Technical Report TR-1235 December 1982.
NSG-5123

A METHODOLOGY FOR COLLECTING VALID
SOFTWARE ENGINEERING DATA*

Victor R. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

*Research supported in part by the National Aeronautics and Space
Administration Grant NSG-5123. Computer support provided in part by
the facilities of NASA/Goddard Space Flight Center and the Computer
Science Center at the University of Maryland.

ABSTRACT

An effective data collection method for evaluating software development
methodologies and for studying the software development process is
described. The method uses goal-directed data collection to evaluate
methodologies with respect to the claims made for them. Such claims
are used as a basis for defining the goals of the data collection,
establishing a list of questions of interest to be answered by data
analysis, defining a set of data categorization schemes, and designing
a data collection form.

The data to be collected are based on the changes made to the software
during development, and are obtained when the changes are made. To
insure accuracy of the data, validation is performed concurrently with
software development and data collection. Validation is based on
interviews with those people supplying the data. Results from using
the methodology show that data validation is a necessary part of change
data collection. Without it, as much as 50% of the data may be
erroneous.

Feasibility of the data collection methodology was demonstrated by
applying it to five different projects in two different environments.
The application showed that the methodology was both feasible and useful.

A Methodology For Collecting Valid Software
Engineering Data

Victor K. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

I. Introduction

According to the mythology of computer science, the first computer pro-
gram ever written contained an error. Error detection and error correction are
now considered to be the major cost factors in software development [1,2,3].
Much current and recent research is devoted to finding ways of preventing
software errors. This research includes areas such as requirements definition
[4], automatic and semi-automatic program generation [5,8]. functiocnal
specification [7], abstract specification [8,9,10,11], procedural specification
[1R], code specification [183,14, 15], verification [18,17,18], coding techniques
[19,20,21,22,23, 24], error detection [25], testing [26,27], and language design
[16,28,29,30,31]. _

One result of this research is that techniques claimed to be effective for
preventing errors are in abundance. Unfortunately, there have been few
attempts at experimental verification of such claims. The purpose of this paper
is to show how to obtain valid data that may be used both to learn more about
the software development process and to evaluate software development metho-
dologies in a production environment. Previous [15] and companion papers [32]
present the data and evaluation results. The methodology described in this
paper was developed as part of studies conducted by the Naval Research Labora-
tory and by NASA's Software Engineering Laboratory [33].

Software Engineering Experimentation

The course of action in most sciences when faced with a question of opinion
is to obtain experimental verification. Software engineering disputes are not
usually settled that way. Data from experiments exist, but rarely apply to the
question to be settled. There are a number of reasons for this state of affairs.
Probably the two most important are the number of potential confounding fac-
tors involved in software studies and the expense of attempting to do controlled
studies in an industrial environment involving medium or large scale systems.

Rather than attempting controlled studies, we have devised a method for
conducting accurate causal analyses in production environments. Causal ana-
lyses are efforts to discover the causes of errors and the reasons that changes
are made to software. Such analyses are designed to provide some insight into
the software development and maintenance processes, help confirm or reject
claims made for different methodologies, and lead to better techniques for
prevention, detection, and correction of errors. Relatively few examples of this
kind of study exist in the literature; some examples are. [34, 35,4, 15, 36]

To provide useful data, a data collection methodology must display certain
attributes. Since much of the data of interest for real projects are collected

-2-

during the test phase, complete analysis of the data must await project comple-
tion. Although it is important that data collection and validation proceed con-
currently with development, the final analysis must be done from a historical
viewpoint, after the project ends.

Developers can provide data as they make changes during development. In
a reasonably well-controlled software development environment, documentation
and code are placed under some form of configuration control before being
released for use by others than the author. Changes are defined as alterations
to baselined design, code or documentation.

A key factor in the data gathering process is validation of the data as they
become available. Such validity checks result in corrections to the data that
cannot be captured at later times owing to the nature of human memory. [37]
Timeliness of both data collection and data validation is quite important to the
accuracy of the analysis.

Careful validation means that the data to be collected must be carefully
specified, so that those supplying data, those validating data, and those perform-
ing the analyses will have a consistent view of the data collected. This is espe-
cially important for the purposes of those wishing to repeat studies in both the
same and different environments.

Careful specification of the data requires the data collectors to have a clear
idea of the goals of the study. Specifying goals is itself an important issue,
since, without goals, one runs the risk of collecting unrelated, meaningless data.

To obtain insight into the software development process, the data collectors
need to know the kinds of errors committed and the kinds of changes made. To
identify troublesome issues, the effort needed to make each change is neces-
sary. For greatest usefulness, one would like to study projects from software
production environments involving teams of programmers.

We may summarize the preceding as the following six criteria:

1. the data must contain information permitting identification of the
types of errors and changes made,

2. the data must include the cost of making changes and correcting
errors,

3. data to be collected must be defined as a result of clear specification
of the goals of the study,

4, data should include studies of projects from production environments,
involving teams of programmers,

5. data analysis should be historical, but data must be collected and vali-
dated concurrently with development

8. data classification schemes to be used must be carefully specified for
the sake of repeatability of the study in the same and different
environments.

-3-

Il. Schema For The Investigative Methodology

Our data collection methodology is goal oriented. It starts with a set of
goals to be satisfled, uses these to generate a set of questions to be answered,
and then proceeds step-by-step through the design and implementation of a
data collection and validation mechanism. Analysis of the data yields answers to
the questions of interest, and may also yield a new set of questions. The pro-
cedure relies heavily on an interactive data validation process; those supplying
the data are interviewed for validation purposes concurrently with the software
development process. The methodology has been used in two different environ-
ments to study five software projects developed by groups with different back-
grounds using very different software development methodologies. In both
environments it yielded answers to most questions of interest and some insight
into the development methodologies used. '

The projects studied vary widely with respect to factors such as application,
size, development team, methodology, hardware, and support software.
Nonetheless, the same basic data collection methodology was applicable every-
where. The schema used has six basic steps, listed in the following, with consid-
erable feedback and iteration occurring at several different places.

