Technical Report TR~1236 December 1982 -
NSG-5123

EVALUATING SOFTIWARE DEVELOPMENT BY ANALYSIS
QF CHANGES: THE DATA FROM THE
SOFTWARE ENGINEERING LABORATORY #

Victor R. Basili
University of Maryland

David M. Weiss
Naval Research Laboratory

*Regearch supported in part by the National Aeronautics and Space Administration
Grant NSG-5123, Computer support provided in part by the facilities of
NASA/Goddard Space Flight Center and.the Computer Science Center at the University
of Maryland.

ABSTRACT

An effective data collection methodology for evaluating software
development methodologies was applied to four different software de-
velopment projects. Goals of the data collection included character-
izing changes and errors, characterizing projects and programmers,
identifying effective error detection and correction techniques, and
investigating ripple effects.

The data collected consisted of changes (including error corrections)
made to the software after code was written and baselined, but before
testing began. Data collection and validation were concurrent with
software development. Changes reported were verified by interviews with
programmers. Analysis of the data showed patterns that were used in
satisfying the goals of the data collection. Some of the results are
summarized in the following:

1. Error corrections aside, the most frequent type of change was an
unplanned design modification. '

2. The most common type of error was one made in the design or
implementation of a single component of the system. Incorrect requirements
and misunderstandings of functional specifications, interfaces, support
software and hardware, and languages and compilers were generally not
significant sources of errors.

3. Despite a significant number of requirements changes imposed on
some projects, there was no corresponding increase in frequency of
requirements misunderstandings.

4. - More than 75% of all changes took a day or less to make.

5. Changes tended to be nonlocalized with respect to individual
components but localized with respect to subsystems.

6. Relatively few changes resulted in errors. Relatively few errors
required more than one attempt at correction.

7. Most errors were detected by executing the program. The cause of
most errors was found by reading code. Support facilities and techniques
such as traces, dumps, cross-reference and attribute listings, and. program

proving were rarely used.

Evaluating Software Development By Analysis Of Changes:
The Data From The Software Engineering Laboratory

Victor R. Basili
University of Maryland
and
Dawvid M. Weiss

Naval Research Laboratory

1. Introduction
In previous and companion papers [1,2,3,4] we have discussed how to

obtain valid data that may be used te evaluate software development methodolo-

gies in a preoduction environment. Briefly, the methodology consists of the fol-
lowing five elemments.

(1) Identify goals. The goals of the data collection effort are defined before any
data collection begins. We often relate them to how well the goals for a pro-
duct or precess are met.

() Determine questions of interest from the goals. From the goals, specific
questions are derived. Answering the questions derived from each goal
satisfles the goal.

(3) Develop a data collection form. The data collection form used is tailored to
the product or process being studied and to the guestions of interest,

(4) Develop data collection procedures. Data collection is easiest when the
data collection procedures are part of normal configuration control pro-
cedures. '

(8) Validate and analyze the data. Reviews and analyses of the data are con-
current with software development. Validation includes examining com-
pleted data collection forms for completeness and consistency. Where
necessary, interviews with the person(s) supplying the data are conducted.

The purpose of this paper is to present the results from such an evaluation.
The data presented here were collected as part of the studies conducted by
NASA's Software Engineering Laboratory [5].

Overview of the Projects Studied

The methodology described in [1] was used to study five projects in two
diferent environments: a research group at the Naval Research Laboratory
(NRL), and a NASA software production environment at Goddard Space Flight
Center (GSFC). The NRL studies have been previously presented [2, 6,3, 7] and
will not be further discussed here. A brief description of the NASA projects fol-

lows,

The Software Engineering l.aboratory ‘

The Software Engineering Laboratory (SEL) is a NASA sponsored project to
investigate the software developruent process, based at Goddard Space Flight
Center (GSFC). A number of different software development projects are being
studied as part of the SEL investigations [8,5]. Studies of changes made to the
software as it is being developed constitute one part of those investigations,

2

Typical projects studied by the SEL are medium size FORTRAN programs
that compute the orientation (known as attitude) of unmanned spacecraft,
based on data obtained from on-board sensors. Attitude solutions are displayed
to the user of the program interaclively on CRT terminals. Because the basic
functions of these attitude determination programs tend to change slowly with
time, large amounts of design and sometimes code are often re-used from one
program to the next. The programs range in size from about 20,000 to about
120,000 lines of source code. They include subsystems to perferm such func-
tions as reading and decoding spacecraft telemetry data, filtering sensor data,
computing attitude solutions based on the sensor data, and providing an
(interactive) interface to the user.

Development is done by contractor personnel in a "production” environ-
ment, and is often separated into two distinet stages. The first stage is a high-
level design stage. The system to be developed is organized into subsystems,
and then further subdivided. Each subsystem generally performs a major sys-
tem function, such as processing telemetry data. For the purposes of the SEL,
each named entity in the system is called a component. The result of the first
stage is a tree chart showing the functional structure of the subsystem, in some
cases down to the subroutine level, a system functional specification describing,
in English, the functions of the system, and decisions as to what software may be
reused from other systems.

The second stage consists of completing the development of the system.
Different components are assigned to (teams of) programmers, who write,
debug, test, and integrate the software. Before delivery, the software must pass
a formal acceptance test. On some projects, programmers produce no inter-
- mediate specifications between the functional specifications produced as part of
‘the first stage and the code. Some projects produce pseudo-code specifications
for individual subroutines before coding them in FORTRAN. During the period of
time that the SEL has been in existence, a structured FORTRAN preprocessor
has come into general use.

The prineipal design goal of the major SEL projects is to produce a working
system in time for a spacecraft launch, In addition, a continuing NASA goal is
introducing improved techniques into its software development process. Results
from SEL studies of three different NASA projects, denoted SEL1, SELZ, and
SEL3, are included here.

2. Application Of The Experimental Procedure

The goals, questions of interest, and data categorizations, as described in
[1], for the SEL projects are shown in table 1 and lists 1 and 2. The SEL studies
represent a full-scale implementation of the data collection methodology in a
software production envircnment. Because the SEL environment is not pri-
marily devoted to developing and proving new methodologies, the emphasis is
more on investigating the software development environment than in a study

such as [3].

SEL Goals

Since the primary emphasis in SEL projects is not on developing and prov-
ing new methodologies, the data collection goals are generally methodology-
independent. Nevertheless, many of the projects do use recently-developed
software engineering technology with a view towards evaluating the technology
in the NASA/GSFC environment. (An example is program design language, used
in several SEL projects.) As a result, the goal "evaluate eflectiveness of metho-
dologies” is used, but is not based en specific claims for specific methedologies.

W

R B I

©

10
11.
12.

Characterize changes (especially in ways that permit comparisons across
projects and environments).

Characterize errors {especially in ways that permit comparisons across
projects and environments).

Evaluate effectiveness of methodologies in NASA/GSFC environment.
Suggest ways of improving NASA/GSFC software development practices.
Verify that concurrent data validation is needed.

Identify good measures of correctness. .

Identify effective techniques for detecting errors.

Identify effective techniques for obtaining the information needed to
correct errors.

Investigate the "ripple” effect, i.e. do most errors require more than one at-
tempt at correction or result in changes distributed over several different
cornponents of the system?

Characterize projects.

Characterize programmers.

Find factors that have significant effects on types and distributions of er-
rors.

Table 1. Data Collection Goals for the SEL Projects

What was the distribution of changes according to the reason for the
change and the effect of the change? Reasons were considered to be

one of the following:

a. a change in requirements or specifications,

b. change in design _ :

¢. achange in hardware environment {e.g. a new piece of hardware
added to the system to be used by the prograrrs

d. achange in software environment {e.g. a new version of the
FORTRAN compiler),

e, an optirmization,

f. other.

Since a change to any of the items in the preceding list could affect oth-
ers on the list, the set of itemns that could be affected by a change were
as follows:

requirements or specifications,

design,

the hardware environment,

the software environment,

optimization algorithms and their implementation.

oo

List 1. Questions of Interest

2a.
2b,

10.
11.
12,
13.

14,

15.

18.
17

4

What was the distribution of changes across system components?

For each change, how many components have to be examined in order
to make the change?

What was the distribution of timme required to design changes? For error
corrections, the time required to design the change was assumed to be
the same as the time required to understand the error and propose a
correction.

What was the ratic of changes not made to correct an error to error
corrections as a function of time during the development cyele?

What was the distribution of errors according to the misunderstandings
that caused them (and what was the ratio of non-clerical to clerical er-
rors?) ?

What was the distribution of effort required to correct errors?

