+1).
The constraint corresponding to the other loop-body path is

d0>0 & “odd(d0) & w=1 & c=c0¥c0 & d=d0/2 -> g{w,c,d)=c0¥*¥40
and SIMPLIFIES to

d>=0 & w=1 & SQUARE(c) ~> g(w,c,d)=SQRT(c)¥**(d%2)

i.e.

C2b: a>=0 & w=1 & SQUARE(c) -> glw,c,d)=c*%d
where SQUARE(x) = “x is a perfect square”, and SQRT(x) = ‘the square
root of the perfect square x’. The term SQUARE(c) is necessary in the
antecedent since ¢ is necessarily a perfect square in the antecedent
of the unSIMPLIFIED constraint. Note that C2b is implied by C1 and
hence is of no additional help in characterizing the general loop
function, The heuristic suggested in REWRITE is to rewrite the con-

straint expression w¥¥(d*2+1) of C2a in terms of w, w*w (so as to
introduce ¢) and d. The peculiar nature of the exponent in this

-9-

expression leads one to the equivalent formula w*((w*w)¥*d). Applying
SUBSTITUTE in C2a yields

d>=0 -> glw,c,d)=w*(c%%q),

This function is in agreement with C1 and thus is a reasonable
hypothesis for the general loop function.

In this example, the portion of €2 corresponding to the loop-body
path that bypasses the updating of the initialized data (C2b) is
implied by C1. Based on this, one might conclude that such loop-body
paths should be ignored when constructing C2. Considering all loop-
body paths, however, does inerease the likelihood that an incorrect
program could be disproved (at the time the general loop function is
being constructed) by observing an inconsistency between constraints
C1 and C2. For instance, in the example, if the assignment to ¢ had
been written "ci=c¥2", the above analysis would have detected an
inconsistency in the constraints on the general loop function. Such
an inconsistency implies that the hypothesis being sought for the
behavior of the 1loop does not exist, and hence, that the program is
not correct with respect to its specification.

In the previous section, the reader may recall that awkwardness
in disproving programs was offered as a disadvantage of a "top down"
approach to synthesizing g. However, it has been our experience that,
as in the above instance, an error in the program being considered
often manifests itself as an inconsistency between C1 and €2. Such an
inconsistency is usually "easy" to detect and hence the program is
"easy" to disprove. While it is difficult to give a precise charac-~
terization of when this will occur, intuitively, it will be the case
provided that the "error" (e.g. c¥2 for c%*c) can be "executed" on the
first iteration of the loop.

Example 3 - The following program counts the number of nodes in a
nonempty binary tree using a set variable s. It differs from the pre-
vious example in that more than one variable is initialized. The tree
variable t 1is the input tree whose nodes are to be counted. We use
the notation left(t) and right(t) for the left and right subtrees of t .
respectively. The predicate empty(x) is TRUE iff x is the empty tree
(i.e. contains 0 nodes). '

{~empty(t)}
n t=0; s := {t};
while s # {} do
select and remove some element e from s
nss=n+ 1%
/% 3 1= 3 U SONS(e) %*/
if “empty(left(e)) then s
if “empty(right(e)) then s

od
{n=NODES(t)}

t= s U {left {(e)} fi;
t= s U {right(e)} fi

The notation NODES(t) appearing in the postcondition stands for the

-T10=

number of nodes in binary tree t. The first constraint is
Cl: “empty{(t) & n=0 & s={t} <> gl(n,s)=NODES(t).

Rather than considering each of the four possible paths through the
loop body individually, we use the abstraction for the combined effect
of the two IF statements

s 1= s U SONS(e),

where SONS(x) is the set of 0, 1 or 2 nonempty subtrees of x. Applying
- this, the second constraint is

C2: “empty(t) & n=1 & s=SONS(t) -> g(n,s)=NODES(t).

.