1. Establish the goals of the data collection

We divide goals into two categories: those that may be used to evaluate a
particular software development methodology relative to the claims made for it,
and those that are common to all methodologies to be studied.

... As an example, a goal of a particular methodology, such as information hid-
ing [38], might be to develop software that is easy to change. The corresponding
data collection goal is to evaluate the success of the developers in meeting this
goal, i.e. evaluate the ease with which the software can be changed. Goals in this
category may be of more interest to those who are involved in developing or
testing a particular methodology, and must be defined cooperatively with them.

A goal that is of interest regardless of the methodology being used is to
characterize changes in ways that permit comparisons across projects and
environments. Such goals may interest software engineers, programmers,
managers, and others more than goals that are specific to the success or failure
of a particular methodology.

Consequences of Omitting Goals

Without goals, one is likely to obtain data in which either incomplete pat-
terns or no patterns are discernible. As an example, one goal of an early study
[16] was to characterize errors. During data analysis, it became desirable to
discover the fraction of errors that were the result of changes made to the
software for some reason other than to correct an error. Unfortunately, none of
the goals of the study were related to this type of change, and there were no
such data available.

2. Develop alist of questions of interest

Once the goals of the study have been established, they may be used to
develop a list of questions to be answered by the study. Questions of interest
define data parameters and categorizations that permit quantitative analysis of
the data. In general, each goal will result in the generation of several different
questions of interest. As an example, if the goal is to characterize changes,
some corresponding questions of interest are: '"What is the distribution of
changes according to the reason for the change?’, "What is the distribution of

e 4-

changes across system components?', "What is the distribution of effort to
design changes?"'"

‘ As a second example, if the goal is to evaluate the ease with which software
can be changed, we may identify questions of interest such as: “Is it clear where
a change has to be made in the software?’, "Are changes confined to single
modules?”’, "What was the average effort involved in making a change?"

Questions of interest form a bridge between subjectively-determined goals
of the study and the quantitative measures to be used in the study. They permit
the investigators to determine the quantities that need to be measured and the
aspects of the goals that can be measured. As an example, if one is attempting
to discover how a design document is being used, one might collect data that
show how the document was being used when the need for a change to it was
discovered. This may be the only aspect of the document’'s use that is measur-
able.

Goals for which questions of interest cannot be formulated and goals that
cannot be satisfied because adequate measures cannot be defined may be- dis-
carded. Once formulated, questions can be evaluated to determine if they com-
pletely cover their associated goals and if they define quantitative measures.
Finally, questions of interest have the desirable property of forcing the investi-
gators to consider the data analyses to be performed before any data are col-

lected.

Consequences of Omitting Questions Of Interest

Without questions of interest, there may be no quantitative basis for satisfy-
ing the goals of the study. Data distributions that are needed for evaluation pur-
poses, such as the distribution of effort involved in making changes, may have to
be constructed in an ad hoc way, and be incomplete or inaccurate.

3.. Establish data categories

Once the questions of interest have been established, categorization
schemes for the changes and errors to be examined may be constructed. Each
question generally induces a categorization scheme. If one question is, "What
was the distribution of changes according to the reason for the change?”, one
will want to classify changes according to the reason they are made. A simple
categorization scheme of this sort is error corrections vs. non-error corrections
(hereafter called modifications).

Each of these categories may be further subcategorized according to rea-
son. As an example, modifications could be subdivided into those modifications
resulting from requirements changes, those resulting from a change in the
development support environment (e.g. compiler change), planned enhance-
ments, optimizations, and others.

Such a categorization permits characterization of the changes with respect
to the stability of the development environment, with respect to different kinds
of development activities, etc. When matched with another categorization such
as the difficulty of making changes, this scheme also reveals which changes are
the most difficult to make.

Each categorization scheme should be complete and consistent, i.e. every
change should fit exactly one of the subcategories of the scheme. To insure
completeness, the category "Other” is usually added as a subcategory. Where
some changes are not suited to the scheme, the subcategory "Not Applicable”
may be used. As an example, if the scheme includes subcategories for different
levels of effort in isolating error causes, then errors for which the cause need

-5-

not be isolated (e.g. clerical errors noticed when reading code) belong in the
"Not Applicable'" subcategory.

Consequences Of Not Defining Data Categories Before Collecting Data

Omitting the data categorization schemes may result in data that cannot
later be identified as fitting any particular categorization. Each change then
tends to define its own category, and the result is an overwhelming multiplicity
of data categories, with little data in each category.

4. Design and test data collection form

To provide a permanent copy of the data and to reinforce the program-
mers’ memories, a data collection form is used. Form design was one of the
trickiest parts of the studies conducted, primarily because forms represent a
compromise among conflicting objectives. Typical conflicts are the desire to
collect a complete, detailed set of data that may be used to answer a wide range
of questions of interest, and the need to minimize the time and effort involved in
supplying the data. Satisfying the former leads to large, detailed forms that
require much time to fill out. The latter requires a short form organized so that
the person supplying the data need only check off boxes.

Including the data suppliers in the form design process is quite beneficial.
Complaints by those who must use the form are resolved early (i.e. before data
collection begins), the form may be tailored to the needs of the data suppliers
(e.g. for use as in configuration management), and the data suppliers feel they
. are auseful part of the data collection process.