What was the distribution of effort to correct errors across misunder-
standings causing errors?

How many errors were the result of a software change or meodification (a
medification is a change made for some purpose other than correcting
an error)? :

What was the distribution of errors across error detection techniques?
What was the distribution of errors across error correction techniques?
What was the number of attemnpted error corrections per error?

What was the distribution of error corrections across project phases?
What was the ratio of errors to various measures often associated with

- with effort and productivity. These measures include :

a, number of developers

b. muamber of lines of code

¢. number of machine instructions
d. number of memory words

e. number of person-hours

f. nwmber of work assignments.

What was the distribution of errors per person according to the number
of people involved?

What was the number of errors for projects requiring memory overlays
compared to those not requiring averlays?

What was the distribution of errors according to programmer?

How often must reported change data be corrected as a result of the
data validation process?

List 1. Questions of Interest {continued)

SEL Questions of Interest

Since the software was produced in a production environment with
stringent deadlines, it was desirable to minimize the overhead involved in
collecting and validating data. Because there were no design goals with
respect to the use of particular methodologies, questions relating to the suc-
cess of particular methodologies were generally not considered.

SEL Data Categories

Selection of the data categories was based on acquiring the data needed
to answer the questions of interest, on maintaining a reasonably small set of
subcategories for convenience in collecting and interpreting the data, and
on subjective estimates of the uniformity of the data distribution across the
subcategories.

The "catch-all" category "other" has been inserted for all changes that
will not fit one of the other categories. If the categories selected agree well
with the actual change distribution across the subcategories, few errors will
fall into the other subcategory. (The reverse situation is not necessarily a
sign of a poorly designed categorization scheme; the "other" changes may
provide the most insight into the development process.)

Data Collection, Validation, and Analysis
Formal procedures used for data collection and validation are described
in [1], as is the data collection form.

Answering Questions of Interest

The questions of interest are answered by presenting and analyzing the
data distribution(s) associated with each question. Because of space lirnita-
tions, answers to the individual questions, and most tables and histograms
used in the data analysis have been included in the Appendix.

Overview Of The Data

Tables 2 and 3 contain, for quick reference, an overview of the data col-
lected and a summary of information about the projects. Tables 4 through 7
contain values of parameters often thought teo characterize software
development projects.

3. Interpretations :

The research methodology permits at least one quite straightforward
way of interpreting the data: using the distributions to answer the questions
of interest, thereby satisfying the goals of the study. One may also compare
distributions across different projects, where appropriate, and look for com-
mon characteristics. Both of these processes lead to new goals and ques-
tions, some of which may be answerable with the available data, and some
requiring new studies. Examples of both will be presented here.

List 3 shows, for each goal, the corresponding questions of interest.
Where the same question(s) are used to satisty several goals, the goals are
listed together.

1. Effort to change. Subcategories:

one hour or less

one hour to one day
one day to three days
rmore than three days.

b ope

2. Cause of change and effect of change. Causes of changes were considered
to be one of the following:

a. & change in requirements or specifications,
b. a change in design,

¢. a change in hardware environment,

d. a change in software environment,

e. an optimization,

f. other.

Since a change to any of the items in the preceding list could affect
others on the list, the set of items that could be affected by a change

were as follows:

a. requirements or specifications,

b. design, ,

¢. the hardware environment,

d. the software environment,

e, optimization algorithms and their implementation.

3. Component changes. This categorization shows, for each component,
the number of changes made to the component. There is,
accordingly, one subcategory for each component of the system. A
similar categorization is used for the number of times each
component is examined, iL.e. the nurmber of changes that required
examination of the component.

4. Result of modification (for error corrections only). Subcategories:

a. Result of modification not to correct an error, for errors resulting
from a program change other than an error correction,

b. Result of error correction, for errors reslting from a program
change made to correct an error {whether a prior correction attempt
for the same error, or a correction for some other error),

¢, Not the result of a modification, for errors that are unrelated
to program changes.

5. Time to isolate cause (for error corrections only). Subcategories:
a. one hour or less

b. one hour to one day
¢. more than one day

- _ : List 2. Data Categories

6. Causative misunderstanding. Subcategories:

poop

™o

e iy

misunderstanding of requirements

misunderstanding of functional specifications

misunderstanding of other documentation

misunderstanding of design (excluding interface)
This subcategory was deemed sufficiently interesting to be
further subdivided into the following subcategories:
misunderstanding of intended use of the erroneous
segment/proc/module, misunderstanding of the value or structure
of data, and other.

misunderstanding of interface

misunderstanding of programming language, further subdivided into

syntax and semantics misunderstandings

misunderstanding of hardware environment

misunderstanding of software environment

clerical error

other

7. Development phase when error cccurred. Subcategories:

bpoop

f.

requirements

functional specifications
design

coding and test

other , :
can't tell, for situations where the person supplying the information

dees not know the phase.

B. Method of detection. Subcategories:

R R e R0 o p

m.

test runs
code reading by programmer
code reading by other person
reading documentation
proof technique
trace .
dump
eross-reference
attribute list
special debug code
error messages, further subdivided into general error messages, and
project specific (i.e. coded especially for this project) error
messages
inspection of cutput
other

List 2. Data Categories {continued)

Number of Number of Nummber of
Changes Mcodifications Errors

Project
SEL1 281 101 180
SEL2 229 110 119
SEL3 760 453 307

Table 2. Overview of Data Collected

Fffort Number of Lines of Dev. Lines Number of
Developers Code (K} of Code {(K) Components

Project ‘ _
SEL1 79.0 5 50.9 46.5 502
SEL2 39.6 4 75.4 31.1 490
SEL3 98.7 7 B5.4 78.8 639

Table 3. Summary of Project Information

Changes Per K Lines Errors Per K Lines Error To Mod Ratio
Of Developed Code Of Developed Code (NonClericals Only)

Project
SEL1 8.0 3.9 1.3
SELR 7.4 3.8 .02
SEL3 a.7 3.9 54

Table 4. Change and Error Densities

Erroneous Change Rate Errors Resulting Repeated Error Ratio

(Ratio Of Changes From Change {Average Number
Resulting In Brrors (As Percentage Of Corrections
To All Changes) Of NonClericals) Per Error)
Project
SEL1 025 5 1.02
SELZ2 .081 14 1.08*
SEL3 041 12 1.06

* Upper bound. Exact number of repeated errors for SEL2 is unknown.
by conservative means, the ratio could be estimated as 1.04.

Table B. Measures of Erroneous Change

Nurmnber Of People Errors Per Person

Project
SELR 4 20
SEL1 5 28
SEL3 7 44

Table 6. Frrors Per Person By Number Of People

Effort Errors Per Changes Per
(People-Months) Person-Month Person-Month
Project
SEL2 39.86 2.4 B8
SEL1 79.0 1.7 3.6
SEL3 98,7 3.1 7.7

Table 7. Errors Per Effort By Effort

10

In the following sections each goal is satisfied by presenting conclusions
based on the answers to the gquestions corresponding to the goal. Sections con-
taining discussions of goals are headed by short descriptions of geals.
ldentifiers in parentheses following the goal descriptions are references to the
goal, e.g. {G2) is a reference to goal 2. Not all goals are discussed here. Goal 5,
“verify that concurrent data validation is needed,” is discussed in a companion
paper [1].

Inspection of the change distributions shows that, despite the similarities in
application, environment, and personnel, there are distinct differences among
SEL projects. Some projects, notably SEL3, seem Lo have considerably less trou-
ble in the development phase than others.

There are two possible explanations: {1} the SEL3 developers did a better

job in producing correct software, or (2) the SEL3 system was not subjected to a

thorough inspection for errors. The latter explanation could be tested by

analyzing the errors found in the projects during their use and maintenance.

ittempting to satisfy this goal is beyond the scope of the research reported
ere.

Goal: Characterize Modifications (G1)

All three projects operated in a stable environment, where there were few
changes to the support software and hardware; none of them made many
changes for the purpose of adding or deleting debug code. The results support
the view that the SEL designers have organized their systems so that, for pur-
poses of redevelopment, most changes are confined to a few subsystems.

One way that the projects clearly differ is in their reasons for making un-
planned design changes. Some spend a great deal of time on optimization and
improving the services the system offered to its users, others on attempting to
improve the clarity of the code and its documentation. It is interesting to note
that SEL2 and SEL3, whose programmers had different reasons for making un-
planned design modifications, had the same task leader and some of the same

staff,

Coupled with the effort and the component-wise change analyses, these
results suggest that most unplanned design modifications are small and only in-
volve one component of the system. Several explanations are possible; either
the programmers act as "filters,” rejecting unplanned modifications that are not
easy to make, or reasons for modifying the design are not characteristic of the
programimers, but rather of some external source.