In order to introduce n and s into the function expression for C2, we
choose to REWRITE this expression using the recursive definition that
NODES(x) for a nonempty tree x is 1 plus the NODES value of each of
the 0, 1 or 2 nonempty subtrees of x. Specifically, this would be

1+30M(x,SONS(t) ,NODES(x))

where SUM(A,B,C) stands for the summation of C over all A G B. Apply-
ing SUBSTITUTE in the obvious way yields

“empty(t) -> g(n,s)=n+SUM(x,s,NODES(x))

which is in agreement with C1 and is thus a reasonable guess for the
general loop function g.

Two remarks are in order concerning this example, The first
deals with the condition ~empty(t) that characterizes the domain of
the obtained function. The reader may wonder, if t is not referenced
in the 1loop (it is not in the argument list for g), how can the loop
behavior depend on empty(t)? The answer is that it obviously cannot;
the above function is simply equivalent to

g(n,s)=n+SUM(x,s,NODES(x)).

For the remainder of the examples of this section, we assume that
~these unnecessary conditions are removed from the antecedent of the
constraint as part of the SUBSTITUTE step.

As a second point, in Example 3 we encounter the case where the
obtained funetion is, strietly speaking, foo general, in that its
domain includes "unusual' inputs for which the behavior of the loop
does not agree with the function. For instance, in the example, the
loop computes the function

g(n,s)=n+SUM(x,s,NODES(x))

only under the provision that the set s does not contain the empty
tree, This is normally not a serious problem in practice. One

]l

proceeds as before, i.e. attempts to push through a proof of correct-
ness using the inferred function. If the proof is successful, the
program has been verified; otherwise, the characteristics of the input
data that cause the verification condition(s) to fail (e.g. s contains
an empty tree) suggest an appropriate restriction of the input domain
(e.g. s contains only nonempty trees) and the program can then be ver-
ified using this new, restriected function.

Example 4 [Gries 79] - Ackermann’s function A(m,n) can be defined
as follows for all natural numbers m and n:

A(O,n)
A(m+1,0)
A(m+1,n+1)

n+1
A(m,1)
A(m,A{m+1,n)).

The following program computes Ackermann’s function using a sequence
variable s of natural numbers. The notation s(1) is the rightmost
element of s and s(2) is the second rightmost, ete. The sequence
s8(..3) is s with s(2) and s(1) removed. We will use < and > to con-
struct sequences, i.e. a sequence s consisting of n elements will be
written <s(n), ... ,8(2),s(1)>.

{m>=0,n>=0}
8 1= <m,n>3
while size(s) £ 1 do
if s(2) = 0O then st=5(..3) | [<s(1)+1>
elseif s(1)=0 then s:=s(..3)]]<s(2)-1,1>
else t=s(..3) 1 1<s(2)-1,8(2),s(1)-1> £i
.oood
{s=<A(m,n)>}

For this program, the first constraint is
C1: m>=0 & n>=0 & s=<m,n> -> g(s)=<A(m,n)>."

The second constraints corresponding to the 3 paths through the loop
body are

C2a: m=0 & n>=0 & s=<n+1> -> g(s)=<A(m,n)>
C2b: m>0 & n =0 & s=<m-1,1> => g(s)=<A(m,n)>
C2e: m>0 & n >0 & s=<m-1,m,n-1> => g(s)=<A(m,n)>.

REWRITING these 3 based on the above definition of A yields

-l12-

m=0 & n>=0 & s=<n+1> -> g{s8)=<n+1>
m>0 & n =0 & s=<m 1 1> => g(8)=<A(m-1,1)>
m>0 & n >0 & s=<m~1,m,n~-1> => g(s)=<A(m-1,A(m,n-1))>.

SUBSTITUTING here yields

2=<s(1)> => g{=)=<s(1)>
s=<s(2),s(1)> => g(s)=<A(=(2),s(1))>
3=¢<s(3),=s(2),s(1)}> => g(38)=<A(s(3),A(s(2),8(1)))>.

Note that the second of these implies C1. The 3 together seem to sug-
gest the general loop behavior (where n>1)

g(<s(n),s(n-1), ... ,s(1)>) =
<A(s(n),A(s(n=1), ... &(5(2),5(1)) ...))>.