: The forms must be constructed so that the data they contain can be used to
. answer the questions of interest. Several design iterations and test periods are
generally needed before a satisfactory design is found.

Our principal goals in form design were to produce a form that:

1. fit on one piece of paper,
2. could be used in several different programming environments, and
3. permitted the programmer some flexibility in describing the

change.

Figure 1 shows the last version of the form used for the SEL studies. (An
earlier version of the form was significantly modified as a result of experience
gained in the data collection and analysis processes.) The first sections of the
form request textual descriptions of the change and the reason it was made.
Following sections contain questions and check-off tables that reflect various
categorization schemes.

As an example, a categorization of time to design changes is requested in
the first question following the description of the change. The completer of the
form is given the choice of 4 categories (one hour or less, one hour to one day,
one day to three days, and more than three days) that cover all possibilities for
design time.

Consequences Of Not Using A Data Collection Form

Without a data collection form, it is necessary to rely on the developer's
memories and on perusal of early versions of design documentation and code to
identify and categorize the changes made. This approach leads to incomplete,
inaccurate data.

NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION

REASON: Why was the change made?

DESCRIPTION: What change was made?

EFFECT: What components {or documents} are changed? (Include version)

EFFORT: What additional components {or documents) were examined in determining what change was needed? .

{Month Day Year)

Need for change determined on

Change startedon

What was the effort in person time required to understand and implement the change?

—1 hour or less, 1 hour to 1 day, 1 day to 3 days, more than 3 days

Beersr oo - o———

SECTION B - TYPE OF CHANGE (How is this change best characterized?)

Error correction O Insertion/deletion of debug code

O Adaptation to environment change

a

g

O Implementation of requirements change
O improvement of clarity, maintainability, or documentation O Other (Explain in E)
c

Improvement of user services

Was more than one component affected by the change? Yes No

Planned enhancement O Optimization of time/space/accuracy

FOR ERROR CORRECTIONS ONLY
SECTION C - TYPE OF ERROR (How is this error best characterized?)

0 Requirements incorrect or misinterpreted

O Functional specifications incorrect or misinterpreted O Error in use of programming language/compiler
Design error, involving several components O Clerical error
Error in the design or implementation of a single component O Other (Explain in E)

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
If the error was in design or implementation:

The error was a mistaken assumption about the value or structure of data

The error was a2 mistake in controf logic or computation of an expression

O Misunderstanding of external environment, except language

580-2 {6/78)

Figure 1 SEL Change Report Form (front)

FOR ERROR CORRECTIONS ONLY

SECTION D - VALIDATION AND REPAIR

What activities were used to validate the program, detact the error, and find its cause?

Activities Activities Activities Activities
Used for Successful Tried to Successful
Program in Detecting Find in Finding
Validation Error Symptoms Cause Cause
Pre-acceptance test runs
Acceptance testing
Post-acceptance use
Inspection of output
Code reading by program.mer
Code reading by other person
Talks with other programmers
Special debug code
System error messages
Project specific error messages
Reading documentation
il'ace
' Dump
i Cross-refarence/attribute fist
Proof technique
Cther (Explain in E)
What was the time used to isolate the cause?
one hour or less, one hour to one day, ____more than one day, never found
Hf never found, was a workaround used? Yes_______No (Explain in E))
Was this arror related to a previous change?
Yes {Change Report “/Date) No Can’t tell
When did the error enter the system?
—-requirements functional specs design __ coding and test —~other can't tef!

SECTION E - ADDITIONAL INFORMATION

Please give any information that may be helptul in categorizing the error or change, and understanding its cause and its

ramifications.

reane:

Date:

Authorized:

-
'

Figure 1 SEL Change Report Form (back)

5. Collect and validate data

Data are collected by requiring those people who are making software
changes to complete a change report form for each change made, as soon as the
the change is completed. Validation consists of checking the forms for correct-
ness, consistency, and completeness. As part of the validation process, in cases
where such checks reveal problems the people who filled out the forms are
interviewed. Both collection and validation are concurrent with software
development; the shorter the lag between programmers completing forms and
being interviewed concerning those forms, the more accurate the data.

Perhaps the most significant problem during data collection and validation
is insuring that the data are complete, i.e. that every change has been described
on a form. The better controlled the development process, the easier this is to
do. At each stage of the process where configuration control is imposed, change
data may be collected. Where projects that we have studied use formal
configuration control, we have integrated the configuration control procedures
and the data collection procedures, using the same forms for both, and taking
advantage of configuration control procedures for validation purposes. Since all
changes must be reviewed by a configuration control board in such cases, we are
guaranteed capture of all changes, i.e. that our data are complete. Further-
more, the data collection overhead is absorbed into the configuration control
overhead, and is not visible as a separate source of irritation to the developers.

Consequences Of Omitting Validation

One result of concurrent development, data collection, and data validation
is that the accuracy of the collection process may be quantified. Accuracy may
be calculated by observing the number of mistakes made in completing data col-
lection forms. One may then compare, for any data category, pre-validation dis-
tributions with post-validation distributions. We call such an analysis a valida-
tion analysis. The validation analysis of the SEL data shows that it is possible for
inaccuracies on the order of 50% to be introduced by omitting validation. To
emphasize the consequences of omitting the validation procedures, we present
some of the results of the validation analysis of the SEL data in section III.

6. Analyze Data

Data are analyzed by calculating the parameters and distributions needed
to answer the questions of interest. As an example, to answer the question
"What was the distribution of changes according to the reason for the change?",
a distribution such as that shown in figure 2 might be computed from the data.