Some conclusions concerning characterization of modifications

Although it is tempting to try to characterize a "typical” modification, there
is too much variability in the sources of modifications for the different projects
to do so safely. The sources for most modifications fall into one of a small
number of subcategories, such as requirements modifications, planned enhance-
ments, improvements of clarity, improvements of user services, and optimiza-
tions. The distributions over these categories distinguishes one project from
another.

The SEL projects are all similar with respect to the effort required to modi-
fy the programs; most changes and meodifications take a day or less to make.
Furthermore, although the changes tend to be nonlocalized with respect to indi-
vidual components (most components that are changed are only changed once
or twice), they are localized with respect to subsystem, ie. the majority of
changes are made in one or two subsystems.

11

Goal:
Characterize changes.

Questions:
What was the distributicn of modifications according to the reason for the

modification?
What was the distribution of changes across system components?
What was the distribution of effort required to design changes?

Goal:
Characterize errors.

@Questions:
What was the distribution of errors according to the misunderstandings that

caused them?

What was the distribution of effort required to correct errors?

What was the distribution of effort to correct errors across misunderstand-
ings causing errors?

How many errors were the result of a software change?

Goal:
Characterize projects.
Goal:
Characterize programmers.
Goal;
Find factors that have significant effects on types and distributions of er-
rors.
Goal
Evaluate effectiveness of methodologies in NASA/GSFC environment.
Goal:
Suggest ways of improving NASA/GSFC software development practices.
Questions:
All questions are used in satisfying this geal. See list 1.
Goal:
Verify that concurrent data validation is needed.
Question:

How often must reported change data be corrected as a result of the data
validation process?

List 3. Relationship Between Goals and Questions

i2

Goal:
Identify good measures of correctness.

Questions:
What was the distribution of effort required to design changes?

What was the ratio of changes not made to correct an error to error correc-
tions as a function of time during the development cycle?

What was the distribution of errors according to the misunderstandings that
caused them?

What was the distribution of effort required to correct errors?

What was the distribution of effort to correct errors across misunderstand-
ings causing errors?

How many errors were the result of a software change?

What was the distribution of errors across error detection techniques?

What was the number of attempted error corrections per error?

What was the ratio of errors to various measures often associated with
effort and productivity?

What was the distribution of errors per person according to the number of
people involved?

‘What was the number of errors for projects requiring memory overlays
compared to those not requiring overlays?

What was the distribution of errors according to programmer?

Goals:
Identify effective techniques for detecting errors.

Question:
What was the distribution of errors across error detection techniques?

Goal:
Identify effective techniques for obtaining the information needed to
correct errors.

Question:
What was the distribution of errors across error correction techniques?

Goal:
Investigate the "ripple” effect, i.e. do most errors require more than one at-

tempt at correction or result in changes distributed over several different
components of the system?

Question:
What was the number of attempted error corrections per error?

List 3. Relationship Between Goals and Questions (continued)

13

Goal: Characterize Errors {G2)

From the answers to the questions we may conclude that the SEL program-
mers tend to spend their time finding and correcting many "small” errors made
while designing or implementing single routines, rather than struggling with a
few "large" errors, or trying to understand requirements or interfaces.

All the SEL projects handled changes with little trouble; relatively {ew er-
rors were the result of a change {o the software. The SEL developers apparently
understand their requirements well enough that they can handle changes to
them without much treuble. Interfaces, often considered to be a major source
of errors, do not seem especially troublesome. There is some indication that the
interface and requirements understandings that do cccur are more difficult to
correct than others. However, the small number of errors involved makes it
dangerous to draw such a conclusion.

We believe there are two factors that explain the shape of the error distri-
butions and their similarity across projects.

a. The SEL projects all have the same application. They are essentially
redevelopments, each using the same overall design and often much of the
same code as previous projects. Although new individual programmers may
be used from one project to the next, the same people do the top level
design. Having found a successful design, they reuse it.

b. The SEL projects used programmers who were familiar with the language
they were using, and both were developed in a stable environment, ie.
there were few changes in support hardware or software.

Some conclusions concerning error characlerization

Based on the foregoing analysis, one might characterize a "typical" error as
one that occurs in the design or implementation of a single component, is easy
to correct, and whose cause is easy to find.

Goal: Evaluate Effectiveness Of Methdologies In NASA/GSFC Environment (G3)
It was expected that various software engineering techniques would be tried in
the course of these studies, However, it was found to be extremely difficult to
characterize the different techniques and the differences in the ways in which
the techniques were applied for the SEL projects reported here. Consequently,
this goal could not be satisfied.

E}oa)lz Suggest Ways Of Improving NASA/GSFC Software Development Practices
G4

Previcus analyses have shown that the most abundant source of errors lies
in the process of designing and implementing individual components of the SEL
projects. Improvements should come from the introduction of any techniques
that assist the individual programmer in preventing and detecting errors. A
number of techniques and tools have been suggested to help in this process. A
few are listed in the following.
Program Design Language [9]
Code Reading and Inspections [10]
Program Proving [9, 11]
Programrming By Stepwise Refinement [12]
Formal Specifications [13, 14]
Information Hiding [15]
Languages that provide strong typing, such as Pascal [18]

NMOOGHA W

14

One would expect the introduction of some or all of these and other,
similar techniques to perturb the SEL environment initially. After the initial
learning peried, if such technigues meet the clairms made for them, a shift in
the error distributions could be expected.

Goal: Identify Good Measures Of Correctness (G6)

In addition to various single pararmeters, one may also consider a
number of different distributions as correctness measures. Candidates are
the sources of nonclerical errors, the effort to design error corrections, the
effort to isolate the error cause, the frequency distribution of error correc-
tions, error corrections according te the subsystem in which they occur, and
errors according to project phase.

Several of the preceding distributions serve to locate the most trouble-
some phases of the development process, and the most error-prone parts of
the system. Others may be used as indicators of average difficulty in
correcting errors,

Some conclusions concerning measures of correctness

It is not possible to identify from the data a single good parameter that
can be used to measure correctness. Issues such as correctness relative to
the amount of work that had te be done, or to the number of changes that
had to be made, cannot easily be judged and cannot be discerned from a sin-
gle parameter. Rather, a combination of parameters and distributions may
be used to discover what and where difficulties were encountered in produc-
ing a particular system. Atternpting to define the precise set of distributions
and parameters to use is beyond the scope of this research. We do suggest
that some of the following be used.

a. Ratio of errors to medifications, to give an indication of how
the developers were spending their time;

b. Rate of erroneous changes, to give an indication of the
difficulty the developers had in making changes;

c. Sources of changes and sources of errors, to give an indication
of the kinds of problems the developers had to handle, and the
kinds of difficulties they had;

d. Effort to make change, effort to isolate cause of error, and
effort to design fix by source of error, to indicate difficuity
of correcting errors;

e. Phase of entry of errors into the system, to indicate whether
certain aspects of the development caused trouble, or whether
difficulties tended te be spread out over the entire development.

Goal: Identify Effective Error Detection Techniques (G7)

Executing the program was the most successful means for detecting er-
rors. The distributions show what might be called a traditional appreoach to
error detection: either test runs, or a programmer reading over her own
code.

15

Goal: Identify Effective Error Correction Techniques (GB) |

It is clear from the data that the programmers favored code reading as
an error correction technique. While this is not surprising, the lack of use of
other techniques is surprising. Although we cannot determine if program
reading is popular because programmers are writing programs that are easy
to read, we can say that improving the readability of programs should im-
prove the error correction process.

Goal: Investigate The Ripple Effect {G9)

There is nothing in the data to suggest a ripple effect of any
significance. The lack of such an effect may be the result of the SEL experi-
ence with the application. It may also be a result of monitoring the projects
primarily through the development phase. Continued monitoring throughout
the project lifetime might reveal such an effect as the software undergoes
further change.

Goal: Characterize Projects {G10)

Examination of various parameters previously discussed shows that it is
risky to characterize a project with a single parameter or distribution.
Furthermore, it is difficult to predict the effect that a particular project
characteristic will have on any particular change distribution. We can note
variations in distributions that seem to distinguish some projects from oth-
ers, and use the distinguishing distributions as the basis for more detailed
-experiments.

The proposed distinguishing distributions are listed in the following.

Change Distribution

The distribution of changes across medifications and nonclerical er-
rors clearly distinguishes SEL3 from the other SEL projects.