We remark that in the first 3 examples, the heuristic resulted in
a loop function that was sufficiently general (i.e. the loop was
closed for the domain of the inferred funetion). Example 4 illus-
trates that this does not always oceur. The loop function heuristic
is helpful in the example in that SUBSTITUTE suggests a behavior of
the loop for general sequences of length 1, 2-and 3. Based on these
results, verifier is left to infer a behavior for a sequence of arbi-
trary length.

Example 5 - Let v be a one dimensional array of length n>0 that
contains natural numbers. The following program finds the maximum
element in the array: ' . .

m = 03 4 3= 13

while 1 <= n do
if m < v[il then m := v[i] f£i;
it=d + 1
fi

{m=AMAX (v)}

The notation AMAX(v) appearing in the postcondition stands for the
largest element of the array v. The following constraints are
obtained

C1: m=0 & i=1 > g(m,i,v,n)=AMAX(v)
C2: m=v[1] & i=2 -> g{m,i,v,n)=AMAX(v),

Noticing the appearance of v[1] and 2 in €2, we REWRITE AMAX(v) in C2
as MAX(v[1],AMAX(v[2:n])), where MAX returns the largest of its two
arguments, and v[2:n)] is a notation for the subarray of v within the
Vlndlcated bounds. The generalization obtained by applylng SUBSTITUTE,
gl{m,i,v,n)=MAX(m,AMAX(v[i:n])),

agrees with Ci.

-13-

Example Q - If p is a pointer to a node in a binary tree, let
IN(p) be the sequence of pointers that point to the nodes in an
inorder traversal of the binary tree pointed to by p. The following
program constructs IN(p) in a sequence variable vs using a stack vari-
able stk. We use the notation 1(p) and r(p) for the pointers to the
left and right subtrees of the tree pointed to by p. If p has the
value NIL, IN(p) is the empty sequence. The variable rt points to the
root of the input tree to be traversed.

P := rt; stk iz EMPTY; vs 1= <O}
while ~(p=NIL & stk=EMPTY) do
if p#NIL then
stk <= p /% push p onto stk #*/ ;

= 1(p)
else _
p <= stk /¥ pop stk #*/ ;
vs 1= vs || <pd>i
p := rip) fi
od

fvs = IN(rt)}.

Up until now, we have attempted to infer a general loop function from
two constraints. Of course, there is nothing special about the number
two. 1In this example, the "connection" between the initialized vari-
ables and the function values is not clear from the first two con-
straints and it proves helpful to obtain a third constraint. Functions
C1 and C2 correspond to 0 and 1 loop-body executions, respectively.
The third constraint C3 will correspond to 2 loop-body executions. We
will use the notation (et, ... ,en) for a stack containing the ele-
ments el, ... ,en from top to bottom. The constraints for this pro-
gram are '

C1: p=rt & stk=EMPTY & ves=<{> -2
g(p,stk,vs)=IN(rt)

C2: rt#NIL & p=1{rt) & stk={rt) & vs=<> =D
g(p,stk,vs)=IN(rt)

‘C3a: rtNIL & 1(rt)#NIL & p=1{1(rt)) & stk={(l(rt),rt) & vs=> >
g{p,stk,vs)=IN{rt)

C3b: rt£NIL & 1(rt)=NIL & p=r(rt) & stk=EMPTY & ve=<rt> ~>
g(p,stk,vs)=IN(rt).

Note that there are two third constraints. C3a and C3b correspond to
executions of the first and second loop-body paths (on the second
iteration), respectively. There is only 1 second constraint since
only the first loop-body path can be executed on the first iteration.
Using the recursive definition of IN, we REWRITE C2, C3a and C3b as
follows:

=14

C2°: rtéNIL & p=l(rt) & stk=(rt) & vs=<{> =>
g(p,stk,vs)=IN(1(rt)) ||<rt>{] IN(r(rt))
C3a”: rt#NIL & L(rt)#NIL & p=1(1(rt)) & stk=(1(rt),rt) & vs=<> ->
g(p,stk,vs)=IN(1(2(rt))) 1I<1l(rt)>!] IN(r(1(rt)))
F<et>i | IN(r(rt))
C3b”: rt#ANIL & 1(rt)=NIL & p=r(rt) & stk=EMPTY & vs=<{rt> ->
g(p,stk,ve)=<rt> || IN(r(rt)).