Application of the Schema

Applying the schema requires iterating among the steps several times.
Defining the goals and establishing the questions of interest are tightly coupled,
as are establishing the questions of interest, designing and testing the form(s),
and collecting and validating the data. Many of the considerations involved in
implementing and integrating the steps of the schema have been omitted here
so that the reader may have an overview of the process. The complete set of
goals, questions of interest, and data categorizations for the SEL projects are
shown in a companion paper [32].

Voo D 4TmoTMY

=™,

e b

SO

1@

[}

20

W82
50
S0
40
30 R
20
20 .
19
19
3 2 SRS S |
S i R | s C
] Immn mmu_aa Debug Env PE Qther
Change Type
SEL1
. ‘5
.es 24
L8
. S
“TReg MMEMH:!I.amMﬂuMllll(ilmmmnt;l:lllmm

Change Typme F1GURE

SEL)

T
60
i 50
13
C
w_ 49
T
1S 30
M
S a0
10
0
2 SOURCES

Req

Desiga
Debug

Euv

PE

ey

Unknown

49

4 4 ,
R R i

Debug Envc 7T T Unknaun

Umﬂ»m: Env

Change Type

SEL2

Key To Figure

Hodifications caused by changes in d

ign
Muditications to insert or delete detug code

Modifications caused by changes in the harduare or softuare
environment

Planaed Enhancements

Mudifications coused by clunges in requirencats or
specificntions

Cauev

of theae modificatinns are not knoun

OF MODIFICATIONS

10

Support Procedures and Facilities

In addition to the activities directly involved in the data collection effort,
there are a number of support activities and facilities required. Included as
support activities are testing the forms, collection, and validation procedures,
training the programmers, selecting a data base system to permit easy analysis
of the data, encoding and entering data into the data base, and developing
analysis programs.

IIT Details Of SEL Data Collection And Validation

In the SEL environment, program libraries were used to support and control
software development. There was a full-time librarian assigned to support SEL
projects. All project library changes were routed through the librarian. In gen-
eral, we define a change to be an alteration to baselined design, code, or docu-
mentation. For SEL purposes, only changes to code, and documentation con-
tained in the code, were studied. The program libraries provided a convenient
mechanism for identifying changes.

Each time a programmer caused a library change, he was required to com-
plete a change report form (figure 1). The data presented here are drawn from
studies of three different SEL projects, denoted SEL1, SELR, and SELS3. The pro-
cessing procedures were as follows.

1. Programmers were required to complete change report forms for all
changes made to library routines.

2. Programs were kept in the project library during the entire test phase.

3. After a change was made a completed change report form describing
the change was submitted. The form was first informally reviewed by
the project leader. - It was then sent to the SEL library staff to be
logged and a unique identifier assigned to it.

4, The change analyst reviewed the form and noted any inconsistencies,
omissions, or possible miscategorizations. Any questions the analyst
had were resolved in an interview with the programmer. (Occasionally
the project leader or system designer was consulted rather than the
individual programmer.)

5. The change analyst revised the form as indicated by the results of the
programmer interview, and returned it to the library staff for further
processing. Revisions often involved cases where several changes were
reported on one form. In these cases, the analyst insured that there
was only one change reported per form; this often involved filling out
new forms. Forms created in this way are known as generated forms.

(Changes were considered to be different if they were made for
different reasons, if they were the result of different events, or if they
were made at substantially different times (e.g. several weeks apart),
As an example, two different requirements amendments would result in
two different change reports, even if the changes were made at the
same time in the same subroutine.)

-11~

Occasionally, one change was reported on several different forms. The
forms were then merged into one form, again to insure one and only
one change per form. Forms created in this way are known as com-
bined forms.

8. The library staff encoded the form for entry into the (automated) SEL
data base. A preliminary, automated check of the form was made via a
set of data base support programs. This check, mostly syntactic,
ensured that the proper kinds of values were encoded into the proper
fields, e.g. that an alphabetic character was not entered where an
integer was required.

7. The encoded data were entered into the SEL data base.

8. The data were analyzed by a set of programs that computed the neces-
sary distributions to answer the questions of interest.

Many of the reported SEL changes were error corrections. We define an
error to be a discrepancy between a specification and its implementation.
Although it was not always possible to identify the exact location of an error, it
was always possible to identify exactly each error correction. As a result, we
generally use the term error to mean error correction.

For data validation purposes; the most important parts of the data collec-
tion procedure are the review by the change analyst, and the associated pro-
grammer interview to resolve uncertainties about the data.

The SEL validation procedures afforded a good chance to discover whether
validation was really necessary; it was possible to count the number of mis-
categorizations of changes and associated misinformation. These counts were
obtained by counting the number of times each question on the form was
incorrectly answered.

An example is misclassifications of errors as clerical errors. (Clerical errors
were defined as errors that occur in the mechanical translation of an iterm from
one format to another, e.g. from one coding sheet to another, or from one
medium to another, e.g. coding sheets to cards.) For one of the SEL projects, 46
errors originally classified as clerical were actually errors of other types. (One
of these consisted of the programmer forgetting to include several lines of code
in a subroutine. Rather than clerical, this was classified as an error in the
design or implementation of a single component of the system.) Initially, this
project reported 238 changes, so we may say that about 19% of the original
reports were misclassified as clerical errors.

The SEL validation process was not good for verfiying the completeness of
the reported data. We cannot tell from the validation studies how many changes
were never reported. This weakness can be eliminated by integrating the data
collection with stronger configuration control procedures.

