B

Technical Report TR-L116 Qctobmr, 158!
AFOSR-FA49620-50~ 001

GCeneralizing Specifications For
Uniformly Implemented Loops?®

Douglas D. Dunlop and Victor R. Basili

Department of Computer Sciance
University of Harvliand
College Park, MD 20742

*This work wasg supported in part by the Air TForce Office of
3cientific Research Contract AFOSR~-F49620--50-C-001 to the Univer-
sity of Marvliand. The material —contained in this paper will
become part of a disgsertation to be submitted to the Graduate
School, Univergity of Maryland, by Douglas D. Dunlop, in partial
fulfiliment of the reguirements for the Ph.D. degree in Computer
Science.

(©) copyright 1981 by p.D. Dunlop and V.R. Basili

ARSTRACT

The nroblem of generalizing functional specifications for
WHILE loops is considered., Thisg problem cccurs freguently when
trying to verify that an initialized loop satisfies some func-

tional specification, i.e. produces outputs which are some func-

tion of the program inputs.

The notion of a valid generalization of a loop specification
is defined, A particularly simple valid generalization, a base

generalization, is discussed. A property of many commonly occur-—
rirg WHILE loops, that of being uniformly implemented, is

defined. A technigue is presented which exploits this property

M

in rdey to systematicalliy achileve a valid generalization of the
loop specification.. Two classes of uniformly implemanted loops
which are particularly susceptible to this form of analysis are

discussed. The use of the proposed technique 1is

i

pS)

defined an:
illustrated with a number 0f applications. Finally, an implica-
tion of the concept of uniform loop implementation for the wvali-

dation of the obtained generalization is explained.

REYVWORDS and PHRASIES: program verification, valid generalization,

base generalization, uniformly implemented loop, iteration condi-

tion

CR CATEGORIES: 5.24

Generalizing fpecificaticons For Uniformly Implemented Loops

1. Introduction

Consider the problem of proving/disproving a WEILE loop

i~

correct with respect to some functional specification £, i.e. £

1

requires the ocutput variable(s) to be some function of the inputs

T

to the loon. If the loor precondition is weak encugh so that the
domain of £ contains the intermediate states which appear after
each loop iteration, the loop is said to be closed for the domain
of £. An important result in program verification is that if the
loop is closed for the domain of its specification,; there are two
easily constructed verification conditions based solely on the

specification, loop opredicate and loop body which are necessary
S~ iy

jo

n

3

sufficient conditions for the partial correctness of the loop
with respect to itg specification [Mills 75, HMisra 78]. If the
locp is not clesed for the domain of the specification Ffunction,

a generalizZed specification {i.e. one that implies the coriginal

specification) which satisfies the closure requirement must be
discovered before these verification conditions c¢an be con-
structed (this problem is analogous to that of discovering an
adequate loop invariant for an inductive assertion proof [Hoare

691 of the progranm).

We remark that the restricted specification often occurs in
the process of analyzing an initialized WHILE loop, i.e. one that
congists of a WHILE loop preceded by some initialization code.
This initialization typically takes the form of assignments of

congtant values to some o0f the variables manipulated by the loop.

Examples include setting a counter to zero, a search flag to

4}

Ceneralizing Specifications For Uniformly Implemented Loop

FALSE, a gueue variable to some particular configuration, etc.
It is clear that the initialized loop ig correct with respect to
some specification if and only if the WHILE loop by itself is
correct with respect to a slightly modified apecification. This

specification has the same postcondition as the original specifi-

cation and a precondition which is the

¢
[t
e
[£9]
ot
W
ot
O
i
o
Q
2
o]
]
o
ft
Q
=3

1.

together with the condition that thé initialized variables have
their initialized values. Since the initialized variables will
typically assume other values as the loop iterates, the loop most
likely will not be closed for the domain of this specification
and a generalization of it will be necessary in order +to verify

the correctness of the program.

i

Example L -~ The following prodram multiplies natural numbers

using repeated addition:

[v>=0,k>=0}

£ := 03

while v > 0 do
Z = 2z + K:
voew v o~ 1
od

{z=§5*k}.

The term v0 appearing in the postcondition refers to the initial

value of v. The program is correct if and only if

{z=0,v>=0,k>=0}

while v > (0 do
z = 72 4+ ko
v o:= v - 1
od

{z=v0+k}

is correct. Since this loop precondition reguires z to have the

Generalizing Specifications Tor Uniformly Imnlemented Loops
s - A Al

value 0 and z assumes other values az the loop executes, the loop
is not closed for this precondition. Thus, before this program
can be verified using the akove mentioned technique, this specif-
ication must be generalized to something like

{V>SG,k>:O}

while v > 0 do
=z +

where z{0 refers to the initial value of the variable =Z.

The approach to this problem suggested here is one of
observing how particular changeg in the value of some input vari-
able (e.g. z in the example) affect the result produced by the
loop body of the loop under consideration. Clearly in general; a
change in the value of an input variable may cause an arbittary
(and seemingly unrelated) change in the locp body result. 1In
many commonly occurring cases, however, the result produced by
the loop bedy is "uniform" across the entire spectrum of possible
values for the input variable. It is this property that will be
exploited in order to obtain a genéralizeé specification for the
loop being analvzed. The generaiizations considered here have
the property that the loop is correct with respect to the gen-
eralization if and only if the loop is correct with respect to
the original specification. Thus if the loop is closed for the
domain of the generalization, the program can be proven/disproven

by testing its correctnegs relative to the generalization.

Ve remarx that the general npreblem of finding a2 suitable
generalized loop specification has been shown te be ¥NP-complete

[Wegbreit 77], i.e. it appears guite unlikely that there will

eralizations that will work in &ll cases. On the ¢ther Thand,
Wwork presented here and elsewhere [Basu & Misra 76, Misra 79,
Basu 80], indicates that generalized gpecifications can bhe

obtained in a systematic manner Ffor restricted classes of loops.

We feel that the notion of "uniform® loop body behavior discusgsed
in this paper is valuable not only as a tool by which such gen-

=

eralizations may be obtained, but also as an attempt at a charac-

erization of loops which are susceptible to routine analvsis,

T

and hence in this sense, easy to verify and comprehend.

The following section defines the necesgsary notation and

terminclogy and then introduces the idea of a generalized loop
spacification. Section 3 defines a uniformly implemented loop

lem of generalizing a specification for such a loop. Thege

results are applied on several example programs in Section 4. In

i

Section 5, a simplified rogedure is suggested for

proving/disproving a uniformly implemented loop corregt with

regpect to the obtained generalization. ?lnall , several guids-
lines for recognizing uniformly implemented loops are presented

in Section 6.

Generalizing Specifications For Uniformly Implemented Loops

m

We will consider a verification problem of the form

{<z,x> € D(f)}

while B{(z,%) do
Z,% 1= h'(z2,X),h""(z,%)
od

[<z7%> = £(<z0,%0>)}.

