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ABSTRACT

The distributions and relationships derived from the change
data collected during the development of a medium scale
satellite software project shows that meaningful results can
be obtained which allow an insight into software traits and
the environment in which it is developed. Modified and new
modules were shown to behave similarly. An abstract classif-
ication scheme for errors which allows a better understand-
ing of the overall &traits of a software project is also
shown. Finally, various size and complexity metrics are
examined with respect to errors detected within the software
yielding some interesting results.



1.0 INTRODUCTION

The discovery and validation of fundamental relation-
ships between the development of computer software, the
envircnment in which the software is developed, and the fre-
quency and distribution of errors associated with the
software are topics of primary concern to investigators in
the field of software engineering. Knowledge of such rela-
tionships can be used to provide an insight into the charac-
teristics of computer software and the effects that a pro-
gramming environment can have on the software product. In
addition, it can provide a means to improve the understand-
ing of the terms reliability and quality with respect to
computer software. In an effort to acquire a knowledge of
these basic relationships, change data for a medium scale
software project was analyzed (e.g., change data is any
documentation which reports an alteration made to the
software for a particular reason).

In general, the overall objectives of this paper are
threefold : first, to report the results of the analyses;
second, to review the results in the context of those
reported by other researchers; and third, to draw some con-
clusions based on the aforementioned. The analyses
presented in this paper encompass various types of distribu-
tions based on the collected change data. The most impor-
tant of which are the error distributions observed within
the software project.

In order for the reader to view the results reported in
this paper properly, it is important that the terms used
throughout this paper and the environment in which the data
was collected are clearly defined. This is pertinent since
many of the terms used within this paper have appeared in
the general literature often to denote different concepts.
Understanding the environment will allow the partitioning of
the results into two classes: those which are dependent on
and those which are independent of a particular programming
environment.

1.1 DESCRIPTICN OF THE ENVIRONMENT

The software analyzed within this paper is one of a
large set of projects being analyzed in the Software
Engineering Laboratory (SEL). The particular project
analyzed in this paper is a general purpose program for

.satellite planning studies. These studies include among
others: mission maneuver planning; mission lifetime; mission
launchy and mission control. The overall size of the

~software project was approximately 90,000 source lines of

.code. The majority of the software project was coded in FOR-

" TRAN. The system was developed and executes on an IBM 360.
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The developers of the analyzed software had extensive
experience with ground suppert software for satellites. The
analyzed system represents a new application for the
development group, although it shares many similar algo-
rithms with the system studied here.

It is also true that the requirements for the system
analyzed Lkept growing and changing, much more so than for
the typical ground support software normally built. Due %o
the commonality of algorithms from existing systems, the
developers re-used the design and code for many algorithms
needed in the new system. Hence a large number of re-used
(modified)
modules became part of the new system analyzed here.

An approximation of the analyzed software’s life cycle
is displayed in Figure 1 . This figure only illustrates the
approximate duration in time of the various phases of the
software’s 1life cycle. The information relating the amount
of manpower involved with each of the phases shown was not
specific enough to yield meaningful results, so it was not
included.
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1.2 TERMS

This section presents the definitions and associated
contexts for the terms used within this paper. A discussion
of the concepts involved with these terms is also given when
appropriate.

Module: A module is defined as a named subfunction, subrou-
tine, or the main program of the software system. This
definition is used since only segments written in FORTRAN
which contained executable code were used for the analyses.
Change data from the segments which constituted the data
blocks, assembly segments, common segments, or utility rou-~
tines were not included. However, a general overview of the
‘data available on these types of segments is presented in
Section 4.0 for completeness.

There are two types of modules referred to within this
‘paper. The first type is denoted as modified. These are
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modules which were developed for previous software projects
and then modified to meet the requirements of the new pro-
ject. The second type is referred to as new. These are
modules which were developed specifically for the software
project under analyses.

The entire software project contained a total of 517
code segments. This quantity is comprised of 36 assembly
segments, 370 FORTRAN segments, and 111 segments that were
either common modules, block data, or utility routines. The
number of code segments which met the adopted module defini-
tion was 370 out of 517 which is 72% of the total modules
and constitutes the majority of the software project. of
the modules found to contain errors 49% were categorized as
modified and 51% as new modules.