Sources Of Modifications

The sources of modifications distributions all show their strongest
peaks in the same places, but have secondary peaks in different
places. These secondary peaks may be used to distinguish among
projects. SEL2 and SEL3 both show strong peaks in requirements
changes. SEL! and SEL3 both show peaks in the planned enhance-
ment category. SEL1 has a much stronger peak in the design
category than either of the others.

Sources Of NonClerical Brrors

All projects show a strong peak in the same place in the sources of
nonclerical errors distributions. SEL3 may be distinguished from
the other SEL projects by its secondary peak in the "Design Multi-
Comp" category. SEL1 shows a somewhat stronger peak in the "Fnl
Spec” category than the other projects.

Effort To Design Change

All SEL projects have design effort distributions of about the same
shape. The only variation is in the proportion of the distribution
contained in each category. SEL1 shows a considerably stronger
peak in the Easy category than any of the other projects.

Effort To Isolate Error Cause
The distributions showing the effort to isolate error causes ap-

16

parently distinguish clearly between project SEL3 and the other SEL
projects. (Because of the relatively large number of errors in the
"Unknown" category in these distributions, the size of the distine-
tion may not be as large as it appears.)

Frequency Distribution Of Changes

The BEL1 and SELZ component change frequency distributions show
a generally similar shape except for the first category.

Characteristics Of The SEL Projects

By analyzing the foregeoing distributions, the SEL projects may be
characterized as follows.

1, Software production takes place in an environment stable with
respect to hardware and software support.

R. Programs are preduced by making many small changes to a set of
initial code. A significant number {40% or more) of these
changes are error corrections. Most of the changes are not
planned in advance. Relatively few of them result in errors.

3. Most changes that are not error corrections are design changes
made for the purposes of optimization, improving the clarity and
maintainability of the code, improving the documentation
{including comments in the code), or improving the services
provided to the user by the program.

4. Most errors occur in the design or implementation of one
component of the system, and are easy to find and easy to
correct. Krrors are usually corrected on the first try.

5. Although most changes are concentrated in two or three
subsystems, few individual components are changed more than
three or four times.

8. Although a project may have relatively many requirements
changes, these changes do not constitute a major source of
errors. Interface errors are also not especially troublesome.

Goal: Characterize Programmers {G11)

Because there are few commonalities in the distributions of program-
mer errors, there is little that can be said to characterize the programmers
as a group. Moest have little trouble with the language or other attributes of
the environment in which they program (e.g. the library system or the
operating system). All of them seem to have the most problems in designing
and implementing the internal structure of individual routines.

Goal: Find Factors That Significantly Affect Distributions Of Errors (12)

It is not poessible in these studies to isolate particular factors and exam-
ine their effect on the various error distributions. Nevertheless, it was ex-
pected that patterns of influence would be visible, One expected pattern was
that the distribution of sources of modifications would affect the distribution
of sources of errors, e.g. the greater the number of requirements changes,
the greater the number of requirements errors. This expectation was not

17

confirmed; the sources of errors seem to be relatively independent of the
sources of modifications.

Other factors that were expected to contribute heavily as error sources,
but apparently did not, include the software development environment, the
programming language used, misunderstandings of interfaces, project size,
and misunderstandings of specifications.

The error distributions for the SEL projects indicate that the single
most impertant factor is the method used by the individual programmer in
designing and coding individual routines. More detailed studies of individual
programmer techniques in the SEL environment might indicate particular
methodological weaknesses.

Generalization of these results to other environments may not be possi-
ble. In the SEL projects certain circumstances may have acted to decrease
the effects of certain factors. SEL experience with the application, and the
adaptation of previous designs in the development of new systeras are in this
category.

4. Conclusions and Summary

The SEL data collection projects showed that it was feasible to collect
and validate data on all changes concurrently with software development. (A
companion paper shows that it was necessary to perform validation by
means of developer interviews:) The data collected permit the following
characterization of the SEL environment, projects, and programmers.

1. Brror corrections aside, the most frequent type of change is an
unplanned design modification. Such modifications are usually made
for one of the following reasons:

a. to optimize the pregram,

b. toimprove the services the program offers to its users, or

c. toimprove the clarity and maintainability of the program
and its documentation.

€. The most common type of error is one made in the design or
implementation of a single component of the system. Incorrect
requirements, and misunderstandings of functional specifications,
interfaces, support software and hardware, and languages and
comipilers are generally not significant sources of errors.

3. Despite a significant number of requirements changes imposed on
somme projects, there is no corresponding increase in frequency of
requirements misunderstandings. A possible explanaticn is that the
developers understand the application sufficiently well that their
design is easily adaptable to most requirements changes, i.e. they
know what kinds of changes to expect and have designed for them.

4, More than 75% of all changes take a day or less to correct. Most
programimers apparently spend their time making many small changes
to their programs, rather than few large ones.

5. Changes tend to be nonlocalized with respect to individual components
(most components that are changed are only changed once or twice),
but localized with respect to subsystems (the majority of changes are

18

made in one or two subsystems).

8. Relatively few changes result in errors. Relatively few errors
require more than one attempt at correction.

7. Most errors are detected by executing the program. The cause of
most errors is found by reading code. Support facilities and
techniques such as traces, dumps {(which were once so popular that

apers were published on how to read them e.g [17].
5). cross-reference and attribute listings, and program proving
are rarely used.

Opportunities Missed

The data presented here and in [3, 2, 6] represent five years of data collec-
tion. During that time there was considerable and continuing consideration
given to the appropriate goals and questions of interest. Nonetheless, as data
were analyzed, it became clear that there was information that was never re-
quested but that would have been useful. An example is the length of time each
error remained in the system. Programmers correcting their own errors, which
was the usual case, could supply this data easily. One could then isolate errors
that were not easily susceptible to detection by program execution or code
reading. This example underscores the need for careful planning prior to the
start of data collection. '

Comparing Environments

In most sciences, valuable information is gained from repeating experi-
ments, somelimes to confirm new results, other times to refine them. We be-
lieve this should be the case in Computer Science. Although some interesting
patterns are exhibited in the SEL data, it would be useful to seek similar trends
in data from environments. Unfortunately, there exists little comparable data (
[4] is one exception). A primary reason for devising the data collection metho-
dology used here is to show how comparable data from different environments
may be collected. Common goals, questions of interest, and data categoriza-
tiens may be used te to ensure comparability.

19

Acknowledgments

The authors thank the many people at NASA/GSFC and Computer Sciences
Corporation who filled out forms and submitted to interviews, especially Jean
Grondalski and Dr. Gerald Page, and the librarians, especially Sam DePriest.

We thanlk Dr. John Gannpen, Dr. Richard Meltzer, Frank McGarry, Dr. Gerald
Page, Dr. David Parnas, Dr. John Shore, and Dr. Marvin Zelkowitz for their many
helpful suggestions.

Deserving cof special mention is Frank McGarry, who had sufficient foresight
and confidence to sponsor much of this work and to offer his projects for study.

References

1. V. Basili and D. Weiss, ""A Methodology For Collecting Valid Software En-
gineering Data," .

2. V. Basili and D. Weiss, ""Evaluation of a Software Requirements Document By
Analysis of Change Data,” Froc. Fifth Intntl. Conf. Software Fngineering,
pp-314-323 (March 1981).

3. D. Weiss, “Evaluating Software Development by Error Analysis: The Data
from the Architecture Research Facility,” J. Sysiems and Soffwore 1,
pp.57-70 (1979).

4. D. Weiss, "A Comparison of Software Errors In Different Environments,”
NASA Software Fnginerering Workshop {November 1981).

5. V. Basili, M. Zelkowitz, F. McGarry, and others, '‘The Software Engineering
Laboratory,” Report TR-5635, University of Maryland {May 1977).

8. 3. Fryer and D. Weiss, "Evaluation of the A-7E Software Requirements Docu-
ment By Analysis of Change Data: Two Years of Change Data,” 15th Annual
Am,lo;rna.r Conference On Circuits, Systems, ond Computers {Novermnber
1981

7. D. Weiss, "Evaluating Software Development By Analysis Of Change Data,”
TR-1120, University of Maryland Computer Science Center, College Park
(November 1981).

B. J. Bailey and V. Basili, "A Meta-Model For Software Development Resource
Expenditures,' Proc. Fifth Initntl. Conf Soffware Fngineering, pp.107-118
(Mareh 1981).

8. H. Mills, R Linger, and B. Witt, Structured Progremming Theory and Pruc-
tice, Addison-Wesley, Reading {1979).

10. M. Fagan, ''Design and Code Inspection and Process Control in the Develop-
ment of Programs,"” TR 21.572, IBM System Development Division (De-
cember 1974).