In this problem, £ is a data state to data state function. The
data state consists of two variables, z and ¥. The notation D{f)
means the set of states in the domain of £ (i.e. the set of
states for which £ is defined). The terms z0 and %0 refer to the
initial values of z and X respectively. The effect of the loop
body is partitioned into two functions h” and h”” which describe

the new values of z and X respectively.

The loop will be referred to as P. The data state Lo data
state function computed by the loop {(which, presumably, is not
explicitly known) will be denoted [P]. Thus D([P]) is the set of
states for which P terminates. As a shorthand notation we will

uge ¥ for the state <z,%¥>, and B for the data state to data state

function computed by the loon body, i.e.

H(Y) = H(<z,X>) = <h”(2,X),h""(z,¥%)>.

suppose the loop is not closed for DRD(f) in that this set
contains only a restricted ccllection of values (mavhe only one)
of z and that other intermediate values of z coccur as the loop

iterates. The variable z will be called the kev variable. Our

goal here is to discover some more general specification £7 which

Generalizing Specifications For Uniformly Implemented Loobs

ahle in

ot

includes each of these intermediate values of the key var
its domain. This generalization process (in one form or another)
is necesszary for a proof of correctness of the program under con-

sideration.

=

Definition — P is correct with respect to (wrt) a function £

if end only 4if (1£f) Tor all ¥ in D(F), [(PI{Y) is defined and

[PI{(¥Y}=£(Y¥).

Cefiniticon ~ A superset £7 of £ is a valid generalization of

-
£,

£ iff if P is correct wrt £, then P is correct wrt

Note that the collection of supersets of £ is partially
ordered by "is a valid generalization of." The following theorem
defines one technigue for consiructing a valid generalization of

the gpecification function f£.

Theorem 1 ~ A superset g of £ whose extension is defined by
(1) "B(Y) -> g(Y)=Y

igs a valid generalization of f.

Proof - Suppose P ig correct wrt f. Let ¥ € D(g). If Y &
D(E), the loop handles the input correctly by hypothesis. If Y
is not in D(f), we must have "3(Y) and g(¥}=¥. 'Thus the program

and g map Y to itgelf and thus are in agreement. Consequently P

is correct wrt g, and g is a valid generalization of f.

The theorem utilizes the fact that the loop must necessarily
compute the identity function over inputs where the loop predi-

cate is false. Combining +this information with the program

e

Generalizing Bpecifications For Uniformly Implemented Loops

specification f results in a valid generalization of f.
We note that if there does not exisgt a superset g of f whose

extension is defined by (1), the theorem is vacuously true. This
would occur 1f an element ¥ from the domain of f satisfied 7B(Y)
as well as £(Y)#Y (this would imply that the »program was not

of £ whose

2]

corract wrt £)}. TIf there does exist a superset
extension is defined by (1), the superset ig unique. Throughout

this report, we will refer to the function g as the hase general-

ization of the specification f.

Definition - A valid generalization £7 of f is adequate if

the loop is clesed for D{E7).

The important characteristic of an adegquate valid generali-
zation £7 is that it can be used to prove/disprove the correct-
ness of P wrt the original specification £f. Since the loop is
closed for D(£7)}, P can be proven/disproven correct wrt £7 using
standard techniques [Mills 72, Millg 75, Basu & Misra 73, Morris
& Wegbreit 77, Wegbreit 77, Misra 78]. Specifically, P is
correct wrt £ iff each of

{2} the loop terminates for all ¥ € D(f")

(3) Y € D7) & "B(Y) -> £7(Y)=Y

(4) Y € D(E7) & BY) -> E°(¥)=F£"(H(YV))
hold. 1If P is correct wrt £7, then P is necesgsarily correct wrt.
any subset of £7, including f£f. If P is not correct wrt £7, then
by the definition of a wvalid generalization, P nust not be

correct wrt £.

Generalizing Specifications For Tniformly Implemented Loovsg

Example 2 - The following program tests whether a particular
XKey appears in an ordered bhinary tree.

{success=TRT3?}

while tree ¥ NULL and Tsuccess do
if name (tree) = kev then success := TRURE
elseif name(tree) < key then tree := right{tree)
else tree := left(tree) fi
o

{sucfess = IN(treeO,key}}

The function IN{treel,key) appearing in the postcondition is a
predicate which means "the ordered binary tree treel contains a
node with name £is2ld key." The boolean variable success 1is
chosen as the key variable since it is constrained to the value
FALSE in the input specification. Thug succegs plavs the role of
z and the pair of variables <tree,key> correspond to X in the

program schema discussed above. The specification function £ is

F{<FALSE,tree,key>) = <IN(tree,key),tree” ,kev’>
where tree” and kev” are the final values of the variables tree

and Key computed by the loop, respectively. That is, since the
final values of these variables are not of interest in this exam-

auntomatically

e

ple, we specify these final values so as to b
correct. Using Theorem 1, a valid generalization of this specif-
ication is
g (<success,tree,key>) = if Tsuccess then
<IN({tree,kev}) ,tree” ,key”>
else if tree=NULL or success then

<success,tree,key>,

which is eguivalent to

<success or IN(tree,key).tree” key”>

il

g (<success,tree,key>)

-8-

lomain of the base generalization g of

b
o
.
e
[£9]
iD
%
o
'~:~£
g
i&v-».d
1y
“
[n3
e
D
e

£ includes each value of the key variable, (i.e. FALSE and TRUR

and is thus adequate. Conseguently, this generalization can be

used to prove/disprove the correctness of the program.

In most cases, however, the heuristic suggested in the
theorem isg insufficient to generate an adecuate generalization.
Indeed, the base generalization 1is an adequate generalization
only in the case when the sole reason for the closure condition
not holding is the existence of potential final values of the key
variable {(e.g. TRUE in the example) which are absent from D(f).
In order to obtain a ¢eneralization that includes general values
of the key variable, an important characteristic of the loop body

which seemsg to be present in many commonly occurring loops will

3. Uniformly Implemented Loops

Definition - Let P be a loop of the form described above.

Let A be a set, and let Z be the set of values the key variable z
may assume. Let
$7 AR % -> Z

be an infix binary operator. The loop P is uniformly implemented

with respect tc (wrt) $° iff each of

(5) B(z,X) -> h” (a 3" z,X) = a 8" h” (z,%)

h""{z,%)

{6) B{z,X) -> h""(a §7 z,X)

(7) B{z,X) -» Bla 8" z.,X)

Generalizing Specifications Tor Uniformly Implenented Loops

Sonditiong (5) and {6) of this definition state that a
moldification to the key wariable by the operation §7 causes a
slight but orderly change in the result produced by the loop
body. The change 1is salight bacaugse the only difference in the
result produced by the loop body occurs in the key variable.
This difference is orderly because it corresponds precisely to
the same §° operation that served to modify the input wvalue of
the key variable. Condition (7) specifies that such a modifica-
tion does not cause the loop predicate B to change from TRIE to

FALSE.

As a shorthand notation we define the infix operator $ asg

-

<a 87 z,d>.