Number of Source and Executable Lines: The number of source
lines within a module refers to the number of lines of exe-
cutable code and comment lines contained within it. The
number of eXecutable lines within a module refers to the
number of executable statements, comment lines are not
included.

Some of the relationships presented in this paper are
based on a grouping of modules by module size in increments
of 50 lines. This means that a module containing 50 lines
of code or less was placed in the module size of 50: modules
between 51 and 100 lines of code into the module size of
100, ete. The number of modules which were contained in
each module size is given in Table 1 for all modules and for
modules which contained errors (i.e., a subset of all
modules) with respect to source and executable Iines of
code.
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Number modules

All Modules Modules with Errors
Number

-of Lines Source Exececutable Source Executable
0-50 53 258 3 49
51-100 107 70 16 25
101-150 80 26 20 13
151=-200 56 13 19 7
201-250 34 1 12 1
251-300 14 1 9 0
301-350 7 1 1 1
351-400 g 0 7 0]
>400 10 Q 6 0
Total 370 370 96 96

Table 1
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Error: Something detected within the executable code which
caused the module in which it occurred to perform
incorrectly (i.e., contrary to its expected function ).

Errors were quantified from two view points in this
paper, depending upon the goals of the analysis of the error
data. The first quantification was based on a textual rather
than a conceptual viewpoint. This type of error quantifica-
tion is best illustrated by an example. If a "¥M  yag
ineorrectly used 1in place of a "+" then all occurrences of
the "*" will be considered an error. This is the situation
even if the "#' s appear on the same line of code or within
multiple modules. The total number of errors detected in
the 370 software modules analyzed was 215 contained within a
total of 96 modules, implying 26% of the modules analyzed
contained srrors.

The second type of quantification was used to measure
the effeet of an error across modules, textual errors asso-
ciated with the same conceptual problem were combined to
yield one conceptual error. Thus in the example above, all
incorrectly used *’s replaced by +°s in the same formula
were combined and the total number of modules effected by
that error are listed. This is done only for the errors
reported in Figure 2. There are a total of 155 conceptual
errors. All other studies in this paper are based upoon the

-5 -



first type of gquantification desecribed.

Statistical Terms and Methods: All linear regressions of the
data presented within this paper employed as a criterion of
goodness the least squares principle (i.e., "choose as the
‘best fitting” line that one which minimizes the sum of
squares of the deviations of the observed values of y from
those predicted® [1]).

Pearson’s product moment coefficient of correlation was
used as an index of the strength of the linear relationship
independent of the respective scales of measurement for ¥y
and x. This index is denoted by the symbol r within this
paper. The measure for the amount of variability in ¥y
accounted for by linear regression on x is denoted as r2
within this paper.

All of the equations and explanations for these statis-
ties can be found in [1]. It should be noted that other
types of curve fits were conducted on the data. The results
of these fits will be mentioned later in the paper.

Now that the software’s environment and the key terms
used within the paper have been defined and outlined, a dis-
cussion of the basic guantification of the data collected,
the relationships and distributions derived from this quan-
tification, and the resulting conclusions are presented.

2.0 BASIC DATA

The change data analyzed was collected over a period of
33 months, August 1977 through May 1980. These dates
correspond in time to the software phases of coding, test-
ing, acceptance, and maintenance (Figure 1) . The data col-
lected for the analyses is not complete sinece changes are
still being made to the software analyzed. However, it is
felt that enough data was viewed in order to make the con-
clusions drawn from the data significant.

The change data was entered on detailed report sheets
which were completed by the programmer responsible for
implementing the change. A sample of the change report form
is given in the Appendix. In general, the form required
that several short questions be answered by the programmer
implementing the change. These queries allowed a means Lo
document the cause of a change in addition to other charac-
teristics and effects attributed to the change. The major-
ity of this information was found useful in the analyses.
The key information used in the study from the form was: the
data of the change or error discovery, the description of
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the change or error, the number of components changed, the
type of change or error, and the effort needed to correct
the error.

It should be mentioned that the particular change
report form shown in the Appendix was the most current form
but was not uniformly used over the entire period of this
study. In actuality there were three different versions of
the change report form, not all of which required the same
set of questions to be answered. Therefore s, for the data
that was not present on one type of form but could be
inferred, the inferred value was used. An example of such
an inference would be that of determining the error type.
Since the error description was given on all of the forms
the error type could be inferred with a reasonable degree of
reliability. Data not incorporated into a particular data
set used for an analysis was that data for which this infer-
ence was deemed unreliable. Therefore, the reader should be
alert to the cardinality of the data set used as a basis for
some of the relationships presented in this paper. There
was a total of 231 change report forms examined for the pur-
pose of this paper.