Applying SUBSTITUTE to each of €27, C3a” and C3b” suggests

stk=(e1) & vs=<> ~> g{p,stk,vs)=IN(p) |I<et>}] IN(r(e1))
stk=(e1,e2) & vs=<> -> glp,stk,vs)=IN(p) |I<e1>]| IN(r(el))

_ [1<e2> |} IN(r(e2))
stk=EMPTY -> g(p,stk,vs)=vs || IN(p)

reépectively. The first 2 of these functions imply the following
behavior for an arbitrary stack where vs has the value <>:

stk=(el, ..., en) & vs=<> -> g(p,stk,vs) =
IN(p) Il (<e1>|! IN(e1) I! ... |i<en>!| IN(en))

and in combination with the last funcetion, the general behavior

stk=(el, ..., en) => glp,stk,vs) =
vs || IN(p) Il (Ke1>|) IN(e1) }]| ... }l<en>|! TN(en))

is suggested.

In Example 6, we saw that the technique generalizes to the use of
three (and indeed an arbitrary number of) constraints. We have seen
that each of these represents a subset of the loop function g being
sought. If the constraints themselves are sufficiently general, it
may be that the first several of these, taken collectively, constitute
a complete deseription of g. We consider this situation in the fol-
lowing section.

2. Complete Constraints

The technique described above for obtaining a general loop func-
tion is ™nondeterministic" in that the constraints do not precisely
identify the desired funotion; rather they serve as a formal basis
from which intelligent guesses can be made concerning the general
behavior of the loop. Our belief is that it is of'ten easy for a human
being to fill in the remaining "pieces" of the loop function "picture"
once this basis has been established.

. There exist, however, circumstances when the constraints do con-

stitute a complete description of an adequate loop function. Specifi-
cally, this description may be complete through the use of one, two or
more of the constraints. The significance of these situations is that
no guessing or "filling in the picture" is necesasarys the program can
be proven/disproven correct using the constraints as the general loop
function. 1In this section we give a formal characterization of this

-15-

circumstance.

Definition - For some N > 0, an initialized loop is R-closed with
respect to its specification f iff the disjunction of the constraints
¢1,62, ... ,CN defines a value of the function g over a set for which
the loop is closed. 1In this case, the constraints 1,2, ... CN are

complete.

Thus if a loop is N-closed for some N>0, the disjunction of the
first N constraints constitutes an adequate loop function for the loop
under consideration. Intuitively, the value N is a measure of how
quickly (in terms of the number of loop iterations) the variables con-
strained by initialization take on "general" values.

Example 7 ~ Consider the following program

{b=a0 & b=b0 & b0>=0}
a t=a+ 13
while b > 0 do

a 13
b« 1

o T a

d
{azald + b0 + 1}.

The first constraint is
C1: Db0>=0 & a=al+1 & b=b0 -> g{a,b)=al+b0+1
which SIMPLIFIES to
b>=0 -> g(a,b)=a+b.

This constraint defines a value of g over the set of data states in
which b is non-negative. Since the loop is closed for this set (i.e.,
if b is initially non-negative, it remains so after each WHILE loop
iteration), the program is 1-closed. Thus C1 by itself constitutes an
adequate loop function.

Initialized loops that are 1-closed seem to occur rarely in prac-~
‘tice. Somewhat more frequently, an initialized loop will be 2-closed.
For these programs, the loop function synthesis technique described
above (using 2 constraints) is deterministic. ‘

Example 8a - Consider the program

-16m

{seq=seq0}

sum := 03

while seq # EMPTY do
sum := sum + head(seq);
seq := tall{seq)
od

{sum=SIGMA(seq0)}.

The notation SIGMA(seq0) appearing in the postecondition stands for the
sum of the elements in the sequence seq0. The program is 2-closed
since the second constraint is

co; serﬁEMPTY & sum=head(seq0) & seq=tail(seq0) ->
g{sum,seq)=SIGMA(seq0)

which SIMPLIFIES to
g(sum, seq)=sum+SIGMA(seq).