I

a $Y =a§ <z,%X>
In this notation {5)-(7) are eguivalent to
(8) B(Y) -> a $ H{Y}) = H(a § ¥)
and

B(Y) -> B(a § Y).

Bxample 3 ~ Coansider again the program from fExample 1 which

multiplies natural numbers using repeated addition:

{z=0,v>=0,k>=0}
while v>0 do
Zz 1= Z + K:
v - 1

Z
v
od

z=v{

{

*k}.

Let z be the key variable. The pair <v,k> corresponds to the
variable ¥ cccurring in the above schema. The loop is uniformly

implemented wrt +, where A and % are both the set of natural

~10-

Generalizing Specifications For Uniformly Implemented Loops

numbers. Note that adding some constant to the input value of z

1
na

0]

the effect of adding the game constant to the value of z out-

£t hy the loop b»ody. Now consider the following alternative

g
c

implementation of multiplication:

{2=0,v>=0,k>=0]
while v>0 do

if z<k Then z 1= 7z 4+ k
elseif z=k then z := z * 2 * y
elee zZ = g - kK fi;
v o= v - 1 —
od

[z=vT*Kk}.

Again, let z be the key variable. This loop is not uniformly
implemented wrt +. Intuitively, this is due to the high degree
of dependence of the loop beody behavior on the value of the key
variable. The result of this dependence is that adding some con-
stant to the value of z causeg an unorderlf change in the value

of z output by the loon body.

The reader may wonder if the second multiplication program
above might be uniformly implemented wrt some operation other
than +. We remark that any loop is uniformly implemented wrt &7
: A X Z -> 72 defined by

a $” z = z
for all a € A and z € Z. TFor the purpose of this report, we rule
out such trivial operations, i.e. we require that for any z & 2,

there exists scome a 2 A such that

a $’ z £ z.

With this assumption, there does not exist an operation wrt which

the second of the above loops is uniformly implemented (or more

P

Generalizing Swpecifications For Uniformly Implemented Loops
briefly, the loop is not uniformly implemented). To see this,

Tude

suppose the loop were uniformly implemented wrt $7 : A X Z => Z.
Select z=0, a € A such that a $7 0 # 0, and k=a 3”7 0. #We evalu-

ate condition (5) as follows:

B{z,X) -> h7{a &7 z,%) = a 27 h7(z,%)
i.e. Ty o> D ~> h*(a %7 0,<v,k>) = a 87 h"{(0,<v,k>)
i.e. v > 0 -> h” (k,<v, k>) = a & h'{0,<v,k>)
i.e. v > 0 —> k% 2xy = a $7 h™{0,<v,k>)

which implies
v>0 & k>0 -> k¥*2%y = a $° k.

Since the term k*2%v will vary with different values of v where k
is positive, and a $° k ig independent of v, this condition is
falge and thus {5) does not hold. We conclude that the second
multiplication vrogram above ig not uniformly implemented. That
is, there does not exist a nontrivial modification that can be
applied to the variable z which alwavs results in a slight and

orderly change in the result produced by the loop body.

The results vresented here are based on the following lenmma
concerning uniformly implemented loops. The lemma describes the
output of the loop for some modified input a $ Y (i.e. ([Pl{a 3
¥}) in terms of the output of the loop for the input Y (i.e.
[P](¥)) and the output of the loop for the input a $ [PI(Y) (i.e.

[Pl1(a & [PI(Y))).

Lemma 1 - Let P be uniformly implemented wrt 3°. Then

(9) Y € D([P]) —-> iP](a $ ¥)=[Pl(a § [PI1(Y)).

..

Ceneralizing Specifications For

Proof - We use induction on the number of

Y. For the base casge of 0 iterations, [Pl (¥Y)=Y, and
helds. Suppose it holds for ¥ values reguiring n-1
where n > 0. Let Y1 regquire n iterations. Since n >
holds. By (7), B(a $ Yl). WNote that H(Y1l) requires np-1
tions on P; thus by the inductive hypothesis

[Pl(a 3 H(¥1l)) = [Pl(a S [P} (H(YD))).
Due to the uniform implementation this isg

(Pl {H{a § ¥v1)) = [Pl(a $ [P](1(¥1))).
Using the loop property B(Y) -> [P]1(¥)=I{P](E(Y)) on both
get

fPl1{(a & Y1) = [Pl(a § [P](¥Y1)).
Thus the inductive step holds and the lemma is proved.

The general idea behind our use of the lemma is as

Suppose the wvalue [P]({Y) is known for some particulat
suppose we know what the loop produces for the input Y.

tion, suppose that, given the result [Pl (Y).,

[P1(Y}) is also known. With this information, we can

Lemma 1 to "solve" for the

This additional information concerning the input/ocutput

of the loop can be used as an aid

eralization of the specification f.

How can we find the wvalue [P]{Y)

[PI1(¥Y))} for some ¥? The key lies

correct wrt £. If P is not correct wrt £,

f obtained by the

13-

then

and then the wvalue

any generalization

i
U)

iterations of P an
the lemma

iterations

0, B{Yl)

cides we

follows.
Y. T.e.

In addi-

the quantity [P](a $

use

(possibly unknown) value [P]l(a $ Y).

behavior

in constructing a valid gen-

[Pl (a 3

in assuming the loop P is

of

technique will be a valid generalization by

~

Generalizing Specifications Por Uniformly Implemented Loops
2 v i)8

definition. Under this assumption, [P](Y) is known for ¥ € D(f),
i.ee ¥ € D(E) ~> [PI(¥Y)=F(¥Y), and hence Lemma 1 implies

(10) Y € n(f) -> [Pl{a $ YV)=[Pl(a § £(¥)).

Consider now the base generalization g of £ defined in
Thecrem 1. Recall that g is simply £ augmented with the identity
function over the domain where the loop predicate 2B is false.
Assuming as before that P is correct wrt £, P is then correct wri
g by Theorem 1l; hence Y € D(g) -> [P]1(¥)=g(¥). Thus (10) implies

(L1) Y € D(f) & a § £(Y) € D(g) -> [Pl(a § ¥Yi=g(a $ £(¥}).
Thus we can “"solve" for the behavior of the loop on the input a $
Y, assuming Y € D(f), a 8§ £(¥) € D(g) and P is correct wrt f.
This suggests that the superset £ of f whose extension 1is

defined by

(12) Y € D(f) & a 5 £(¥Y) € D(g) -> £f7{a 3 ¥Y)=g(la § £(V))
is a valid generalization of f. Before giving a formal proof of
this result, however, we first congider the question of the
existence of such a superset. Specifically, it ccould be that for
some a and Y satisfying Y € D(f) and a $ £(Y) € D(g}, that a $ ¥
€ D(f} and £(a $ ¥Y) # g(a § £(Y})), which would imply fl(a $ V) #
F{a §$ Y). In this case, a valid generalization of f based on
(12} cannct exigt (it would have to be ambiguously defined). The

following theorem states that this implies P is not correct wrt

£.