The consistency and partial validity of the forms was
checked in the following manner. First, the supervisor of
the project looked over the change report forms and verified
them (denoted by his or her signature and the date).
Second, when the data was being reduced for analysis it was
closely examined for contradictions. It should be noted
that interviews with the individuals who filled out the
change forms were not conducted. This was the ma jor differ-
ence between this work and other error studies performed by
the Software Engineering Laboratory, where interviews were
held with the programmers to help clarify questionable data
(8).

The review of the change data as described above
¥ielded an interesting result. The.errors due to previous
miscorrections showed to be three times as common after the
form review process was performed, i.e. before the review
process they accounted for 2% of the errors and after the
review process they accounted for 6% of the errors. These
recording errors are probably attributable to the fact that
the corrector of an error did not know the cause was due to
a previous fix because the fix occurred several months ear-
lier or was made by a different programmer, etc.

3.0 RELATIONSHIPS DERIVED FROM DATA

This section presents and discusses relationships derived
from the change data. _



3.1 CHANGE DISTRIBUTION BY TYPE

Types of changes to the software can be categorized as
error corrections or modifications (specification changes,
planned enhancements, c¢larity and optimization improve-
ments). For this project, error corrections accounted for
62% of the changes and modifications 38%. In studies of
other SEL projects, errors corrections ranged from 40% to
64% of the changes.

3.2 ERROR DISTRIBUTION BY MODULES

Figure 2 shows the effects of an error in terms of the
number of modules that had to be changed. (Note that these
errors here are counted as conceptual errors.) It was found
that 89% of the errors could be corrected by changing only
one module. This is a good argument for the modularity of
the software. It also shows that there is not a large
amount of interdependence among the modules with respect to
an error.
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NUMBER OF MODULES AFFECTED BY AN ERROR (data set: 211 textual errors)
174 conceptual errrors)

#ERRORS #MODULES AFFECTED
155 (89%) 1
9 2
3 3
6 oy
1 5
""""""""""""" Figore 2

Figure 3 shows the number of errors found per module.
The type of module is shown in addition to the overall total
number of modules found to contain errors.
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NUMBER OF ERRORS PER MODULE (data set: 215 errors)

#MODULES NEW MODIFIED #ERRORS/MODULE

36 17 19 1

26 13 13 2

16 10 6 3

13 7 6 4

y 1% 3% 5

1 k% T
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The largest number of errors found were 7 (located in a
single new module) and 5 {located in 3 different modified
modules and 1 new module). The remainder of the errors were
distributed almost equally among the two types of modules.

The effort associated with correcting an error is
specified on the form as being (1) 1 hour or less, (2) 1
hour to 1 day, (3) 1 day to 3 days, (4) more than 3 days.
These categories were chosen because it was too difficult to
collect effort data to a finer granularity. To estimate the
effort for any particular error correction, an average time
was used for each category, i.e. assuming an 8 hour day, an
error correction in category (1) was assumed to take .5
hours, an error correction in category (2) was assumed to
take 4.5 hours, category (3) 16 hours, and category (4) 32
hours.

The types of errors found in the three most error prone
modified modules (#*# in Figure 3) and the effort needed to
correct them is shown in Table 2. If any type contained
error corrections from more than one error correction
~category, the associated effort for them was averaged. The
‘fact that the majority of the errors detected in a module
was between one and three shows that the total number of
errors that occurred per module was on the average very
small.