11. EE: W, %)Ijkstra. A Dzsmplfme of Programming, Prentlce‘Hall Englewood Clifis

1978

12. N. Wirth, '"Program Development by Stepwise Refinement,” Comm. ACH
14(4), pp.RR1-227 {April 1971).

13. D. L. Parnas, "A Technique For Software Module Specification With Exam-
ples,” Comm. ACM 15(5), pp.330-336 (May 1972).

14, J. Guttag, "The Specification and Application to Programming of Abstract
Data Types,”” CSRG-59, University of Toronto Dept of Computer Science
Computer Systems Research Group (1975).

20

15. D. L. Parnas, "On the criteria to be used in decomposing systems into
medules,” Comm. ACM 15{12), pp.1053-1058 (December 1972).

16. K Jensen and N. Wirth, Pascal User Manual and Report Second Edition,
Springer-Verlag, New York {1974).

17. D. Norris, "An Introduction To 0S/360 MVT Control Logic And Debugging
With MVT Core Dumps,"” IBM Technicol Information Ezchange {January

1969).

Appendix

Answering Questions of Interest

The questions of interest are answered by presenting and analyzing the data
distribution(s) associated with each question. For each guestion there is a short
discussion of the associated distributions. The main purpose of the discussions
is to point out various features of the distributions that are of significance in
answering the guestions. Table 8 shows the relation between the questions and
the distributions. Not all questions are discussed here. Question 17, "How often
must reported change data be corrected as a result of the data validation pro-
cess?"’ is discussed in a companion paper [1].

For some questions either there were insufficient data to answer the ques-
tions, or the data were judged insufficiently reliable to produce meaningful dis-
tributions, Interpretations of the guestions as they relate to the goals of the
studies are given in a later section.

One purpose of this research is to provide a set of empirically-derived data
that others may use in constructing models and deriving hypotheses. The data
presented here may be so used. Most of the presentations are in the form of his-
tograms based on the data categorizations previously discussed. The following
sections are intended to help the reader understand the organization and con-
tent of the various histograms and tables.

Organization of Data Presentation

In general, the histograms are organized into figures, with each figure con-
taining corresponding histograms for all projects. Examples are figure 1, which
shows a broad view of all change data, and figure 3, which shows the sources of
nonclerical errors for all projects. For some figures, not all projects are
represented, since a particular set of data may not be relevant or available for
seme projects, -

Tables are used to show the relationship between two different categoriza-
tions, such as effort to design modification according to source of medification
(table 9). Labels on the histograms and tables are generally mnemonic abbrevi-
ations of descriptions of data categories (e.g. PE means planned enhancement).
Keys, supplied for non-obvious labels, provide the complete name for each
mnemonie,

Data Categorization

During the data collection peried, several improvements were made to the
forms. One result is that forms for some of the projects contain more
categories than for others. A second result is that there are occasiocnal
differences in the names and meanings of similar subcategories for different
projects within a particular figure. Such differences in categorization are dis-
cussed in the next few sections.

Changes In Measurement Precision

Data categeries for some of the projects contain finer data quantifications
than others. An example is the SEL1 and SEL3 categories shown in figure 10,
"Effort To Change NonClerical Errors.” The SEL3 figure has a larger set of
categories than the SEL1 figure. After analyzing the results of our early data
collection efforts, we realized it was possible to and of interest to use a finer
measure of effort.

=W

© @ X o o

11,
12.
138.
14,

15.

186.

17,

A2

What was the distribution of moedifications accord-
ing to the reason for the modification?

What was the distribution of changes across system
components?

What was the distribution of effort required to
design changes®

What was the ratio of changes not made to correct
an error to error corrections as a function of time
during the development cycle?

What was the distribution of errors according to
the misunderstandings that caused them?

What was the distribution of effort required to
correct errors?

What was the distribution of efiort to correct er-
rors across misunderstandings causing errors?
How many errors were the result of software
changes?

What was the distribution of errors across error
detection techniques?

What was the distribution of errors across error
correction techniques?

What was the number of attempted error correc-
tions per error?

What was the distribution of error corrections
across project phases?

What was the ratio of errors to various measures
often associated with effort and productivity?

What was the distribution of errors per person ac-
cording te the number of people involved?

What was the number of errors for projects requir-
ing memory overlays compared to those not re-
quiring overlays?

What was the distribution of errors according to
programmer?

How often must reported change data be corrected
as a result of the data validation process?

Figures 3, 4

Figures 14, 15
Figures 8, 9, 10

Data not sufficiently
reliable to produce
meaningful distribu-
tion,

Figures 5, 8, 7
Figures 10, 11, 12,
13

Tables 11, 12, 13, 14,
15, 18

Table 5

Tables 17, 18, 19
Tables 20, 21, 22
Table &

Figure 18

Tables 4, 5,8, 7
Table 6

Insufficient data for
meaningful results.

Figure 19

Presented elsewhere

Table B. Figures/Tables used in Answering Questions

A3

Organization of Data Presentation

In general, the histograms are organized into figures, with each figure con-
taining corresponding histograms for all projects. Examples are figure 1, which
shows a broad view of all change data, and figure 3, which shows the sources of
nonclerical errors for all projects. For some figures, not all projects are
represented, since a particular set of data may not be relevant or available for
some projects.

Tables are used to show the relationship between two different categoriza-
tions, such as effort to design modification according to source of medification
(table 9). Labels on the histograms and tables are generally mnemonic abbrevi-
ations of descriptions of data categories {(e.g. PE means planned enhancement).
Keys, supplied for non-obvious labels, provide the complete name for each
mnemonic.

Data Categorization

During the dala collection period, several improvements were made to the
forms. One result is that forms for some of the projects contain more
categories than for others. A second result is that there are occasional
differences in the names and meanings of similar subcategories for different
projects within a particular figure. Such differences in categorization are dis-
cussed in the next few sections.

Changes In Measurement Precision

Data categories for some of the projects contain finer data quantifications
than others. An example is the SEL] and SEL3 categories shown in figure 10,
"Effort Te Change NonClerical Errors.” The SEL3 figure has a larger set of
categories than the SELI figure. After analyzing the results of our early data
collection efforts, we realized it was possible to and of interest to use a finer
measure of effort.

Insufficient Subcategorization

As a result of inexperience, some data calegories were too broad, and some
too narrow on the early versions of the data collection forms. As an example, a
design change category was included on the form at one time. So many changes
were reported in this category that it was important to subcategorize further.
(The next version of the form contained the new subcategories explicitly). Fig-
ure 3 shows the subcategories for all SEL projects. Conversely, environment
changes occurred sufficiently rarely so that it was unnecessary to distinguish
between hardware and software environment changes. These categories were
merged during data analysis. '

The ""Unknown'' Category .

Despite the intensive review and interview process used for validation, there
were still cases where it was not possible to categorize certain changes. This
occurred most often for the varicus effort categeries when forms were gen-
erated. These cases are categorized as unknown in the histograms where they
appear.

Fine Distinctions That Can Be Made

For much of the data, the variety of data categorizations, the comments
supplied by the programmers, and the information gained from validation per-
mit certain fine distinctions to be drawn during analysis. An example is the dis-
tinction among errors affecting more than one component, design errors

A4

involving several components, and interface errors.

Interface errors may be divided into 2 classes. The first class consists of
incorrect assumptions between modules and routines. An example involved an
assumption about initialization. The programmer of one module assumed that it
was necessary to invoke an initialization routine from a second module each
time he used certain routines from the second module, This assumption was
incorrect. The second class consists of errors in using interfaces, where such
errors are not the resull of incorrect assumptions. An example is a program-
mer forgetting to include a parameter in a calling sequence.

Design errors involving several components are errors in the organization of
the software into components, including the specifications that describe that
organization. Although this category includes many interface errors, it also
includes errors that are not interface errors.

Errors affecting more than one component are errors whose corrections
require changes to be made in more than one component. These errors may fit
any of the categories of misunderstandings, and are not necessarily interface

errars,

Distinctions That Were Too Fine

For some categories, developers were asked to make fine distinctions in
supplying the data. The metric used for measuring difficulty of fixing noncleri-
cal errors (see figure 10) is an example. For SEL! and SEL2, programmers were
asked to separate the effort just to design the change from the effort to make
the change. This distinction was too fine for the programmers reporting the
effort, and during SEL3 data collection just the total effort was requested.