Theorem 2 - If P is correct wrt £, there exists a superset
£7 of f whose extension is defined by (12), i.e.

Y € D(f) & a 3 £(Y) € D(g) -> £f7(a $ V)=g(a S F(Y}).

—1d-

Generalizing Specifications For Uniformly Implemented Loops

Proof - Let £7 be the function computed by the loop, i.e.
[P]. Since P isg correct wrt £, P is correct wrt g, and £7 is a

superset of both £ and g. By the lemma

for all ¥ & D(£). Since €7 (Y)=£(Y) for Y € D(Ff} and £7(Y)=g(Y)
for Y & D{g), (12) holds. The subset of £’ which contains £ and

whose extension ig defined by (12) satisfies the theorem.

The following theorem is the central result presented here
The theorem formalizes the use of Lemma 1 in the manner suggested
above, i.e. that the superset described in the previous theoren

is a valid generalization of the original specification.

Theorem 3 - A superset £~ of f whose extension is defined by
(12), i.e.
Y e D) &a s £(Y) € Dlg) -> £7(a § ¥)=gla § £(¥V)),

is a valid generalization of f.

Proof ~ Suppose P is correct wrt f. Let ¥ € D(f) and a §
£(Y) € D(g). By Lemma 1 [Pl(a $ V) = [Pl(a $ [PI1(Y)). Since P
is correct wrt £ this is [Pl(a 3 ¥) = [P]l{(a $ f(¥)). By Theorem

1, P is correct wrt ¢. Using this, the equality can be written

as [Pl(a § Y) gf{a 3 £(¥)). Substituting wusing (12) vields

i

iPi(a 5) £°(a 3 ¥). Thus P and £” are in agreement on the
input a $ Y and conseguently are in agreement on any input in
D(f7). Hence P is correct wrt £° and thus £° is a valid general-

ization of f.

Generalizing Specifications Por Uniformly Implemented Loops

The zignificance of Theorem 3 is that it provides a guide-
line for generalizing the specification of a uniformly imple-
mented loop. If the loop is closed for the domain of the result-
ing specification, the generalization can then he used to

prove/disprove the program correct wrt the original specifica-

tion.

4. Applications

In this section we i1llustrate the use of Theorem 3 with a
number of example programs which fall into either of two
subclasses of uniformly implemented loops. The subclasses
correspond to the two possible circumstances which can occur when
a $ £(Y) of condition (12} belongs to the set D(g): the Ffirst,
because "B(a & f(Y)); and, the second, because a 5 £(¥Y) & D(f).
In each of these situations, condition (12) +takes on a

particularly gimple form.

Definition - 2 uniformly implemented loop satisfying

"B{Y) -> "B{(a $ V)

fte
{n
L

Type A loop.

Observe that this condition along with (7) indicates that a
Type A uniformly implemented loop satisfies
B(Y) <-> B(a § Y),
i.e. the value of the loop predicate B is independent of a change

to the data state by the operator $.

Generalizing Specifications For Uniformly Implemented Loops

The intuition behind a Type A uniformly implemented loop is
as follows. Whenever an execution of a Type A loop terminates

{i.e. "B(Y) holds) and the resulting data state is modified bv
the operator 3, the resgult is a new data state which, when viewed
as a loop input, corresponds to zero iterations of the lcop (i.e.
the predicate B is still FALSE despite the modification). This

property is reflected in the following corollary.

Corollary 1 - Let P be a Type A loop. A superset f° of £
whose extension is defined by
{(13) Y e D(f) -> £7(a $ ¥)=a § £(Y)

is a valid generalization of fF.

Proof - The proof consists of showing that (12) and (13) are
equivalent for a Type A loop whiéh is correct wrt £. By Theorem
3, the corollary then holds. Let P bhe a Type A loop which is
correct wri £, A consequence of the correctness property is that
"B(£(Y)) for all ¥ € D(f). Since P is a Type A loop, this im-
plies "Bl{a $ F(Y)}). Thus a $ £(Y) € D{g) and g(a $ £(Y))=a $

£(¥Y). Ceonseguently (12) and (13) are eqguivalent.

Qf course, once a generalization £° has been obtained via
Corollary 1, there 1is no reason why that result cannot be fed
back into the corollary to obtain a (possibly) further generali-
zation £°° (using £° for £, £°° for £7). This notion suggests

the following general case of Corollary 1.

Corollary 2 - Let P be a Type A loop. A superset f7 of f

whose extension is defined by

17—~

£ (als(a2% ... (an$Y) ...))=al$(a2% ... (anS£(¥}) ...)

#

Example 4 - Consider the following program to compute ex-

ponentiation.

{w=1,c>0,d4>=0}

while & > 0 do
i1f odd(d) then w 1= w * ¢
C := c*c; d:=a/2 T
od

lw=cT " ao}

ih
l—-l!

e

The infix operator " appearing in the postcondition represents
integer exponentiation. 1In this example, w plavs the role of the
Key variable z, and the pair <c¢,d> corresponds to the variable X.
We now consider wrt what operation the loop might be uniformly
implemented. For anv operation $°, (7) holds (because w does not
appear in the loop predicate) as does (6) (because the values
produced in ¢ and d are independent of w). Furthermore, {5) must
hold for inputs which bypass the updating of w. Thus the unifor-
mity conditionsg reduce to
d >0 & odd(d) -> (a $" w) * ¢ = a &7 {(w * ¢)
Due to its associativity, it is clear the loop is uniformly im-
plemented wrt *, where the sets A and Z are the set of integers.
Since the key variable does not appear in the loop predicate, it
is necessarily a Type A loop. Let ¢>0 and d4>=0. The specifica-~
tion function here is
F(<l,c,d>) = <¢ ~ d,c”,8">

where ¢” and d4” are the final values computed by the loop for the

~18-

Generalizing Specifications Tor Uniformly Implemented Loons
variables ¢ and 4. Applving Corollarvy L,
(<a*l,c,d>) = <a*{c ~ d),c”,a">
is a valid generalization of f. Since this helds for all a, the
definition of £7 can be rewritten as
FP{<w,c,d>) = <w*{c AY o, d .,
The generalization £7 is adeguate and can thus be used to test
the correctness of the program wrt the original specification.
Applying (2), (3) and {4} from above, these necessary and suffi-
cient verification conditions are
-~ the loop terminates for all o>0, d>=0,
- =0 > wy=y*{c 7 d}, and
- w¥{c 7 d) is a loop constant (i.e. <0 ™ 40 = w¥*(c a) is
a loop invariant),
respectively. In Section 5, we will discuss & gimpiification of
the last of these verificaticn conditions which applies for uni-—
formly implemented Jloops.

Bramble 5 [Misra 7%2] - The following program construckts the
preorder traversal of a binary tree with root node r. The pro-
gram uses a stack variable st and records the traversal in & sa-
quence variable seqg.