The twelve errors contained in the two most error prone
new modules (** in Figure 3) are shown in Table 3 along with
the effort needed to correct them.
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NUMBER OF ERRORS AVERAGE EFFORT[
{15 total) TO CORRECT
misunderstood
or incorrect
specifications 8 24 hours

inecorrect design

or implementation

of a module

component 5 16 hours

clerical error 2 4.5 hours
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EFFORT TO CORRECT ERRORS IN THREE MOST ERROR PRONE
MODIFIED MODULES

Table 2
NUMBER OF ERRORS AVERAGE EFFORT

(12 total) TQ CORRECT
misunderstocd
or incorrect
requirements 8

32 hoursa

incorrect design
or implementation
of a module 3 0.5 hours
clerical errof 1 0.5 hours
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EFFORT TO CORRECT ERRORS IN THE TWO MOST ERROR PRONE
NEW MODULES
Table 3
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3.3 ERROR DISTRIBUTION BY TYPE

In Figure 4 the distribution of errors are shown by type. It
can be seen that #48% of the errors were attributed to
incorrect or misinterpreted functional specifications or
requirements.

The classification for error used throughout the
Software Engineering Laboratory is given below. The person
identifying the error indicates the class for each error.

A: Requirements incorrect or misinterpreted
B: Functional specification incorrect or misinterpreted
C: Design error invloving several components
1. mistaken assumption about value or structure of
data
2. mistake in control logic or computation of an
expression )
D: Error in design or implementation of single component
1. mistaken assumption about value or structure of
data
2. mistake in control logic or computation of an
expression _ :
E: Misunderstanding of external environment
F: Error in the use of programming language/compiler
G: Clerical error
H: Error due to previous miscorrection of an error

The distribution of these errors by source is plotted
in Figure 4 with the appropriate subdistribution of new and
modified errors displayed. This distribution shows the
majority of errors were the result of the functional specifw
ication being incorrect or misinterpreted . Within this
category, the majority of the errors (24%) involved modified
modules This is most likely due to the fact that the modules
reused were taken from another system with a different
application. Thus, even though the basic algorithms were the
same, the specification was not well enough defined or
appropriately defined for the modules to be used under
- slightly different circumstances.
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% ERRORS OBSERVED
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The distribution in Figure ¥ should be compared with
the distribution of another system developed by the same
organization shown in Figure 5. Figure 5 represents a typi-
cal ground support software system and was rather typical of
the error distributions for these systems. It is different
from the distribution for the system we are discussing in
this paper however, in that the majority of the errors were
involved in the design of a single component. The reason
for the difference is that in ground support systems, the
design is well understood, the developers have had a reason-
able amount of experience with the application. Any re-used
design or code comes from similar systems, and the require~
ments tend to be more stable. An analysis of the two distri-
butions makes the differences in the development environ-
ments clear in a quantltatlve way.
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The percent of requirements and specification errors is
consistent with the work of Endres’[1]. Endres found that
46% of the errors he viewed involved the misunderstanding of
the functional specifications of a module. Our results are
similar even though Endres’ analysis was based on data
derived from a different software project and programming
environment. The software project used in Endres” analysis
contained considerably more lines of code per module, was
written in assembly code, and was within the problem area of
operating systems. However, both of the software systems
Endres analyzed did contain new and modified modules.

Of the errors due to the misunderstanding of a module’s
specifications or requirements (48%), 20% involved new
modules while 28% involved modified modules.

Although the existence of modified modules can shrink
the cost of coding, the amount of effort needed to correct
errors in modified modules might ocutweigh the savings. The
effort graph (Figure 6) supports this viewpoint: 50% of the
total effort required for error correction occurred in modi-
fied modules; errors requiring one day to more than three
days to correct accounted for 45% of the total effort with
27% of this effort attributable to modified modules within
these greater effort classes. Thus, errors occurring in new
modules required less effort to correct than those occurring
in modified modules.
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The similarity between Endres’ results and those
reported here tend to support the statement that independent
of the environment and possibly the module size, the major-
ity of errors detected within software is due to an inade-
quate form or interpretation of the specifications. This
seems especially true when the software contains modified
modules.

In general, these observations tend to indicate that
there are disadvantages in modifying a large number of
already existing modules to meet new specifications. The
alternative of developing a new module might be better in
some cases if there does not exist good specifications for
the existing modules.

3.4 OVERALL NUMBER OF ERRORS OBSERVED

Figure 7 displays the number of errors observed in both
new and modified modules. The curve representing total
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modules {new and modified) is basically bell-shaped. One
interpretation is that up to some point errors are detected
at a relatively steady rate. At this point at least half of
the total "detected-undetected"™ errors have been observed
and the rate of discovery thereafter decreases. It may also
imply the maintainers are not adding too many new errors as
the system evolves.