Validation Differences Among SEL Projects

As experience was gained in collecting, validating, and analyzing data for
the SEL projects, the quality of the data improved significantly, and the valida-
tion procedures changed slightly. For SEL! and SELZ, completed forms were
examined and programmers interviewed by a change analyst within a few weeks
(typically 3 to 6 weeks) of the time the forms were completed. For project SEL2,
the task leader (lead programmer for the project) examined each form before
the change analysts saw it.

-12-

Project SEL3 was not monitored as closely as SEL1 and SELR. The task
leader, who was the same as for SEL2, by then understood the data categoriza-
tion schemes quite well and again examined the forms before sending them to
the SEL. The forms themselves were redesigned to be simpler but still capture
nearly all the same data. Finally, several of the programmers were the same as
on project SELZ and were experienced in completing the forms.

Estimating Inaccuracies In The Data

Although there is no completely objective way to quantify the inaccuracy in
the validated data, we believe it to be no more than 5% for SEL1 and SEL 2. By
this we mean that no more than 5% of the changes and errors are misclassified
in any of the data collection categories. For the major categories, such as
whether a change is an error or modification, the type of change, and the type of
error, the inaccuracy is probably no more than 3%.

For SEL3, we attempted to quantify the results of the validation procedures
more carefully. After validation, forms were categorized according to our
confidence in their accuracy. We used four categories:

(1) Those forms for which we had no doubt concerning the accuracy of
the data. Forms in this cateogry were estimated to have no more
than a 1% chance of inaccuracy.

() Those forms for which there was little doubt about the accuracy of
the data. Forms in this category were estimated to have at most a
107% chance of an inaccuracy.

(3) Those forms for which there was some uncertaincy about the accura-
cy, with an estimated inaccuracy rate of no more than 30%.

(4) Those forms for which there was considerable uncertaincy about the
accuracy, with an estimated inaccuracy rate of about 50%.

Applying the inaccuracy rates to the number of forms in each category gave us
an estimated inaccuracy of at most 3% in the validated forms for SEL3.

Prevalent Mistakes In Completing Forms

Clear patterns of mistakes and misclassifications in completing forms
became evident during validation. As an example, programmers on projects
SEL1 and SELZ frequently included more than one change on one form. Often
this was a result of the programmers sending the changes to the library as a
group.

Comparative Validation Results

Figure 3 provides an overview of the results of the validation process for the
3 SEL projects. The percentage of original forms that had to be corrected as a
result of the validation process is shown. As an example, 32% of the originally
completed change report forms for SEL3 were corrected as a result of valida-
tion. The percentages are based on the number of original forms reported
(since some forms were generated, and some combined, the number of changes
reported after validation is different than the number reported before valida-
tion). Figure 4 shows the fraction of generated forms expressed as a percentage
of total validated forms.

Figure 3 shows that pre-validation SEL3 forms were significantly more accu-
rate than the pre-validation SEL1 or SELZ2 forms. When the generated and com-
bined forms are also considered, the pre-validation SEL3 data appear to be con-
siderably better then the pre-validation data for either of the other projects. We

-13-

believe the reasons for this are the improved design of the form, and the fami-
liarity of the task leader and programmers with the data collection process.
(Generated forms are shown in figure 4. Combined forms for all of the projects
represented a very small fraction of the total validated forms.)

These (overall) results show that careful validation, including programmer
interviews, is essential to the accuracy of any study involving change data.
Furthermore, it appears that with well-designed forms, and programmer train-
ing, there is improvement with time in the accuracy of the data one can obtain.
We do not believe that it will ever be possible to dispense entirely with program-
mer interviews, however.

Erroneous Classifications

Table 1 shows misclassifications of error as modifications and modifications
as errors. As an example, for SEL1, 14% of the original forms were classified as
modifications, but were actually errors. Without the validation process, consid-
erable inaccuracy would have been introduced into the initial categorization of
changes as modifications or errors.

Table 2 is a sampling of other kinds of classification errors that could con-
tribute significantly to inaccuracy in the data. All involve classification of an
error into the wrong subcategory. The first row shows errors that were classified
by the programmer as clerical, but were later reclassified as a result of the vali-
dation process into another category. For SELI, significant inaccuracy (19%)
would be introduced by omitting the validation process.

Table 3 is similar to table 2, but shows misclassifications involving
modifications. The first row shows modifications that were classified by the pro-
grammer as requirements or specifications changes, but were reclassified as a
result of validation.

Variation In Misclassification

Data on misclassifications of change and error type subcategories, such as
shown in table 2, tends to vary considerably among both projects and sub-
categories. (Misclasssification of clerical errors as shown in table 2 is a good
example.) This is most likely because the misclassifications represent biases in
the judgements of the programmers. It became clear during the validation pro-
cess that certain programmers tended toward particular misclassifications.

The consistency between projects SEL2 and SEL3 in table 2 probably occurs
because both projects had the same task leader, who screened all forms before
sending them to the SEL for validation.