{seq:NULL, =(r} /* stack st contains only the root node r */}
while st ¥ BMPTY do
D <= st: /% pop the top off the stack */
seq := seq [I name (p); /% concatenate name of p to seqg */
if right(p) # WIL then st <= right (o) £i; /% push onto st */
if left(p) # NIL then st <= left{p) fi
S Laeh 2k
{seg=PREORDER (1) }
The function PREORDER(r) appearing in the posteondition is the

Generalizing Specifications For Uniformly Implemented Loops

sequence consisting of the preorder traversal of the binary tree
with root node r. Let seqg be the key variable. The same reason-
ing employed in the previous example indicates here that the loop
is uniformly implemented wrt ||, where the sets A and % are the
set of all strings. It is a Type A lcoop. The specification
function is

£(<NULL, (r} >} = <PREORDER(r),st”>.
Again, the ~ notation is used to represent the final values of
variables that are of no interest. Applving Corollary 1 we obh-
tain

£7 (<seq, (r)>) = <seq| |PREORDER(r) ,st”>
as a valid generalization of £. In this case, £f7 is not adeguate
since it does not specify a behavior of the loop for arbitrary

values cf the stack st. We will return to this example after

considering another subclass of uniformly implemented loops.

Definition - A uniformly implemented loop satisfying

"B(Y) -> a $ Y € D(f)

is a Type B loop.

The intuition behind a Type B uniformly implemented loop is
as follows. Whenever an execution of a Type B loop terminates
(i.e. "B(Y) holds}) and the resulting data state is modified by
the operator %, the result is a new data state which is a "valid"
starting point for a new execution of the loop (i.e. this new
state is in D{(f})}. This property is reflected in the following

corollary.

20

Uniformly Implemented LooDs

[te]
[#5]

o]
]
9]
P
n
5}
&
F
E"'
8]
o]
il
!:J
Q
=

Generalizin

Corollary 3 - Let P be a Type B loop. A superset 7 of
whogse extension is defined by
(14) Y & D{f) ~> £7(a § ¥)=£f(a & £(¥))

is a wvalid generalization of f.

Proof - The proof consists of showing that (12) and (14) are
equivalent for a Type B loop which is correct wrt f. By Theorem
3; the corollary then holds. Let P he a Type B loop which is
correct wrt f£. A consequence of the correctness property is that
"B(E{Y)) for all ¥ € D(f). Since P is a Type B loop, this im-
plies a § £(Y) @ D(f). Thus a $ £(¥Y) € D{g) and g(a $§ £(V))=Ff(a

§ £(Y)). Consequently (12) and (1l4) are eguivalent.

As before, a general case of this corollary can be gstated

which corresponds to an arbitrary number of its applications.

Corollary 4 - Let P be a Type B loop. A superset f£° of £
whose extension is defined by
Y & D{f) & n>0 ->
£7(als(a28(...8(anfY) ...)))=Ff(alsf (a28Ff (.. SE{an3E{¥)})...)))

is a valid generalization of f.

Example 5 {(continued) - We now consider the problem of
further deneralizing the derived specification in the previous
example. The variable for which the lcop is not cleosed, st, will
now be the key variable. Consider an operation a $° st that has
the effect of adding an element a to the stack st. Before being

more precise about this operation, we consider how the loop hody

works, and how its output depends on the value of the key vari-

-21-

)]

[

niformly Implemented Loobs

)
0
jort
i~
=]
O
o]
T
e
Q
]
n
=
2
i

Generalizing
able st.

We observe that the loop body behavicor relies heavilv on the
characteristics of the node on the top of the stack. Consegquent-
ly, a modification a $7 st to st which pushed a new node a onto
the top of st would not cause a slight and orderly change in the
result produced by the loop body and the uniformity conditions
{5)-(7) would not hold. However, because the loop body behavior
seems to be independent of what lies underneath the top of the
stack, we suspect the loop is uniformly implemented wrt ADDUNDER,
where A is the set of binary tree nodes, Z is the set of stacks
of binary tree nodes, and a ADDUNDER st is the stack that results
from adding a to the bottom of st. Conditions (5)-(7) for this

operation indicate that, indeed, this is the case.

Let £ be the generalization £° from the previous example.
In keeping with the convention described above, since st is now
the key variable, we will reverse the order in which the two
variables appear in the data state, i.e. we will write <st,seqg>

instead of <seq,st>.

The program is a Type B uniformly inplemented loop since
SL=EMPTY -> <a ADDUNDER st,seqg> &€ D({f)
where a is a node of a binary tree, and specifically
(15) st=EMPTY -> f(<a ADDUNDER st,seq>)=<st”,seq]|PREORDER(a)>.
Applying Corollary 4, if {r,an, ... ;al) is an arbitrary stack
(with r on top, al\on the bottom)

£°{(<(r,an, ... ,al),seq>) =

-

Generalizing Specifications For Uniformly Implemented Loops

£7(als(a28(... $(anS<(r),seg>) ...))) =

C(als$f(a2se(... $E(an3f(<{r),seg>}) v.. })) =

Fn

Hh

£{al$f (a2Sf(... $f(anS<st”,seg||PREORDER(X)>) ... J)}.
Recall that st” refers to the final value of st computed by the
loop. The loop predicate indicates this will alwavs be the value
EMPTY. Hence (15) can be applied from inside out giving

f(al$£(a288(... $<st”,seq||PREORDER(r) | |PREORDER(an)> ... }))

<st”,seq| | PREORDER (r) | | PREORDER (an) || ... | |PREORDER(al)>.
This resulting specification can be used to prove the correctness

of the program.

[

mxample 8 [Gries 79] -~ The following program computes
Ackermann®s function wusing a sequence variable s of natural
numbers. The notation s({l) is the rightmost element of s and
5(2) is the second rightmost, etc. The seguence s(..3) is s with
5(2) and s(l) removed.

{s=<m,n>,m>=0,n>=0}
while size(s) ¥ 1 do

if s(2)=0 then s:=g(..3)|]|<s(1)+1>

elgeif s{l)=0 then g:=s(..3)}{|<=s(2)=1,1>

elase s:=s5(..3)Y1|<s(2)-1,8(2),s{1)~-1> fi
od

{s=<E(m,n)>}

The function A(m,n) appearing in the postcondition in Ackermann’s
function. The specification function is

£(<s(2) ,s(L)>)=<A(s(2),s{1))>.
Let s be the key variable. As the locop body behavior is indepen-

dent of the leftmost portion of s, the loop is uniformly imple-

=23~

Generalizing Specifications For Uniformly Implemented Loops

mented wrt |, whare A is the set of natural numbers, 7% ig the set
of sequences of natural numbers, and als = <a>!|s. The program
ig also a Tvpe B loop. By Corollarv 4,
£ (<s(n),s(n~1); ... ,s{l)>} =
E9(s(n)$(s{n=-1)8(... $(s(3)$<s(2) ,s(1}>) ...))) =
Elem)SE(s(n-1)$£(.. $E(s{(3)5E(<s(2),s(1)>)) ...)} =
Fle(m)SE(s(n-L)$E(.. $E(s(3)$<a{s{2),8(1)>) ... })) =
E(s(n)S$f(s(n-L)8F(... S$SFE(<s(3),A(s(2),8(l))}>) ...))) =

f{s(n)SE(s(n-1)$E(... $<A(s(3),A(s(2),s(1)))> ... }))

<Af{s(n},A(s(n-1}, ... ,A(s(3),2{s{2),s(L}}) v })>

is a valid generalization of f.