It can be seen, however, that errors occurring in
medified modules are detected earlier and at a slightly
higher rate than those of new modules. One hypothesis Ffor
this is that the majority of the errors observed in modified
modules are due to the misinterpretation of the functional
specifications as was menticned earlier in the paper.
Errors of this type would certainly be more obvious since
they are more blatant than those of other types and there-
fore, would be detected both earlier and more readily.{(See
next section.)
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3.5 ABSTRACT ERROR TYPES

An abstract classification of errors was adopted by the
authors which classified errors into one of five categories
with respect to a module: (1) initialization; (2) control
structure; (3) interface; (U4) data; and (5) computation.
This was done in order to see if there existed recurring
classes of errors present in all modules independent of
size. These error classes are only roughly defined so exam-
ples of these abstract error types are presented below. It
should be noted that even though the authors were consistant
with the " categorization for this project, another error
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analyst may have interpreted the categories differently.

Failure to initialize or re-initialize a data structure
properly upon a module’s entry/exit would be considered an
initialization error. Errors which caused an "incorrect-
path" in a module to be taken were considered control
errcrs. Such a control error might be a conditional state-
ment causing control to be passed to an incorrect path.
Interface errors were those which were associated with
structures existing outside the module’s local environment
but which the module used. For example, the incorrect
declaration of a COMMON segment or an incorrect subroutine
call would be an interface error. An error in the declara-
tion of the COMMON segment was considered an interface error
and not an initialization error since the COMMON segment was
used by the module but was not part of its” local environ-
ment. Data error would be those errors which are a result
of the incorrect use of a data structure. Examples of data
errors would be the use of incorrect subseripts for an
array, the use of the wrong variable in an equation, or the
inclusion of an incorrect declaration of a variable local to
the module. Computation errors were those which caused a
computation to erroneously evaluate a variable’s value.
These errors could be equations which were incorrect not by
virtue of the incorrect use of a data structure within the
statement but rather by miscalculations. An example of this
error might be the statement A = B + 1 when the statement
really needed was & = B/C + 1.

These five abstract categories basically represent all
activities present in any module. The five categories were
further partitioned into errors of commission and omission.
Errors of commission were those errors present as a result
of an incorrect executable statement. For example, a com~
missioned computational error would be A = B * C where the
“*” should have been “+°. In other words, the operator was
present but was incorrect. Errors of omission were those
errors which were a result of forgetting to include some
entity within a module. For example, a computational omis-
sion error might be A = B when the statement should have
read A = B + C. A parameter required for a subroutine call
but not included in the actual call would be an example of
an interface omission error. In both of the above examples
some aspect needed for the correct execution of a module was
forgotten.

The results of this abstract classification scheme as
discussed above 1is given in Figure 8. Since there were
approximately an equal amount of new (49) and modified (47)

‘modules viewed in the analysis, the results do not need to
be normalized. Some errors and thereby modules were counted
more than once since it was not possible to associate some
errors with a single abstract error type based on the error
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description given on the change report form.

e S . D o S D T T N T S N D o o S o o S e S B S B A A 400 A8 B S AR R e e S T T A e i

commission omission
new modified new modified
initialization 2 9 5 9
control 12 2 16 6
interface 23 31 27 6
data 10 17 1 3
computation 16 21 3 3
2894 36% 239 12%
EREEEEEREERERERE 39636 36 5 69606 6 9 6 96 9 06 % ¥
6u4% 35%
total
new modified
initialization 7 18 —=—= 25 (11%)
control 28 8 --= 36 (16%)
interface 50 37 -—— 87 (39%)
data 1 20 --- 31 (14%)
computation 19 24 ——= U3 (19%)
115 107
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ABSTRACT CLASSIFICATION OF ERRORS
Figure 8
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According to Figure 8, interfaces appear to be the
ma jor problem regardless of the module type. Control is more
cf a problem in new modules than in modified modules. This
is probably because the algorithms in the old modules had
more test and debug time. On the other hand, initialization
and data are more of a problem in modified modules. These
facts, coupled with the small number of errors of omission
in the modified modules might imply that the basic algo-
rithms for the modified modules were correct but needed some
adjustment with respect to data values and initialization
for the application of that algorithm to the new environ-
ment.