The constraint defines g over all possible values of sum and seq and
the loop is trivially closed for this set.

Example 8b - As a second illustration of a 2-closed initialized
loop, the follow1ng program tests whether a particular key appears in
an binary search tree.

{tree=treed}
success := FALSE;
while tree # NIL & “success do

if name(tree) = key then success := TRUE
elseif name(tree) < key then tree := right(tree)
else tree := left(tree) fi
od

{success = IN(key,tree0)}

The notation IN(key,tree0) = ‘key occurs in binary search tree tree0’.
This program is also 2-closed. Note that the first constraint

C1: success=FALSE & treeztree0 ->
g(success,tree,key)=IN(key,treed)

SIMPLIFIES to
suceess=FALSE -> g(success,tree,key)=IN(key,tree).

If we consider the first path through the 100p body, the second con~
straint is

-17-

C2: success=TRUE & treeO#NIL & tree=tree0 & key=name(tree) ->
g(success,tree,key)=IN(key,treel)

which SIMPLIFIES to

success=TRUE & treeZNIL & key=name(tree) ->
g(success,tree,key)=IN(key,tree).

The disjunction of these two constraints defines a value of g over the
set

{<{success,tree,key> |
(("success) OR (tree#NIL & key=name(tree)))}.

The loop is closed for this set and hence the initialized loop is 2-
closged.

Example §g - Consider the sequence of initialized loops P1,P2,P3
“wes defined as follows for each I>0:

PI : {y=y0 & x=x0 & x0>=0}
X t=x * I3

while x > 0 do
X t=x - 1;
¥y :=y + k
od

{y=y0 + x0%*I%K},
For any I>0, the first I constraints for program PI are

C1: x0>=0 & x=x0%I & y=y0 => g{x,y,k)=y0+x0%I*k
C2: x0>=1 & x=x0%*I-1 & y=yO+k > g(x,y,k)=y0+x0*¥I %k

.

CI: X0>=I-1 & x=x0%I-(I-1) & y=yO+k*(I-1) => g(x,y,k)=y0+x0%I*Kk,
These SIMPLIFY to
x>=0 & MI(x) => g(x,7,k)=y+x¥*k
x>=0 & MI(x+1) -> g{x,y,k)=y+x¥k

x>=0 & MI(x+(I-1)) -> g(x,y,k)=y+x¥k

where MI(x) = “x is a multiple of I°. Since the disjunction of these
is the constraint

x>=0 -> g{x,y,k)=y+x¥*k,

which defines a value of g over a set for which the loop is closed, we
conclude that for each I>0, program PI is I-~-closed.

w18~

For many initialized loops that seem to ocecur in practice, how~
ever, there does not exist an N such that they are N-closed with
respect to their specification. This means that no finite number of
constraints will pinpoint the appropriate generalization exactly; i.e.
when applying the above technique in these situations, some amount of
inferring or guessing will always be necessary. A case in point is
the integer multiplication program from Example 1. The constraints
c1,C2,C3, ... define thes general loop behavior for z=0, zzk, z=2¥k,
«+s 8te. The program cannot be N-closed for any N since with input
v=N+1, the last value of z will be (N+1)*k which is not covered by the
first N constraints.

As a final comment concerning N-closed initialized loops, it may
be instructive to consider the following intuitive view of these pro-
grams. All 1-closed and 2-closed initialized loops share the charac-
teristic that they are "forgetful," i.e. they soon lose track of how
"long" they have been executing and lack the necessary data to recover
this information. This 1is due to the fact that intermediate states
that occur after an arbitrary number of iterations are Iindistinguishe
able from states that occur after zero (or one) loop iterations. To
illustrate, consider the 2-closed initialized loop of Example 8a that
sums the elements contained in a sequence. After some arbitrary
number of iterations in an execution of this program, suppose we stop
it and inspect the values of the program variables sum and seq. Based
on these values, what can we tell about the history of the execution?
The answer is not too muchj about all we can say is that if sum is not
zero then we know we have previously executed at least 1 1loop itera-
tion, but the exact number of these iterations may be 1, 10 or 10000,

By way of contrast, again consider the integer multiplication
program of Example 1, an initialized loop we know not to be N-closed
for any N. Suppose we stop the program after an arbitrary number of
iterations in its execution. Based on the values of the program vari-
ables z, v and k, what can we tell about the history of the execution?
This information tells us a great deal; for example, we know the loop
has iterated exactly z/k times and we can reconstruct each previous
value of the variable z.