5. Simplifying the “Iteration Condition”

The view of WHILE loop verification presented here is one of
a two step process, the first step being the discoverv of an ade-
quate valid generalization £ of the loop specification £, the
second being the proof of 3 basic conditions (i.e. (2)-(4)) based
on this generalization. We have seen that the uniform nature of
a loop implementation may be used in the first step as an aid in
discovering an appropriate generalization. In this section, we
will exploit the same loop characteristic to substantially sim-
plify one of the conditions which must be proven in the second

step of this process.

The verification condition of interest is (4) above, i.e.

Y € D(E7) & B(Y) -> £°(Y)=£7(H{Y)) .,

24—

Generalizing Specifications For Uniformly Implemented Loops

and 1s labeled the iteration condition in [Misra 78]. This con-

diticn assures that as the loop executes, the intermediate values

o

of ¥ remain in the same level set of £f7, i.e. the value of f° is

constant across the loop iterations. Previously we argued that

o

if P is uniformly implementad wrt 57, a change in the Lkey vari-
able by $7 causes a slight but orderly change in the result pro-
duced by H. Roughly speaking then, the behavior of H is largely
independent of the key variable. If £° is chosen so as to be
egqually independent of the kKey variakle, and the zhove condition
holds for Y=<z ,X> where ¥ is arbitrary but the key variable z has
a specific simple value, we might expect the condition to hold
for all Y. Such an expectation would be bhased on the belief that
the truth or falsity of this condition would also be largely in-

dependent of the key variable.

We formally characterize this circumstance in the following

definition.

Definition - Let P be a loop of the form described above. A

generalization £7 of £ is represented by £ iff

(16) ¥ € D{f) & B(Y) —> £ (¥VI=F"(5(Y))

(17) Y € D(£7) & B(Y) -> £ (¥)=£"("(¥)).

- =l

Thus 1f £7 is represented by £, condition (16) can be used
in place of the iteration condition (17} in proving the loop is
correct wrt £7 (and hence wrt f). The significance of thig si-

tuation is that the iteration condition c¢an be tested with the

D G

Generalizing Specifications For Uniformly Implemented Loops

key variable constrained by initialization (as pregoribed in
D{EY) . In practice; the result is one of having to prove a sub-

stantially simpler verification condition.

The following theorems state that the use of Corollaries 2
and 4 lead to generalizations which are represented by the origi-

nal specification.

Theorem 4 - Let P be a Type A loop. Suppcse £7 is the valid
genaralization of £ Jdefined in Corollary 2. Then f£7 is

represented by f£.

Proof -~ Suppose (15) holds and select some arbitrary ¥ from
D(f") wsatisfying B(Y”"). 7Thus there exists al, ..., an € A, n>=0
and ¥ € D(f) such that

Y= al$(a2$(... S(an $ Y Voeee 1)
By the definition of & Type A loop, we must have B(Y). Applying
the definition of £° vields
£7(Y7)=als$(a28({ ... $(an$f (Y) ...))
which is
=alf(a25(... $(ansf " (H(Y)) ... })
by (16) since B(Y) holds. Since H(Y) € D(f”), there exists bhl,
.+ bm € A, m>=0, and YL € D(f) such that
H{Y) =bLls{b28(... $(bm$ ¥YI) ... }).
Furthermore,
F7(H(Y))=b1$ (b28(... $S(bmSF(Y1)) ... }).
Hence, continuing from above

£ (y) = als(... $(ans$(bXS{ ... SMOaSE(YL)) vua))) wuu)

-26-

Generalizing Specifications For Uniformly Implemented Loops

which is
=F"(als{ ... $(ans(Mdls(v.. S(bm3 YL) ..o 3)) ve.)
from the definition of £7. Thus
EP(YT)=E£7 (als({ ... ${anSEH{Y)) ...))
vhich is
=f°{H{als{ ... S5{anS ¥ } ... }})
from the uniformity condition (8). Hence
ES(YT)=£"(H(Y"))

and the theorem igs proved.

Theorem 5 -~ Let P be a Type B lcoop. Suppose £ ig the valid

generalization of f defined in Corollary 4. Then f° is

repregsented by £.

Proof - Suppose (16) holds and select some arbitrary Y° from
D(E") satisfving B(Y”"). Thus there exists al, ..., an € A, n>=0
and Y € D(f)} such that

Y'= als$(a28(... S(an § Y Y. V).

We make the assumption that B(Y). Otherwise, by the definition
of a Type B loop, the term an $ Y can be replaced by another Y €
D(f£). Since B(Y"), this process can be continued until Y¥° is
written in the form above, with Y € D(f) and B(Y). Applving the
definition of £~ vields

EO(Y")=f(alsf(a28f(.. $SF(anSE (Y)) <o)))
which is

=f{alsf(a28f(... $E(ans$E (H(Y))) ... }))

by {16) since B(Y) holds. Since H(Y) € D(f”), there exists bl,

ceep, bm € A, m>=0, and Y1 € D(f) such that

D T

Generalizing Specifications For Uniformly Implemented Loons

H(Y) =big{b25(... $(bm$¥l) ... }).
Furthermore,
EP(H(Y))=E(DLSE(D23F(... SE(bmSE(YL)) ...))).
Hence, continuing from above
E7(Y")=F£(al$f(... $E(an$F(bISF({ ... S$E{(bmSF(YL)) «uv 1)) ou.)
which is
=7 (al$({ ... ${an3(MIs(... $(bmSyYL) ...))) ... N
from the definition of £°. Thus
EC(Y)=£" (31$(... $(anSH(Y)) ...))
wvhich ig
=7 (H(al$(... $(ans$ ¥) ...)))
from the uniformity condition (8). Hence
ET(YT)y=£7(B(Y"))

and the theorem is proved.