Comparing Distributions - Arithmetic Considerations

To convert raw data counts into measures that could be used to compare
projects, percentage of changes in a particular category is usually used. As an
example, in figure 5, values in the distributions are shown as percentages of
nonclerical errors. Because there are generally large differences in values
within any distribution, the values are rounded to whole percents. For each dis-
tribution, any category that is nonempty is assigned a nonzero value. As a
result, some categories that contain less than .5% of the distribution are shown
as containing 1%. (Categories that contain no data do not appear in the distribu-
tions.) For no distribution does this make a difference of more than 1% in any
category. For some distributions, there is a resulting round-off error.

Answers To The Questions

In the following sections we discuss the answers to the questions of interest.
For some questicns, the data are not sufficiently complete or accurate to pro-
- vide meaningful or reliable answers. The reasons for this have been discussed in
previous sections; where necessary, they are elaborated. Sections are headed
by short descriptions of questions. Identifiers in parentheses following the ques-
tion descriptions are references to the question number, e.g. {QR) is a reference
to question 2.

Overview Of SEL Changes

There is no question that deals with all changes; modifications and errors
are characterized separately. Nevertheless, analysis of the data showed that it
was of interest to look at the overall change distributions and compare them
across projects. :

AD

Figures 1 and 2 show some interesting differences among the three pro-
jects. The proportion of both all errors and of nonclerical errors declines from
SEL1 (84% and 47% respectively) through SEL3 (40% and 32% respectively). The
SEL3 developers also appear to have been considerably more occupied with
making modifications than with correcting nonclerical errors. Various parame-
ters that normalize number of changes and errors with respect to size in terms
of effort and lines of code show the same trend. From these distributions and
parameters il appears that there are distinct differences among SEL projects,
and that some projects seem to have considerably less trouble in the develop-
rent phase than others.

What was the distribution of modifications according to the recason for the
modification? (Q1)

Modification distributions are shown in figure 3. All projects show a strong
spike in the design change subcategory. There is considerable variability in
several other categories. SELZ and SEL3 both experienced relatively large
numbers of requirements changes. SEL1 and SELS3 both show considerable use
of planned enhancements.

Similarities in the distributions show that all three projects operated in a
stable environment, where there were few changes to the support software and
hardware, and that none of themn made many changes for the purpose of adding
or deleting debug code.

Figure 4 is an analysis of design modifications only, Again, there is consid-
erable variability in the distributions. SEL1 programmers were considerably
concerned with optimization, i.e. improving the efficiency of use of memory and
processor time, and improving the services the system offered to its users.

The SELR distribution, whose pattern is somewhat less clear because of the
large size of the "unknown"” category, also shows emphasis on optimization, and,
to a considerably lesser degree, on improving user services and the clarity and
maintainability of the program and its docwmentation. In SEL3, the emphasis is
reversed; there were relatively few attempts at optimization, but many at
improving clarity, maintainability, and decumentation. It is interesting to note
that SEL3 had the same task leader and some of the same staff as SEL2.

What was the distribution of changes across system components? {Q2)

It other discussions of changes, we view a change as a logical unit, indepen-
dent of how much code or docurnentation, or how many components were
involved. For purposes of analyzing frequency distributions of changes, we con-
sider the number of changes made to each component. The number of changes
made to a component is considered to be the number of change report forms on
which that component is named as being changed. Using this definition of
change, figure 14 shows the percentage of components that were changed once,
twice, etc. As an example, for SEL1, 29% of the components were changed once,
and 30% were changed twice.

The frequency distributions for all the SEL projects show the same pattern:
50% or more of the components that were changed were only changed once or
twice, and more than 90% were changed 6 times or less. The pattern is even
more pronounced for fixes (figure ainﬁ%: 70% or more of the fixed components
were only fixed once or twice.

Figure 16 shows the patterns of subsystems that are changed and fixed
most often. (The distributions are obtained by grouping the data for the corm-
ponents into subsystems.) It is clear from these distributions that at most 2 or
3 of the subsystems receive the most attention,

A6

What was the distribution of effort required to design changes? (Q3)

Change effort distributions are shown in figures B through 13. Examining
figure B, which shows the effort for all changes except clerical errors, one can
see that most (more than 75% of) changes fall into the easy or medium
categories for all SEL projects. Figure 9, which is restricted to modifications
only, shows a similar, but not as strong, trend. The trend is most pronounced
for nonclerical errors.

What was the distribution of errors according to the misunderstandings that
caused them? (Q5)

Inspection of the distributions showing sources of nonclerical errors (figure
5) shows noteworthy similarities across projects. The distributions all show
strong spikes in the same places; it is evident that the major source of errors is
in the design and implementation of single components.

Factors such as misunderstandings of requirements and specifications are
minor sources of errors. {Note that figure 3 shows significant numbers of
requirements changes for projects SEL2 and SEL3. The SEL developers
apparently understand their requirements well enough that they can handle
changes to them without much trouble.) Interfaces are also a minor error
source (figure 7). ‘

Further analysis of the errors committed in design and implementation of
components is shown in figure 8.- In the SEL environment, data errors {errors in
the value or structure of data) are either about evenly balanced with or predom-
inate errors in the intended use of compnenets.

What was the distribution of effort required to correct errors? (q6)

Effort distributions for correcting errors are shown in figure 10. {Note that
there is a slight difference in the type of effort measured for SEL3 than for SEL1
and SEL2.) As shown by these distributions, most error corrections take little
effort. For all projects, approximately 50% or more of the errors were corrected
in one hour or less, and rmore than B5% were corrected in one day or less.

As might be expected, the distributions for effort expended in finding error
causes (figures 11, 12, and 13) follow a similar pattern. From these results we
may conclude that the programmers tend to spend their time finding and
correcting many "small” errors rather than few "large” errors.

What was the distribution of effort to correct errors across misunderstandings
causing errors? (Q7)

Tables 11 through 18 support the view of most errors as being easy to find
and fix and as occurring in cormpeonent design or implementation. Very few
errors take more than a day of effort to fix. Although interface errors are often
cited as being particularly difficult to correct, table 13 shows that they follow
the same pattern as other subcategories of errors.

The only deviation from the pattern appears to occur in the effort to fix
requirements and specification errors, where the distribution between easy and
medium rated errors is more balanced than for the other subcategories. These
results suggest that requirements and specification errors are more difficult to
correct than others. However, the small number of errors in these sub-
categories makes it dangerous to draw such a conclusion.

AT

How many errors were the result of a software change? (QB)

Table & shows that the SEL projects handled changes with little trouble;
relatively few errors were the result of a change to the software.

What was the distribution of errors across error detection techniques? (Q9)

The relative frequency of use of various error detection techniques are
shown in tables 17 through 19 for the SEL projects. While examining the distri-
butions, one must recall that SEL change monitoring did not begin until code
was baselined and had already undergone debugging. Otherwise, error messages
might rank higher as a detection technique. :

Executing the program was the most successful means for detecting errors.
The distributions show what might be called a traditional approach to error
detection: either test runs, or a programmer reading over her own code.

What was the distribution of errors across error correction techniques? (Q10)

The relative frequency of use of various error correction techniques are
shown in tables 20 through 22. While it is not surprising that code reading by
the programmer dominates all other methods, the relative infrequency of tech-
niques such as traces, special debug code, test runs, and reading documentation
is somewhat surprising. Dumps, which were once so popular that papers were
published on how to read them (e.g. [17]), were rarely used.

What was the number of attempted error corrections per error? (Q11)

If any of the projects suffers from a ripple effect, we expect to see many
errors requiring repeated attempts at correction, and many changes each
resulting in several errors. As can be seen from table 5, both of these effects
appear quite small. The worst case is about 8% of the changes resulting in
errors (SELZ). The errors resulting from change for the worst case (SEL2)
comprised 14% of all errors. Finally, very few errors required more than one-
attempt at correction (these are a subset of the errors resulting from change,
since each attempted correction is considered to be a change).

What was the distribution of error corrections across project phases? (Q12)

The distributions of errors according te the phase of the project in which
the error entered the system are shown in figure 18. All projects show a strong
spike in the code and test phase. These distributions are somewhat less reliable
than others because programmers could not always decide exactly when a par-
ticular error occurred. The unknown subcategory comprises such cases.

What was the ratio of errors to various measures often associated with effort
and productivity? (Q13)

What was the distribution of errors per person according to the number of peo-
ple involved? (Q14)
Because of their similarity, questions 13 and 14 are answered together.

Tables 4 through 7 show a variety of ways of normalizing error rates to pro-
ductivity measures. Each normalization may be used to rank the projects. For
the six different normalizations there are six different rankings.