Initialized loops that have the information available to recon-
struet their past have the potential to behave in a "tricky" manner.
By "fricky" here, we mean performing in such a way that depends unex-
pectedly on the history of the execution of the loop (i.e. on the
effect achieved by previous loop iterations). The result of this loop
behavior would be a loop function that was "inconsistent" across all
values of the loop inputs and which could only be inferred from the
constraints with considerable difficulty. We consider this phenomenon
more carefully in the following section; for now we emphasgize that it
is precisely the potential to behave in this unpleasant manner that is
lacking in 1-closed and 2-closed initialized loops and which allows
their general behavior to be deseribed completely by the first one or
two constraints.

-19-

6. ‘Tricky” Programs

The above heuristic suggests inferring g from two constraints on
that funetion, {1 and C2. Constraint €2 is of particular importance
since REWRITE and SUBSTITUTE are applied to C2, and, consequently, it
serves to pguide the generalization process. C2 is based on the pro-
gram specification f, the initialization and the input/output behavior
of the loop body on its first execution. In any problem of inferring
data concerning some population based on samples from that population,
the accuracy of the results depends largely on how representative the
samples are of the population as a whole. The degree to which the
sample defined in C2 is representative of the unknown function we are
seeking depends entirely on how representative the input/output
behavior of the loop body on the first loop iteration is of the
input/output behavior of the loop body on an arbitrary subsequent loop
iteration.

To give the reader the general idea of what we have in mind, con-
sider the program to count the nodes in a binary tree in Example 3.
If the loop body did something peculiar when, for example, the set s
contained two nodes with the same parent node, or when n had the value
15, the behavior of the loop body on its first execution would not be
representative of its general behavior. By "peculiar" here, we mean
something that would not have been anticipated based solely on
input/output observations of its initial execution. An application of
our heuristic on programs of this nature would almost certainly fail
since (apparently) vital information would be missing from C1 and C2.

Example 9 - Consider applying the technique to the following pro-
gram which is an alternative implementation of the integer multiplica-
tion program presented in Example 1:

{v=v0 & v0>=0}

z 1= 03

while v # 0 do
if z=0 then z t= k
elseif z=k then =z 1=z ¥ 2 # ¢
else Z i= 2 -k fi;
v = v -1
od

{z=v0%*Kk}.

The constraints C1 and C2 are identical to those for the program in
Example 1 and we have no reason to infer a different function g. Yet
this funection is not only an incorrect hypothesis, it does not even
come close to desecribing the general behavior of the loop. The diffi-
culty is that the behavior of the loop body on its first execution is
in no way typlcal of its general behavior. This is due to the high
dependence of the loop-body behavior on the input value of the ini-
tlallzed variable =z,

We make the following remarks concerning programs of this nature.
First, our experience indicates that they -occur very rarely in

-20=

practice. Secondly, because they tend to be quite difficult to
analyze and understand, we consider them "tricky" or poorly structured
programs. Thirdly, the question of whether the (input/output)
behavior of the loop body on the first iteration is representative of
its behavior on an arbitrary subsequent iteration is really a question
of whether its behavior when the initialized variables have their ini-
tial values is representative of its behavior when the initialized
variables have Yarbitrary" values. Put still another way, the ques-
tion is whether the loop body behaves in a "uniform" manner across the
spectrum of possible values of the initialized data.

In practice, a consequence of a loop body exhibiting this uniform
behavior is that there exists a simply expressed connection between
different input values of the initialized data and the corresponding
result produced by the WHILE loop. It is the existence of such a con-
nection that motivates the SUBSTITUTE step above and which is thus a
necessary precondition for a successful application of the technique.
This explains its failure in dealing with programs such as that in
Example 9.