=t ZIMCUMm 0

i o)

HAXMOUMY

NINVOMN CLLE-=OD0O

NIVOM OMATOR-DC

59

40

39

20

10

40

30

ce

19

S5
51
32
SELL -SEL2 SELZ
PROJECT
FIGURE 3 CCRRECTED FORMS
T
36
17
1€
SELL sELZ SELS
PROJECT
FIGURE 4. GENERATED FORMS

-15 -

SEL1 SEIL2 SEL3
Modifications classified as errors 1% 5% less than 1%
Errors classified as modifications 14% 5% R%

Table 1 Erroneous Modification and Error Classifications
(Percent of Original Forms)

Original Classification SEL1 | SEL2 SEL3
Clerical Error 19% 7% 8%
(Use of) Programming Language 0% 5% 3%

Incorrect or Misinterpreted Requirements

0% less than 1%

Design Error

BZ 1%

Table 2 Typical Error Type Misclassifications
(Percent of Original Forms)

SEL] SEL3
Requirements or specification change 1% less than 1%
Design change 8% 1z
Optimization 8% less than 1%
Other 3% less than 1%

Table 3 Erroneous Modification Classifications
(Percent of Original Forms)

-186 -

Conclusions Concerning Validation

The preceding sections have shown that the validation process, particularly
the programmer interviews, are a necessary part of the data collection metho-
dology. Inaccuracies cn the order of 50% may be introduced without this form of
validation. Furthermore, it appears that with appropriate form design and pro-
grammer experience in completing forms, the inaccuracy rate may be substan-
tially reduced, although it is doubtful that it can be reduced to the level where
programmer interviews may be omitted from the validation procedures.

A second significant conclusion is that the analysis performed as part of the
validation process may be used to guide the data collection project; the analysis
results show what data can be reliably and practically collected, and what data
cannot be. Data collection goals, questions of interest, and data collection forms
may have to be revised accordingly.

IV. Recommendations For Data Collectors

We believe we now have sufficient experience with change data collection to
be able to apply it successfully in a wide variety of environments. Although we
have been able to make comparisons between the data collected in the two
environments we have studied, we would like to make comparisons with a wider
variety of environments. Such comparisons will only be possible if more data
become available. To encourage the establishment of more data collction pro-
jects, we feel it is important to describe a successful data collection methodol-
ogy, as we have done in the preceding sections, to point out the pitfalls involved,
and to suggest ways of avoiding those pitfalls.

Procedural Lessons Learned

Problems encountered in various procedural aspects of the studies were
the most difficult to overcome. Perhaps the most important are the following.

1. Clearly understanding the working environment and specifying the
data collection procedures were a key part of conducting the investiga-
tion. Misunderstanding by the programmer of the circumstances that
require him/her to file a change report form will prejudice the entire
effort. Prevention of such misunderstandings can partly be accom-
plished by training procedures and good forms design, but feedback to
the development staff, i.e. those filling out the data collection forms,
must not be omitted.

2. Similarly, misunderstanding by the change analyst of the cir-
cumstances that required a change to be made will result in
misclassifications and erroneous analyses. Our SEL data collection was
helped by the use of a change analyst who had previously worked in the
NASA environment and understcod the application and the develop-
ment procedures used.

3. Timely data validation through interviews with those responsible for
reporting errors and changes was vital, especially during the first few
projects to use the forms. Without such validation procedures, data
will be severely biased, and the developers will not get the feedback to
correct the procedures they are using for reporting data.

4. Minimizing the overhead imposed on the people who were required to
complete change reports was an important factor in obtaining com-
plete and accurate data. Increased overhead brought increased reluc-
tance to supply and discuss data. In projects where data collection has
been integrated with configuration control, the visible data collection

-17-

and validation overhead is significantly decreased, and is no longer an
important factor in obtaining complete data. Because configuration
control procedures for the SEL environment were informal, we believe
we did not capture all SEL changes.

In cases where an automated data base is used, data consistency and
accuracy checks at or immediately prior to analysis are vital. Errors in
encoding data for entry into the data base will otherwise bias the data.

Nonprocedural Lessons Learned

In addition to the procedural problems involved in desinging and imple-
menting a data collection study, we found several other pitfalls that could have
strongly affected our results and their interpretation. They are listed in the fol-

lowing.
1.

Perhaps the most significant of these pitfalls was the danger of inter-
preting the results without attempting to understand factors in the
environment that might affect the data. As an example, we found a
surprisingly small percentage of interface errors on all of the SEL pro-
Jects. This result was surprising since interfaces are an often-cited
source of errors. There was also other evidence in the data that the
software was quite amenable to change. In trying to understand these
results, we discussed them with the principal designer of the SEL pro-
jects (all of which had the same application). It was clear from the dis-
cussion that as a result of their experience with the application, the
designers had learned what changes to expect to their systems, organ-
ized the design so that the expected changes would be easy to make,
and then re-used the design from one project to the next. Rather than
misinterpreting the data to mean that interfaces were not a significant
software problem, we were led to a better understanding of the
environment we were studying.

A second pitfall was underestimating the resources needed to validate
and analyze the data. Understanding the change reports well-enough
to conduct meaningful, efficient programmer interviews for validation
purposes initially consumed considerable amounts of the change
analysts’ time. Verifying that the data base was internally consistent,
complete, and consistent with the paper copies of reports was a con-
tinuing source of frustration and sink for time and effort. '

A third potential pitfall in data collection is the sensitivity of the data.
Programmers and designers sometimes need to be convinced that
error data will not be used against them. This did not seem to be a
significant problem on the projects studied for a variety of reasons,
including management support, processing of the error data by people
independent of the project, identifying error reports in the analysis
process by number rather than name, informing newly hired project
personnel that completion of error reports was considered part of
their job, and high project morale. Furthermore, project management
did not need error data to evaluate performance.

One problem for which there is no simple solution is the Hawthorne (or
observer) effect [39]. When project personnel become aware that an
aspect of their behavior is being monitored, their behavior will change.
If error monitoring is a continuous, long-term activity that is part of
the normal scheme of software development, not associated with
evaluation of programmer performance, this effect may become
insignificant. We believe this was the case with the projects studied.

-18B-

5. The sensitivity of error data is enhanced in an environment where
development is done on contract. Contractors may feel that such data
are proprietary. Rules for data collection may have to be contractually
specified.