What was the distribution of errors according to programmer? (Q16)

Distributions of errors for individual programmers are shown in figure 9. As
with the project error distributions (e.g. figure 5), the individual programmer

A8

error distributions all show peaks in the "Design Single Comp” category. Both
the relative size of this peak and the variation over the remainder of the distri-
bution is considerably more variable among the different programmers than

among the different projects.

Req
Design
Debug
Env
PE

Unknown

Design
Debug
Env

PE

Req
Unknown

A9

. Easy Medium Hard Unknown
LE1HR 1HrTe i Day GT1 Day
Req 1 2
Design 33 22 6 1
Debug B 2
Env 1 1
PE 11 5 3 1
Other 3
SEL1
Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1Day
Req 11 - 8 9 4
Design 21 19 B 4
Debug 3 1
Env 4
PE 4 3 4 1
Unknown 2
SEL2
Easy Medium Hard Formidable Unknown
LE1HR 1HrTolDay 1Dayto3Days GT 3 Days
8 10 3 5 1
34 9 2 1 D
3 2 B 1
B
7 9 5 4 5
.5 B
SEL3

Table 9. Effort Te Modify By Source of Mod
(As Percentage of Total Mods)

Key
Modifications caused by changes in design
Modifications to insert or delete debug code
Mcdifications caused by changes in the hardware or software environment
Planned Enhancements
Medifications caused by changes in requirements of functional specifications

Causes of these medifications are not known

A-10

Easy Medium Hard Unknown
LE1HR 1Hrto!Day GT1Day

Clarity 2 3 3

Us 12 7 1 1

Opt 15 11 2

Unknown 4 1

SELL
Easy Medium Hard Unknown
LE1HR 1HrtolDay GT1Day

Clarity 6 4 1

Us 5 5

Opt ¥ 4 4 1

Other 1

Unknown 3 5 3

SELZ
Fasy Medium Hard Formidable Unknown

IE1HR 1HrtolDay 1 Dayto3Days GT 3 Days
Clarity 28 3 1 1
us 3.5 B B 1
Opt 2 2 §s)

SEL3

Table 10. Effort to Modify By Source of Mod (Design Mods Only)
(As Percentage of Total Mods)

Key
Clarity Improvement of clarity, maintainability, or documentation
Opt Optimization of time/space /accuracy

Unkneown Causes of these design changes are not known

us Improvement of user services

Reg
Fnl Spec
Design
Multi-Comp
Design/Impl
Single Comp
Lang /Compiler
Env
Other
Req
Fnl Spec
Design
Multi-Cormp
Design/Impl
Single Comp
Lang /Cormnpiler
Env '
Other
Easy
LE1 HR
Req 2
¥nl Spec 2
Design 9
Multi-Comp
Design/Impl 32
Single Cornp
Lang /Compiler 1
Env 2
Other 1

A11

Easy Medium Hard Unknown
LE1HR 1HrTelDay GT1 Day
1 1
B 4 2
5 2 1
45 18 2 1
1
2
5 2 1
SEL1
Basy Medium Hard Unknown
LE1H 1Hr To 1 Day GT 1 Day
2 2
1 2
2 1 1
41 26 2 9
7 1 1
1
2 1
SEL2
Medium Hard Formidable
1HrTo 1Day 1DayTo3Days GT3 Days
3 1
3 1
12 2 1
20 2
2
1

SEL3

Table 11. Effort To Design Fix By Source Of Brror
(As Percentage of NonClerical Errors)

Unknown

Design Multi-comp
Design/Impl Single Comp
Env

Fnl Spec

Lang

Req

A-12

Key
Design error involving several components
Error in the design or implementation of a single component
Misunderstanding of external environment, except language
Functional specifications incorrect or misinterpreted
Error in use of programming language/compiler

Requirements incorrect or misinterpreted

A-13

Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1Day
Intended Use 20 18 2 1
Data 29 5 1 1
Other 1
SEL1
Easy Medium Hard Unknown
LE1HR 1HrTolDay GT1Day
Intended Use 16 11 3 i
Data =8 18 2
SELZ
Easy Medium Hard Formidable
LE1HR 1HrTolDay 1DayTo3Days GT 8 Days
Intended Use i2 . 13 2
Data 29 18 2 1
SEL3

Table 12. Effort To Design Fix By Source Of Error (Design Errors Only)
(As Percentage Of NonClerical Errors)

Key
Data Error in the use of data

Intended Use Error in intended function,
l.e. program behavior does
hot correspond to the in-
tended use of the program

A-14

Easy Medium Hard Formidable Unknown
Project LE1HR 1HrTolDay GT1i Day
SEL!? 8 4 1
SEL2 5 2 2
SEL3 11 13 2 1

Table 13. Effort To Design Fix For Interface Errors
(As Percent Of NonClerical Errors)

A5

Easy Medium Hard NA Unknown
IE1HR 1HrTolDay GT! Day
Reqg 1 1
Fnl Spec 2 4 5 3
Design 2 3 2
Multi-Comp
Design/Impl 31 28 2 2 5
Single Comp
Lang /Compiler 1
Env 1 1
Other 1 7
SEL1
Easy Medium Hard NA Unknown
IE1HR 1HrTolDay GT1 Day
Req 3 1
Fnl Spec ' 1 1 1
Design 1 2 1
Multi-Comp
Design/Impl 27 32 1. 4 12
Single Cormnp |
Lang /Compiler 3 2 1 1 2
Env 1
Other 1 2
SEL2
Easy Medium Hard NA Unknown
LE1HR 1HrTolDay GT1Day
Reg 2 3 1 i
F'nl Spec 2] 1
Design 13 B 1 4
Multi-Comp
Design/Impl 35 17 1 4
Single Cornp
lLang /Compiler 2 2
Env 1 1 1
Other 1
SEL3

Table 14. Effort Te Isolate Cause By Source Of Error
{As Percentage Of NonClerical Errors)

Design Multi-Comp
Design/Impl Single Cornp
Env

Fnl Spec

Lang
Req

A-16

Key
Design error involving several components

Error in the design or implementation of a single component

' Misunderstanding of external environment, except language

Functicnal specifications incorrect or misinterpreted
Error in use of programming language/compiler

Requirements incorrect or misinterpreted

A-17

Easy Medium Hard NA Unknown
LE1HR 1HrTolDay GT1 Day
Intended Use 17 17
Data 18 i2 2 2 3
Other 1
SEL1
Easy Medium Hard NA Unknown
LE1HR 1HrTolDay GT1 Day
Intended Use 9 13 1 4 10
Data 19 21 1 2
Other
SEL2
- Easy Medium Hard NA Unknown
LK 1 HR 1 Hr To 1 Day GT 1 Day
Intended Use 16 11 1 1
Data 32 13 2 5
SEL3

Table i15. Effort To Isolate Cause By Source Of Error (Design Errors Only)
(As Percentage Of NonClerical Errors)

Data

Intended Use

Key
Error in the use of data

Error in intended function,
i.e. program behavior does
noet correspond to the in-
tended use of the program

A-18

Easy Medium Hard NA Unknown
Project LE1HR :(HrToiDay GT1 Day
SEL1 5 4 1 3
SELR 3 _ 4 1 1
SEL3 14 9 1 g

Table 16. Effort To Isclate Cause For Interface Errors
(As Percent Of NonClerical Errors)