7. BRelated Work

In [Basu & Misra 76, Misra 78, Misra 79], the authors describe
two classes of '™naturally provable" programs for which generalized
loop specifications can be obtained in a deterministic manner. Our
‘technique sacrifices determinism in favor of wide applicability and
‘ease of use. It handles in a fairly strhightforward manner typical
programs in these two classes (e.g. Examples 1-3) as well as a number
of programs that do not fit in either of the classes (e.g. Examples
4-6).

Due to the close relationship between loop functions and loop
invariants (see, for example, [Morris & Wegbreit 771), any technique
for synthesizing loop invariants can be viewed as a technigue for syn-
thesizing general loop functions (and vice versa). In this light, our
method bears an interesting resemblance to a loop invariant synthesis
technique described in [Wegbreit 74, Katz & Manna 76]. In this tech-
nique stronger and stronger "approximations™ to an adequate loop
invariant are made by pushing the previous approximation back through
the loop once, twice, ete.

By way of illustration, consider the exponentiation program of
Example 2. The loop exit condition can be used to obtain an initial
loop invariant approximation

d=0 -> w=c0¥%#%d0,

This approximation can be strengthened by pushing it back through the
loop to yield

. (d=0 -> w=cO0%*40) & (d=1 -> w¥c=c0¥*30). B

In the analysis presented in Example 2, we‘obtained a value for the

21~

general funetion for each of two different values of the initialized
variable w (i.e. 1 and SQRT(c)); here we have obtained a '"value" for
the 1loop invariant we are seeking for each of two different values of
the variable that controls the termination of the 1loop d. Applying
the analysis in [Morris & Wegbreit 77], these loop invariant "values"
can be translated to constraints as follows:

d=0 -> g(w,c,d)=w,

d=1 -> g(w,c,d)=u*c.

Of course, the function expression w¥*ec in the second constraint can be
rewritten w¥*(c*¥1); SUBSTITUTING as usual suggests the general loop
funetion

glw,c,d)=w*(c**d),

If we then add the program precondition as a domain restriction on
this funetion, the result is the same general loop function obtained
in Example 2,

We summarize the relationship between these two techniques as
follows. As the initialized loop in question operates on some partic-
ular input, let X[0], X[1], .. ,X[N] be the sequence of states on
which the loop predicate is evaluated (i.e. the loop body executes N-1
times}. Of course, in X[0], the initialized variables have their ini-
tial values, and in X[N], the loop predicate evaluates to FALSE. The
method proposed in this paper suggests inferring the unknown loop
function g from X[0], X[1], g(X[0]) and g(X[1]). The loop invariant
technique described above, when viewed as a loop function technique,
suggests inferring g from X[N1, X[N-1], g(X[N]) and g(X[N-11). Speak-
ing roughly then, one technique uses the first several executions of
the loop, the other uses the last several executions. One ignores the
information that the loop must compute the identity function on inputs
where the loop predicate is FALSE, the other ignores the information
that the loop must compute like the initialized loop when initialized
variables have their initial values.

Earlier we discussed "top down" and "bottom up" approaches to
synthesizing g and indicated that our technique fit in the "top down"
category. The technique based on the last several iterations is a
"bottom up" approach. It is difficult to carefully state the relative
merits of these two opposing techniques. In our view, however, there
are a number of circumstances under which the technique based on the
first several loop executions seems more "natural" and easily applied.
These examples .include the NODES program and the program to compute
Ackermann’s function discussed above. The reason is that a critical
aspect of the general loop function is the function computed by the
initialized loop program {e.g. exponentiation in the above illustra-
tion). In the technique based on the first several iterations, this
function appears explicitly in the constraints. In the other tech-
nique, this information must somehow be inferred from the correspond-
ing constraints (e.g. by looking for a pattern, etec.). This diffi-
culty is inherent in any "bottom up" approach to synthesizing g.

PP

8. Conecluding Remarks

In this paper we have proposed a technique for deriving functions
that describe the general behavior of a loop which is preceded by ini-
tialization. These functions can be used in a functional [Mills 75]
or subgoal induction [Morris & Wegbreit 771 proof of correctness of
the initialized loop program. It is not our intention to imply that
verification should occur after the programming process has been com-
pleted. There are, however, a large number of existing programs that
must be read, understood, modified and verified by "maintenance" per-
sonnel. We offer the heuristic as a tool that is intended to facili-
tate these tasks.