3.6 MODULE SIZE AND ERROR OCCURRENCE
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Scatter plots for executable lines per wmodule versus
the number of errors found in the module were plotted. It
was difficult to see any trend within these plots so the
number of errors/1000 executable lines within a module size
was calculated (Table 14).

e it R B e e  ——

Module Size Errors/1000 lines
50 16.0
100 : 12.6
150 12.4
200 7.6
>200 6.4
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ERRORS/1000 EXECUTABLE LINES (INCLUDES ALL MODULES)
Table 4
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The number of errors was normalized over 1000 executable
lines of code in order to determine if the number of
detected errors within a module was dependent on module
gize, All modules within the software were included, even
those with no errors detected. If the number of errors/1000
exececutable lines was found to be constant over module size
this would show independence. An unexpected ¢trend was
observed: Table 4 implies that there is a higher error rate
within smaller sized modules. Since only the executable
lines of code were considered the larger modules were not
COMMON data files. Also the larger modules will be shown to
be more complex than smaller modules in the next section.
Then how could this type of result ccocur?

The most plausable explanation seems to be that since
there are a large number of interface errors, these are
spread equally across all modules and so there are a larger
number of errors/1000 executable statements for smaller
modules. Some tentative explanations for this behavior are:
the majority of the modules examined were small (Table 1)
causing a biased result; larger modules were coded with more
care than smaller modules because of their size; errors in
smaller modules are more apparent and there may indeed still
be numerous undetected errors present within the larger
modules since all the "paths" within the larger modules may
not yet have been fully exercised.

3.7 MODULE COMPLEXITY

Cyclomatic complexity [5] (number of decisions + 1) was
correlated with module size. This was done in order to
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determine whether or not larger modules were less dense or
complex than smaller modules c¢ontaining errors. Scatter
plots for executable statments per module versus the
cyclomatic complexity were plotted and again, since it was
difficult to see any trend in the plots, modules were
grouped according to size. The complexity points were
obtained by calculating an average complexity measure for
each module size class. For example, all the modules which
had 50 executable lines of code or less had an average com-
plexity of 6.0. Table 5 gives the average cyclomatic com-
plexity for all modules within each of the size categories.
The complexity relationships for executable lines of code
within a module is shown in Figure 9. As can be seen from
the table the larger modules were more complex than smaller
modules.

Module size Average Cyclomatic Complexity
50 6.0
100 17.9
150 28.1
200 52.7
>200 60.0

AVERAGE CYCLOMATIC COMPLEXITY FOR ALL MODULES
Table 5
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For only those modules containing errors, Table 6 gives

the

average cyeclomatic complexity.

with Table 5

plexity of the

number of errors/1000 executable

When this data is

statements and the
compared

; one can see that the average complexity of
the error prone modules was no greater than the average com-

full set of modules.
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Module Size Average Cyclomatic Errors/ 1000

Complexity executable lines
50 6.2 65.0
100 19.6 33.3
150 27.5 24.6
200 56.7 13.4
>200 T7.5 9.7

COMPLEXITY AND ERROR RATE FOR ERRORED MODULES
Table 6

4.0 DATA NOT EXPLICITLY INCLUDED IN ANALYSES

The 147 modules not included in this study (i.e.,
assembly segments, common segments, utility routines) con-
tained a total of six errors. These =3ix errors were
detected within three different segments. One error
ocecurred in a modified assembly module and was due to the
misunderstanding or incorrect statement of the functional
specifications for the module. The effort needed to correct
this error was minimal (1 hour or less).

The other five errors occurred in two separate new data
segments with the major cause of the errors also being
related to their specifications. The effort needed to
correct these errors was on the average from 1 hour to 1 day
(1 day representing 8 hours).

5.0 CONCLUSIONS

The data contained in this paper helps explain and
characterize the environment in which the software was
developed. It is clear from the data that this was a new
application domain in an application with changing require-
ments.

Modified and new modules were shown to behave similarly
except in the types of errors prevalent in each and the
amount of effort required to correct an error. Both had a
high percentage of interface errors, however, new modules
had an equal number of errors of omission and commission and
a higher percentage of control errors. Modified modules had
a high percentage of errors of commission and a small per-
centage of errors of omission with a higher percentage of

- 23 -



data and initialization errors. Another difference was that
modified modules appeared to be more susceptible to errors
due to the misunderstanding of the specifications.
Misunderstanding of a module’s specifications or require-
ments constituted the majority of errors detected. This
duplicates an earlier result of Endres which implies that
more work needs to be done on the form and content of the
specifications and requirements in order to enable them to
be used across applications more effectively.