Example 7 - Consider the exponentiation program of Example
4, The generalization obtained from Corollary 2 is
£ (w,e,d>=<w?* (¢"d) ,c”,d">.
Since £7 is represented by £, the iteration condition correspond-

ing to (16)

d>0 & odd (3) -> ¢™d c* ({c*c) " (d/2)) &

(c*c) " (d/2)

d>0 & even(d) -> ¢™d

can be used in place of that corresponding to (17)

1l

d>0 & odd (d4) -> w*(c™d) (w*c) * ((c*c) " (d/2}) &
d>0 & even(d) -> w*{c”d) = w*({c*c)"(d/2)).
The benefits of this simplification are more striking for more

complex types of key variables. To illustrate, consider the pro-

—28-

rlizing Specifications For Uniformly Implemernted Loons

- - = 1 - Sy= ey 1, o
gram o compute Ackarmann’s function in Sxample . The generali-

Since £7 is represented by F, the iteration condition
m=0 -> <A{m,n)>=<n+l> &
n#El & n=0 ~> <A{m,n)>=<A(m-1,1)> &
n#0 & n¥Fl -> <A{m,n)>=<A{m~1l,A(m,n-1))>

can e used in place of

A
b
n
——
=
-~
in
j)
H
l._l
-~
.
e
e
™
o=
—
n
(W8]
-
[r
—
r‘r‘
S
,.{_
i.. t
®
e
A\
=3}

<a(s(n),A(s(n=1), ... ,A(3(3),A(s(2),8(L})) ...))>=

o

<Al{s(n},a{s(n-1}, ... ;2{s{(3),A{=(2)-2,2Y) ... ¥)>
S(2)#0 & s({1)#0 ->
<A{s{n);a(s(n-1}, ... (RA(s(3),A(s{2):s(1)}) ...))>=

-

<Als(n) A(s{n-1),; ... A(s(3},A(s{2)-1,A(s(2),s(1}~-1)}}) oo })>.

&. Recognizing Uniformly Implemented Loops

Although the problem of recognizing uniformlvy implemented

loops is in general an unsolvable problem, the following guide-

in

°

lines seem useful in a large number of situation

P

Recognizing uniformly implemented loops can be viewed as

search for an operation wrt which the loop ig uniformly imple~-

L]

mented. In practice, corndition (5) is the meost demanding con-

—20

Generalizing Specifications For Uniformly Tmplemented Loops

straint on this operation. An effective strategy, therefore,; is
to use (5) as a guideline to suggest candidate operatiens. Con-
ditions (6) and (7) must bhe proven to show the loop is uniformly

implemented wrt some particular candidate.

Often the modification to the keyv variable =z in the loop

body is performed by a statement of the form

= 2 i g(X)

&

for some dyadic operation # and function g. 1In this case, condi-

tion (3) suggests the loop may be uniformly implemented wrt # or
some directly related operation. For example, if # 1is associa-
tive, condition (5) holds for #. If # satisfies

(a # b} #c=(a fc) #b
(e.g. subtraction), and an inverse #° of # exists satisfving

a # b =g¢<c->hb # ¢ = na

(e.g. addition if # is sgubtraction), condition (5) holds for #-7.

Another commonly occurring case is when the future values of
the key variable z are independent of X, i.e.
h(z,X1) = h"(z,%X2)
for all z, X1 and X¥2. This situation arises most frequently when

z 1is some data structure which varies dvnamically as the loop

iterates. Typically, there exists some particular aspect or por-

tion of the data structure (e.g. the top of a stack, the end of a

sequence, the leaf nodes in a tree) which guides its modifica~
tion. A useful heuristic which c¢an be ewmployed in this cir-
{(i.e.

cumstance is to consider only operations which maintain

keep invariant) this particular aspect of the data structure.

-30-

Generalizing Specifications For Unifornmly Inplemented Loops

Selecting such an operation $7 guarantees that the ‘"change" ex-
perienced by the data structure in the loop bhody will be indepen-

dent of any modification $7 and thus insures condition (5) holds.

In any case, recognizing uniformly implemented loops and
determining the operation wrt which they are uniformly implement-

litated if the intended effect of the loop hody

fmda

ed is often fac
(as regards the key variable) ig documented in the program source
text. Sucﬁ documentation abstracts what the loop body does from
the method employed +to achieve thig result and thus make

analysis of the loop as a whole easier.

To illustrate, consider the following nrogram to compute the

maximum value in a subarray ali..n]l of natural numbers:

If the effect on m in the loop body were documented as

m = MAX{(m,afil),

its updating would be of the formm :=m # al[i] and the heuristic
discussed above could be employed to help determine that the loop

is uniformly implemented wrt # = MAX.

7. Related Work

The first work on generalizing functional specifications for

loops appears in [Basu & Misra 76]. These results are refined in

-3 -

Generalizing Specifications For Uniformly Implemented Loops

[Misra 78] and are studied in considerahle detail in [Misra 797.
The major contribution of this research seems to be the identi
cation of two loop classes or schemas which are "naturally prov-
able." The first «class is called the accunulating loop schema

and can be viewed as a (commonly occurring) specia

-

 case of the
Type A loops discussed here. Specifically, a program in the ac-
cumulating loop schema with associative binary operation $° in
the sense of [Basu & Misra 76] is necessarily uniformly imple-
mented wrt $° and meets the criterion for a Tvype A loop presented

here.

The second cf these classes iz called the structured data
schema. A loop in this class is uniformly implemented wrt an
operator which adds an element to the data structure being pro-
cessed in such a way that it is not the "next" element to be re-
moved from the structure (e.g. recall the use of ADDUNDER in the
tree traversal example). A loop in thig class necessgsarily meets
the criterion for a Type B loop presented here. The program to
compute Ackermann”s function does not fit in the structured data
schema. We remark that the analysis presented here relies on the
loop body computing a function, i.e. it relies on the loop body
being deterministic. Conseguently, the above comments do not ap-
ply to the non-deterministic structured data loops analyzed in

[Misra 79].

In [Misra 7%] the author states that the important common
feature between these program classes is that " ... they act upon

data in a “uniform” manner; changes in the input data lead to

~32-

Uniformly Implemented Loops

Fh
=
(3
&
ot
e
Q
23
)
b
O
L

Generalizing Speci

certain predictable changes in the result obtained.® The work we
nave described can be viewed as an attempt to characterize this
commonality and to generalize the work in [Misra 79] based on

this characterization.

More recently, {Basu 80] considers the problem of deneraliz-
ing loop specifications and uses the idea of a loop being "uni-~
form over a linear data domain.® One difference between this
work and that presented here is that Basu considers only programs
in the accumulating loop schema {(in the sense of [Basu & Misra
76] without the closure requirement). More importantly, Basu’s
idea of uniform behavior is based on the behavior of the loop as
a whole and seems to be largely independent of the loop body.
Qur approach relies solely on the characteristics of the loop

hody.

Misra points out in [Mista 78, Misra 791 that the iteration
condition for his structured data schema can be simplified in a
manner similar to that presented here; our results show that the
same simplification can be applied to his accumulating loop sche-
ma. Again, an appropriate view of our research is one of gen-
eralizing this earlier work by investigating the theory which un-

derlies thege phenomenon.

8. Summary and Conclusions

It is felt that the key to reading, understanding and veri-

fying program loops is generalizing the behavior of the locp over

v

restricted set of inputs to that over a more general set of in-

~33=

I

ons For Uniformly Implamented Loops

H™

Generalizing Specificat

]

-
"t
28

puts, The vi here ig

M

w of this generalization process presente
one of ascertaining how changes in values of particular input

variables affect the subseguent computation of the loon. This

QO

process is facilitated if these changes correspond to particular-

-

1y simple modifications in the result produced by the loop body.

] .