It has been argued [Misra 78] that the notion of closure of a
loop with respect to an input domain is fundamental in analyzing the
loop. 1In Section 5, this idea is applied to initialized 1loop pro-
grams. The result is that a loop function g for a loop that is N-
elosed (for some N>0) can be synthesized in a deterministic manner by
considering the first N constraints. Hence this categorization can be
viewed as one measure of the "degree of difficulty" involved in veri-
fying initialized loop programs.

An interesting direction for future research is the development
of a precise characterization of programs that are not "gricky" (as
discussed in Section 6). Preliminary results along this 1line are
described in [Dunlop & Basili 81] (see also [Basu 80]).

9. Acknowledgement

The authors are extremely indebted to D. Gries and B. Witt for
very lengthy and constructive reviews of an earlier draft of this
report.

-23-

10. References

[Basu 80]
Basu, S. A Note on Synthesis of Inductive Assertions, IEEE Tran-
sactions on Software Engineering, Vol SE-6, Jan. 1980, pp. 32-
39.

[Basu & Misra 75]
Basu, S. and Misra, J. Proving Loop Programs, IEEE Transactions
on Software Engineering, Vol. 3E-1, March 1975, pp. 76-86.

[Basu & Misra 76]
Basu, S. K. and Misra, J. Some Classes of Naturally Provable
Programs, Proc¢. 2nd International Conf. on Software Engg., San
Francisco, Oct. 1976, pp. 400-406.

[Dunlop & Basili 81]
Dunlop, D. and Basili, V. Generalizing Specifications for Uni-
formly Implemented Loops, University of Maryland Computer Science
Technical Report TR-1116, October 1981.

[Ellozy 81]
Ellozy, H. The Determination of Loop Invariants for Programs

with Arrays, I1EEE Transactions on Software Engineering, Vol., SE-
T, March 1981, pp. 197-206.

[Gries T79]
Gries, D. Is Sometime Ever Better Than Alway?, Transactions on
Programming Languages and Systems, Vol. 1, Oct. 1979, pp. 258-
265,

{Hoare 69]
Hoare, C. A. R. An Axiomatic Basis for Computer Programming,
CACM, Vol. 12, Oct. 1969, pp. 576-583.

[Katz & Manna 73] :
Katz, S. and Manna, Z. A Heuristie Approach to Program Verifica-
tion, Proc. 3rd Int. Joint Conf. Artificial Intell., Stanford, CA
1973, pp. 500-512. -

[Katz & Manna 76]
Katz, S. and Manna, Z. Logical Analysis of Programs, CACM, Vol,
19, April 1976, pp. 188:2206.

[Manna & Waldinger 70]
Manna, Z. and Waldinger, R. Towards Automatic Program Synthesis,
Stanford Artificial Intelligence Project, Memo AIM-127, July
1970.

[Mills 723

Mills, H. D. Mathematical Foundations for Structured Progrém-
ming, IBM Federal Systems Division, FSC T72-6012, 1972.

-24.

[Mills 75]
Mills, H. D. The New Math of Computer Programming, CACM, Vol.
18, Jan. 1975, pp. 43-48,

[Misra 78]
Misra, J. Some Aspects of the Verification of Loop Computations,

TEEE Transactions on Software Engineering, Vol. SE-4, Nov. 1978,
pp. 478z486,

{Misra 79]
Misra, J. Systematic Verification of Simple Loops, University of
Texas Technical Report TR-97, March 1979. :

[Morris & Wegbreit 771
Morris, J. H. and Wegbreit, B. Subgoal Induction, CACM, Vol. 20,
April 1977, pp. 209-222.

[Wegbreit T41
Wegbreit, B. The Synthesis of Loop Predicates, CACM, Vol. 17,
Feb. 1974, pp. 102-112. o

{Weébreit 771

Wegbreit, B. Complexity of Synthesizing Inductive Assertions,

-25-