Avoiding Data Collection Pitfalls

In the foregoing sections a number of potential pitfalls in the data collec-
tion process have been described. The following list includes suggestions that
help avoid some of these pitfalls.

1. Select change analysts who are familiar with the environment, applica-
tion, project, and development team.

2. Establish the goals of the data collection methodology and define the
questions of interest before attempting any data collection. Establish-
ing goals and defining questions should be an iterative process per-
formed in concert with the developers. The developers' interests are
then served as well as the data collector's.

3. For initial data collection efforts, keep the set of data collection goals
small. Both the volume of data and the time consumed in gathering,
validating, and analyzing it will be unexpectedly large.

4. Design the data collection form so that it may be used for configuration
control, so that it is tailored to the project(s) being studied, so that the
data may be used for comparison purposes, and so that those filling
out the forms understand the terminology used. Conduct training ses-
sions in filling out forms for newcomers.

5. Integrate data collection and validation procedures into the
configuration control process. Data completeness and accuracy are
thereby improved, data collection is unobtrusive, and collection and
validation become a part of the normal development procedures. In
cases where configuration control is not used or is informal, allocate
considerable time to programmer interviews, and, if possible, docu-
mentation search and code reading.

6. Automate as much of the data analysis process as possible.

Limitations

It has been previously noted that the main limitation of using a goal-
directed data collection approach in a production software environment is the
inability to isolate the effects of single factors. For a variety of reasons, con-
trolled experiments that may be used to test hypotheses concerning the effects
of single factors do not seem practical. Neither can one expect to use the
change data from goal-directed data collection to test such hypotheses.

A second major limitation is that lost data cannot be accurately recap-
tured. The data collected as a result of these studies represent five years of
data collection. During that time there was considerable and continuing con-
sideration given to the appropriate goals and questions of interest. Nonetheless,
as data were analyzed, it became clear that there was information that was
never requested but that would have been useful. An example is the length of
time each error remained in the system. Programmers correcting their own
errors, which was the usual case, can supply this data easily at the time they
correct the error. Our attempts to discover error entry and removal times after
the end of development were fruitless. (Error entry times were particularly
difficult to discover.) Given such data, one could isolate errors that were not
easily susceptible to detection. This type of example underscores the need for

-19-

careful planning prior to the start of data collection.

Recommendations That May Be Provided To the Software Developer

The nature of the data collection methodology and the environments in
which it can be used do not generally permit isolation of the effects of particular
factors on the software development process. The results cannot be used to
suggest that controlling a particular factor in the development process will
reduce the quantity or cost of particular kinds of errors. We have found that the
patterns found in the data do suggest that certain approaches, when applied in
the environment studied, will improve the development process.

As an example, in the SEL environment neither external problems, such as
requirements changes, nor global problems, such as interface design and
specification, were significant. Furthermore, the development environment was
quite stable. Most problems were associated with the individual programmer.
The data show that in the SEL environment it would clearly pay to impose more
control on the process of composing individual routines. Since detecting and
correcting most errors was apparently quite easy in the overwhelming majority
of cases, more attention should be paid to preventing errors from entering the
code initially. '

Conclusions Concerning Data Collection For Methodology Evaluation Purposes

The data collection schema presented has been applied to five different pro-
Jects in two different environments. We have been able to draw the following
conclusions as a result of designing and implementing the data collection
processes.

1. In all cases, it has been possible to collect data concurrently with the

software development process in a software production environment.

2. Data collection may be used to evaluate the application of a particular
software development methodology, or simply to learn more about the
software development process. In the former case, the better defined
the methodology, the more precisely the goals of the data collection
may be stated.

3. The better controlled the development process, the more accurate and
complete the data.

4. For all projects studied, it has been necessary to validate the data,
including interviews with the project developers.

5. As patterns are discerned in the data collected, new questions of
interest emerge. These questions may not be answerable with the
available data, and may require establishing new goals and questions of
interest.

Motivations For Conducting Similar Studies

The difficulties involved in conducting large scale controlled software
engineering experiments have as yet prevented evaluations of software develop-
ment methodologies in the environments where they are often claimed to work
best. As a result, software engineers must depend on less formal techniques
that can be used in real working environments to establish long-term trends. We
view change analysis as one such technique and feel that more techniques, and
many more results obtained by applying such techniques, are needed.

- 20 -

Acknowledgments

The authors thank the many people at NASA/GSFC and Computer Sciences
Corporation who filled out forms and submitted to interviews, especially Jean
Grondalski and Dr. Gerald Page, and the librarians, especially Sam DePriest.

We thank Dr. John Gannon, Dr. Richard Meltzer, Frank McGarry, Dr. Gerald
Page, Dr. David Parnas, Dr. John Shore, and Dr. Marvin Zelkowitz for their many
helpful suggestions.

Deserving of special mention is Frank McGarry, who had sufficient foresight
and confidence to sponsor much of this work and to offer his projects for study.

References

1. B. Boehm and Others, Information processing/Data Automation Implica-
tions Of Air Force Command and Conirol Requirements in the 1980's
(CCIP-85) , Space and Missile Systems Organization, Los Angeles (February
1972). Technology Trends: Software

2. B. Boehm, ""Software and Its Impact: A Quantitative Assessment," Datama-
tion 19(5) pp. 48-59 (May 1973).

3. R. Wolverten, “The Cost Of Developing Large Scale Software," JEEE Trans.
Computers 23(6)(1974).

4. T. Bell, D. Bixler, and M. Dyer, ''An Extendable Approach to Computer-Aided
Software Requirments Engineering,” IEEE Trans. Software FEngineering
SE-3(1) pp. 49-60 (January 1977). -

5. A Ambler, D. Good, J. Browne, and et. al., "GYPSY: A Language for
Specification and Implementation of Verifiable Programs,'’ Proc. of The ACH
Conference on Language Design for Reliable Software, pp. 1-10 (March
1977).