There were shown to be some disadvantages to modifying
an existing module for use instead of creating a new module.
Modifying an existing module to meet a similar but different
set of specifications reduces the developmental costs of
that module. However, the disadvantage to this is that
there exists hidden costs. Errors contained in modified
nodules were found to require more effort to correct than
those in new modules, although the two classes contained
approximately the same number of errors. The majority of
these errors was due to incorrect or misinterpreted specifi-
cations for a module. Therefore, there 1is a tradeoff
between minimizing development time and time spent to align
a module to new specifications. However, if better specifi-
cations could be developed it might reduce the more expen-
sive errors contained within modified modules. In this
case, the reuse of "old" modules could be more beneficial in
terms of cost and effort since the hidden costs would have
been reduced.

One surprising result was that module size did not
account for error proneness. In fact, it was quite the con-
trary, the larger the module the less error prone it was.
This was true even though the larger modules were more com-
plex. Additionally, the error prone modules were no more
complex across size grouping than the error free modules.

In general, investigations of the type presented in
this paper relating error and other c¢hange data to the
software in which they have occurred is important and
relevant. It 1is the only method by which our knowledge of
these types of relationships will ever increase and evolve.
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APPENDIX - NUMBER
CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION
REASON: Why was the change made?

OESCRIPTION: What change was made?.

EFFECT: What w1y {or d } are changed? (Include version}

EFFORT: What i nents (or o } wars insd in detsrmining what changs was

(Menth Day  Yaar)

Nead for change determined an ... .
Change starmsd o0 .. .eivaannre

What was the etfort in person tims required 10 understand and impiement the change?
e 1 TOUF OF [es3, ] POUF t0 1 day, .1 day to 3 days, e (TR than 3 dave

SECTION B - TYPE OF CHANGE (How is this change best cheragierized?}

O Error correction O Insrvion/delation of debug code

O Planred esthancement 1 Optimization of time/space/sccuracy
[J implementation of requirements changs O Adsptation to environment changs
0 tmp of clarity, maintainability, or ¢ Yeation O Other {Explain in £

O tmprovement of usr services

Was mora then one comganem sifsctad by the ch 7 Yus No

FOR ERROR CORRECTTONS QNLY
SECTION C - TYPE OF ERARQR (How i this error best charpcterized?)

O Requirements incamect or misinterpreted O Misund vding of externsl envi T, aXCAPT languaga
[m] meuminmrmm or misinterpreted O Errec in use of progranmming language/compiler

Detign stror, ing several s O Clericat error

Error in the design or i ion of & single O Other {Exgplain in E}

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
1f the eror was in design or implementation:

Tha srror was » mittaken asumgtion sbout the value or of data

The arror was 2 mistoke in control logic or compuation of an exprassior

Change Report Form
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L0
FOR ERRQR CORRECTIONS ONLY
SECTION D - VALIDATION AND REPAIR
Whit activities were usad 10 validate the program, datect the error, snd fing its caum?
Activities Activitios Activities Activities
Usad for Successful Tried to Suceessful
Program in Detwmsting Find in Finding
Validation Errar Symptoms Cause Cause
Pre-acceptance test rung
Acteptance tesdng
Postacceptance usa
Inspection of output
Code reading by programmer
Code reading by other persan
Talks with other programmers
Specidl debug coda
Systam error. messages
Praject specific arror messages
Reading gocumentation
Traca
Dump
Ciasyreterence/attribute fist
Praof technique
Qthar {Explain in E}.
5§ What was the time usad to isolaw the caus?
——one hour or less, _.__one hour.to ane day, ... more than one day, — naver found
1 never found, was a workaround usad?______Yas No {Exptain in E)
Was this error miated to a previous change?
mammmn VS {Change Reposrt Z/0ate ) No Can't i
When did the error enter the system?
——BQUirements functional specs ____design .. coding and test ____other can't tedl
SECTION E - ADDITIONAL INFORMATION
Pleasa give any infarmation that may be helpful in categorizing the emor oF change, and understanding its cause and its
ramifications.
Marne: Authori Date:

Change Report Form
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