Of course, the simplest possible modifications in the result
produced by the loop body would be no modifications at all, i.e.
the output of the loop body (and hence the loop) is complately
independent of changes in these input variables. This situation,
however, occurs rarely in practice since it implies that the in-
put values of these variables serve no purpose in view of the in-
tended effect of the loop. It is felt that the definition of &
uniformly implemented loop presented here is the "next best" al-
ternative, and yet a large number of commonly occurring loops
seem t0o possess this property. The definition states that in
terms of the execution of the loopn body, prescribed changes in
the input wvalue of the key variable affect only the final value
of the key variable; all other final values are indervendent of
the change. Just as importantly, the modification caused in the
final value of the key variable is necessarily the same as the
change in its corresponding input value. This property is analo-
gous to that possessed by a function of 1 variable with unit
slope in analytic dgeometry: incredsing the input argument by
some constant causes the function value to be increased by exact-
ly the same quantity. Taken together, these factors account for

the pleasing symmetry between $ and #H in condition (8).

Generalizing Specifications Tor Uniformly Implementad Loops

Viewed as a verification technique for uniformly implemented
loops,;, the procedure degcribed here can be thought of as
transforming the problem of discovering the general loop specifi-
cation into the problem of discovering the operation with respect
to which the loop ig uniformly implemented. Clearly, this is of
no benefit 1if the latter is no easier to solve than the former.
In many cases, however, it seems that simple syntactic checks are
sufficient for identifying this operation. TFor example, in the
tree traversal program, the fact that the loop hody does not test
the stack for emptiness [Basu & Misra 76] is a sufficient condi-

tion for the loop being uniformly implemented with respect to

ADDUMDER.

It is felt that the notion of uniformly implemented loops
may have an application in the program development process.
Specifically, when degigning an initialized loop to compute some
function, the programmer should attempt to construct the loop in
such a way that it is uniformly implemented with respect to some
easily stated operation. Our work indicates that these loops are
susceptible to a rather routine form of analysis. Purthermore,
implementing a loop in a uniform fashion requires maintaining a
cartain amount of independence between program variables (or
perhaps portions of program variables in the case of structures)
and a simple dependence between the input/output values computed
by the loop body. Such programs are desirable since the ease

with which a loop can be understood depends largely on the com-

plexity of the interactions and interconnections among program

Generalizing Specificationg For Uniformly Implemented TLoops

variables. We remark that the guestion of whether a given pro-
gram is "well structured" has been viewed largely as a syntactic
issue (e.g. use of a restricted set of control structures): we

offer the definition of a uniformly implemented locp as an ate

tempt at a characterizaticon of a semantically well structured

program.

GCeneralizing 8pecifications For Uniformly Implemented TLoops

%. Referencses

[Rasu 80]
Basu, &. A HNote on Synthesis of Inductive Assertions, TEER
Transactions on Software Engineering, SE~S (January, 1980).

[Basu & Misra 75]
Basu, 3. and Misra, J. Proving Loop Programs, I
tions on Software Engineering, SE~1 (March, 1975

a

BEEE Transac-—

[Basu & Misra 761
Basu, 5. K. and Misra, J. Some Clagses of Naturally Prov-
able Programs, Proc. 2nd International Ceonf. on Sofiware
Engg., San Francisco, Oct. 1975. T

{Gries 7%]
Gries, D. 1Is Sometime Ever Better Than Alway?, Transactions
on Programming Languages and Systems, Vol. 1, No. 2, 0OCE

1979,

{Hoare 69]
Hoare, C. A. R. An Axiomatic Basis for Computer Program-
ming, CACM, 12 (October 1959), pp. 576-583,

fMitls 721
Mills, H. D. Mathematical Foundations for Structured Dro-
gramming, IBM Federal Systems Division, PSC 72-6012 (1972).

[Mills 751
Mills, H. D. The New Math of Computer Programming, CACHM, 18
(Tanuary 1975).

[Misra 78]
Misra, J. Some Aspects of the Verification of Loop Computa-
tions, IREE Transactions on Software Engineering, SE-4 (No-
vember 1978), pp. 478-486,

[Misra 79]
Misra, J. Systematic Verification of Simple Loops, Univer-
sity of Texas Technical Report TR-27, March 1979.

[Morris & Wegbreit 771
Morris, J. H. and Weghreit, B. Subgoal Induction, CACM 20
(April 1977), pp. 209-222.

[Wegbreit 77}
Wegbreit, B. Complexity of Synthesizing Inductive Asser-
tions, JACM, Vol. 24 (July 1977}, Pp. 504-512.

3T

UNCLAE SIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. R%RT NUMBER . 2. GOVT_ACCESS'ON NGQ. 3. RECIPIENT'S CATALCG NUMBER
A, TITLE (and' Subtitle) . 5 TYPE QOF REPORT & PER|OD COVERED
GENERALIZING SPECIFICATIONS FOR UNIFORMLY : Technical Report

IMPLEMENTED LOOPS
6. PERFORMING ORG. REFORT NUMBER

AREA & WORK UNIT NUMBERS

TR-1116
7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(S)
Douglas D. Dunlop and Victor R. Basili AFOSR-F49620-80-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK

Department of Computer Science
University of Marvland
College Park, Maryland 20742

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Math & Info Sciences, AFOSR : October 1981

Bolling AFB : . 13. NUMBER OF PAGES

Washington, D. C. 20332 37 plus title & abstract pgs.

14, MONITORING AGENCY NAME & ADDRESS({f different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

152, DECLASSIFICATION/DOWNGRADING
SCHEDULE .

16, DISTRIBUTION STATEMENT (of this Reporf)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Reporf}

18. SUPPLEMENTARY NOTES

19. KEY WORDS {Continue on reverse side if necessary and identify by block number)

program verification, valid generalization, base generalization,
uniformly implemented lcoop, iteration conditiom

20. ABSTRACT {Continue on reversé side If necessary and identify by block number) The problem oI generallz ing
functional specifications for WHILE loops is considered. This problem occurs
frequently when trying to verify that an initialized loop satisfies some fune-
tional specification, i.e. produces outputs which are some function of the
program inputs.

The notion of a valid generalization of a loop specification is defined. A
particularly simple valid generalization, a base generalization, is discussed.
A property of many commonly occurring WHILE loops, that of being uniformly
implemented, is defined. A technique is presented which exploits this property

JAN 73
L _ 777 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD, 5r%s 1473 e=oimion oF 1 QQV 65 IS OBSOLETE UNCLASSTFIED . i /) |

UNCTLASSTFIED S SR A
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) | ’

in order to systematically achieve a valid generalization of the.loop -
specification. Two classes of uniformly implemented loops which are par-
ticularly susceptible to this form of analysis are defined and discussed.

The use of the proposed technique is illustrated with a number of applica-
tions. Finally, an implication of the concept of uniform loop implementation
for the validation of the obtained generalization is explained.

' UNCLASSIFIED

" SECURITY CLASSIFICATION QF Tuie PAGE(When Data Entered)