6. Z. Manna and R. Waldinger, '‘Synthesis: Dreams => Programs,’’ /EFEE Trans.
Software Engineering SE-5(4) pp. 294-329 (July 1979).

7. K. Heninger, '"Specifying Requirements for Complex Systems: New Tech-
niques and Their Application,” JEEE Trans. Software Fngineering SE-6 pp.
2-13 (January 1980),

8. D. L. Parnas, ""A Technique For Software Module Specification With Exam-
ples,”” Comm. ACH 15(5) pp. 330-338 (May 1972).

9. J. Guttag, ""The Specification and Application to Programming of Abstract
Data Types,”” CSRG-59, University of Toronto Dept. of Computer Science
Computer Systems Research Group (1975).

10. J. Guttag, “Abstract data types and the development of data structures,”
Comm. ACM 20 pp. 396-404 (June 1978).

11.. B. Liskov and S. Zilles, ‘‘Specification Techniques for Data Abstraction,”
IEEFE Trans. Softwore Fngineering SE-1(1) pp. 7-19 (March 1975).

12. H. Mills, R. Linger, and B. Witt, Structured Programming Theory and Prac-
tice, Addison-Wesley, Reading (1979).

13. S. Caine and E. Gordon, "PDL - A tool for software design,"" Proc. Nat. Com-
puter Conf., pp. 271-276 (1975).

14.
15.

18.
17.
18.
19.
<0,
21
22.
23.
| 24.
25.
28.
27.

28.

29.
30.
31.
3.
33.

34.

-21-

H. Elovitz, "An Experiment In Software Engineering: The Architecture
Research Facility As A Case Study,”” Proc. Fourth Intntl Conf. Software
Engineering, pp. 145-152 (1979).

D. Weiss, "Evaluating Software Development by Error Analysis: The Data
from the Architecture Research Facility,” J. Systems and Saftware 1 pp.
57-70 (1979).

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs
(1976).

R. W. Floyd, '*Assigning Meanings to Programs,'' Proc. Symposium. in Applied
Mathematics XIX pp. 19-32 American Mathematical Society, (1967).

C. A R Hoare, ""An Axiomatic Basis for Computer Programming,” Comm.
ACH 12(10) pp. 576-580 (October 1969).

F. Baker, "Chief Programmer Team Management of Production Program-
ming,” IBM Systems Journal 11(1) pp. 56-73 (1972).

E. W. Dijkstra, “Notes on Structured Programming,’ in Structured Pro-
gramming, Academic Press, London (1972).

D. E. Knuth, ""Structured Programming With Go To Statements," Computing
Surveys 6(4) pp. 261-301 (December 1974).

H. Mills, ""Chief Programmer Teams: Principles and Procedures,' FSC 71-
5108, IBM Federal Systems Division (1971). '

H. Mills, "*Mathematical Foundations for Structured Programming,” FSC 72-
6012, IBM Federal Systems Division (1972).

N. Wirth, “Program Development by Stepwise Refinement,"” Comm. ACH
14(4) pp. 221-227 (April 1971).

E. Satterthwaite, ‘Debugging Tools for High-Level Languages,' Software -
Practice and Experience 2(3) pp. 197-217 (July-September 1972).

W. Howden, "‘Theoretical and Empirical Studies of Program Testing," Proc.
Third Intntl. Conf. Software Engineering, pp. 305-310 (May 1978).

J. Goodenough and S. Gerhart, “Toward a theory of test data selection,”
Proc. Intntl. Conf, Reliable Software, pp. 493-510 (1975).

J. Gannon, “Language Design to Enhance Programming Reliability,” CSRG-
47, University of Toronto Dept. of Computer Science Computer Systems
Research Group (1975).

J. Gannon and J. Horning, “Language Design for Programming Reliability,"
IEEE Trans. Software Fng. SE-1(2){June 1975).

C. A, R. Hoare and N. Wirth, "'An Axiomatic Definition of the Programming
Language Pascal,” Acta Informatica 2 pp. 335-355 (1973).

K. Jensen and N. Wirth, Pascal User Manual and Report Second Edition,
Springer-Verlag, New York (1974).

V. Basili and D. Weiss, "Evaluating Software Development By Analysis of
Changes: The Data From The Software Engineering Laboratory,” , ().

V. Basili, M. Zelkowitz, F. McGarry, and others, "The Software Engineering
Laboratory,”” Report TR-535, University of Maryland (May 1977).

B. Boehm, "An Experiment in Small-Scale Application Software Engineer-
ing,”" Report TRW-5S-80-01, TRW (1980).

35.

36.

37.

38.

39.

-22.

A. Endres, "Analysis and Causes of Errors in Systems Programs,’ Proc.
Intntl. Conf. Reliable Software, pp. 327-338 (1975).

V. Basili and D. Weiss, "'Evaluation of a Software Requirements Document By
Analysis of Change Data,” Proc. Fifth Intntl. Conf. Software FEngineering,
pp. 314-323 {(March 1981).

G. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits On
Our Capacity For Processing Information,” The Psychological Review
63(2) pp. 81-97 (March 19586).

D. L. Parnas, "'On the criteria to be used in decomposing systems into
modules,' Comm. ACH 15(12) pp. 1053-1058 (December 1972).

J. Brown, The Social Psychology of Industry, Penguin Books, Baltimoré
(1954).