A-19

Activities Used Error First
For Detection Detected By

Test Runs 128 93

Code Reading 59 40
By Programmer

Code Reading A 15
By Other Person

Reading Documentation 1 1

Proof Technigque

Trace

Dump 1

Cross Reference 5 1

Attribute List 1

Special Debug _ 11 3
Code

General Error 7 3 1
Messages

Project Specific
Error Messages

Inspection Of 12 7
OQutput
Other 4 7

Table 17. SEL1 Frequency Of Use Of Error Detection Techniques

A20

Activities Used Error First
For Detection Detected By

Test Runs B3 46

Code Reading 73 18
By Programmer

Code Reading o6 22
By Other Person

Reading Documentation 4

Proof Technique

Trace 4

Dump) 1

Cross Reference 1

Attribute List 2 1

Special Debug ' 4
Code

General Error 12 5
Messages

Project Specific 2 1

Error Messages

Inspection Of 48 33
Output

Other

Table 18. SEL2 Frequency Of Use Of Error Detection Techniques

Pre-acceptance
Test Runs

Acceptance Testing
Post Acceptance Use

Inspection Of
Output

Code Reading
By Programmer

Code Reading
By Other Person

Talks With Other
Programmers

Special Debug Code

System Error
Messages

Project Specific
Error Messages

Reading Doéu.mentation

Trace
Durnp

Cross Reference Or
Attribute List

Proof Technique
Other

A21

Activities Used

For Program Validation

162

27
9
143

188

1158

12
15

Activities Successful In
Detecting Error Symptoms
98

21
B
129

88

17

13

Table 19. SEL3 Frequency Of Use Of Error Detection Techniques

A-22

. Activities Tried
To Isolate Cause

Test Runs 13

Code Reading 134
by Programmer

Code Reading 24
by Other Persen

Reading Documentation

Proof Technique

Trace

Dump

Cross Reference 3
Attribute List

Special Debug ' 4
Code

General Error
Messages

Project Specific i
Error Messages

Inspection Of 9
Output
Other 1

Activties Successful
In Isolating Cause

&
129

22

Table 20. SEL1 Freguency Of Use Of Error Correction Techniques

Test Runs

Code Reading
By Programmer

Code Reading
By Other Person

Reading Documentation
Proof Technique

Trace

Durmp

Cross Reference
Attribute List

Special Debug
Code

General Error
Messages

Project Specific
Error Messages

Inspection Of
Output
Other

A23

Activities Tried
To Isolate Cause

g

71

38

11

Activities Successful
In Isclating Cause

)
89

34

Table 21. SEL2 Frequency Of Use Of Error Correction Techniques

Pre-acceptance
Test Runs

Acceptance Testing
Post Acceptance Use

Inspection Of
Output

Code Reading
By Programmer

Code Reading
By Other Person

Talks With Other
Programmers

Special Debug Code

System Error
Messages

Project Specific
Error Messages

Reading Documentation
Trace
Bump

Cross Reference Or
Attribute List

Proof Technique
Other

A24
Activities Tried
To Find Cauge

7

65

224

42

23

13

Activities Successful In
Finding Cause

4

39

R=0

38

<0

Table 22, SEL3 Frequency Of Use Of Error Correction Techniques

A-25

oo

- =

)]

By
o)
47
4|
38
30)
214
17
10}
Hods HonClecical ﬁ_nﬂ_nuﬂ
Ecrors Errors
Change Type
SEL |

FO

64 59

5

10

32

30

20

1Y A

Hods HonClerlcal Clerical
Ercors Errors
Change Type
SEL3

FIGURE 1 CHANGES

-

Q - ZmmD

M

Mmooz

G
59 8
14

49
30|
2

iy

e ; EE—
At
Hods HonCler tcat Clerical
Errars Errors

Change Type

A-26

HU
T

ac
fFL

ER
H |
ac
nn
Gl
£S5

LY vy
5
43

4y
30l
20

10]

1]

Hods HorClar I1cal
Errore
Chonge Type
Stk

RE
CX
EC
HL

oL
Fe

Lo |
HC
nA
ML
GS

7

61)
52

50 10
0
0,
20

)

1]

Hods HonCler yeal
Frrora
Change Tyupa
- 1

79
- 65

v
RE
cx
te 50
NL
J

c 19
oL 5
Fe ——%_

H 3
[|
HC
anp 2
ML
6S
E b
S

v
Hods Honf lar 1
Errors
nra:mm Type
TELY

FIGURE 2 CHANGES (CLERICAL ERRORS EXCLUDED)

m =S 3T

- =

li]

L]
4]

A-27

-ZMmMSOMmMT

60|

82

5
A0
Bt
0 20
1ol 10
S I.LJ
2
u 4
Ran Design Debug Env Ft Other
Change Type
SELL
70
6
50|
k 1]
9
M)
21 24
2
1
o ‘ I.II.L]I!J
Ren Dasign Debug Epv FE Other
Chonge Typa
1B

60)
r
E
nooso 12
€
£
LTy
1
U o3 20
F
AT
0
o 12
5
1 4 2
I— |
Rag Deaign Debug Enu LA 3 LD P
Change Type
SEL2

FIGURE 3 SOURCES OF MODIFICATIONS

A-28

40,

I
—8
21
20)
10]
a
|3
L3]
0
Char tly 1] Opt Qther Wrdcnown
Type OF Uesign Change
SEi L
4N,
| R - S——
Wy
20)
iy 9
o
[LT LEYS L) (pt

Yope (H [h=ign Fhange

S

L L
r
—H rda
R’
C
F
N
I

29)
n
r
n
i 14
n
S

Clw ity

FIGURE 4 SOURCES OF DESIGN MODS

us

SFL?

O -y

Type OF Drsigr Chintige

LR perns

A-29

H
th
H

o0y
HY
.
6O
50)
+0Y
30
20
i4
b0y
L
2 ! i
N Rey fnl Besign Design Lang Envs Other
Spec Melbi- Sirgle
Camp Camp
Type OF §rvar
SEEA
[
D)
&) (3]
5
40
30
2
2U)
10
nl 1
Y Reg Fnl lesign —..na.w: Lang Eny Other
Spec Iuiti- Single
Tong Comp
Type Of Ervor
Sl

FIGURE 5 SOURCES

H

MTIT O =M

~= T MmO M

7]

60

50

40,

30f

20|

i

h— 8

Uther C Ee s

Req Fal Oesign Design Latwy g ire Other
Spec Mulkli- Single
Conp Camg
Type OF brror
€12
a0,
70,
[
Sz
S0
q
3
2 18
13
] 2
0
Req Oesign Design Lang
Malty- Single
Cangs Conp
Type OF Error
fiF

OF NONCLERICAL ERRORS

A-30

(1]
E ft
Ri
[

HR

Bu)
50
41y 19
35
30y
20
10)
Intended fatas Other
Use
fype of Errar
St
79,
604
52
13
po %
£n
/U
"1 A¢)
Ei
HR
Ty Y 44
LN
On
f1 -2
5
19)
o
Intended Oata
tise

Type OF Error

FIGURE 6 SOURCES OF DESIGN/IMPLEMENTATION ERRORS

H
[aKY)
En
RC
it
EL
HR
T1

&
F1

70,

61)
50§
i
2
3z
39
2
1o
0
Intended Dala Uther
Use
Type (f Ecror
SEL?
70,
B0)
27
H o
0 ®
EH
RC
L 40
FE
HR
T3
C
O#
Fro20 12
5
10
0
Ik ended Oata
lse

Type DF Error

AF

A-31

Fa
EN
RE
cL
EE
NR
TI

GaA
FL

30p

201

T
N - R
e
[
B = P s e
PROJECT

FIGURE 7 INTERFACE ERRORS

A-32

Lilt! 59 i1
—v
50) [A acJ 3
R
€
4 n 10
T
13
Il
30 0
F
[N
20 " 204
A
H 13
1 & il
I 4
— ®
Eoay fadtum Hor-of Whiknowe Enoy Hed tum Flar Wbk frouty
LE IR 1 :.4 To 6T | Day LE 1 1IR 1o 8F 1 Nay
1 Oay | Day
Effort

SELT Effort to Oesign Change

Ll
P
E S 19
R
C
£ 4
H J
! kYl
B g
F
C
H o 20
A
3]
G
£ 19 q
5 g
Easy Hed v Hard Formid nknawn
LE | R I8 fo POy to G 3 Daye
I Day J Nays
Effort

SEL Y Effork to Hake Change

FIGURE 8 EFFORT TO CHANGE
MODIFICATIONS AND CLERICAL ERRORS

Effort

SELZ Effort to Design Change

A-33

n
0

b1 |

Ty P
E
R
kD C
E
1)
T
3o
(1]
F
20)
H
0
0
I
_=f 5
- Enay Pred tum Hard Unknown
LE 1 IR I IR Yo BT 1 Day
I ilay
Effort
SELT1 Effort to Design Change
60,
50| 12
P
E
R
€ o
E
H
)
30 20
D
F
20
n
0
]
5 Ti | i [E— o
Easy tedium tard Formid Uknown
LE 1t IR 11 To I Day To G1 3 Oayas
1 Day 3 Days
Effort

SEL3 EFfort to Moke Change

FIGURE 9 EFFORT TO CHANGE
MODLFICATIONS

5]
1 15
30 10
204 19
13 X
104
Lasy Had bum Mard Unbonoun
LE 1 IR | 1R Yo GV | Day
| {lay
Efforl
SEL? Effort to Besign Change

!
i
|
i
t
i
!
1

A-34

:

]

=Moo am3

0

)

64
L
S
4
30| 22
20
|
Unikiouns
Eany Hedium Hard
LE 1 IR 111 Ta 511 Oay
1 Day
Effoct
stL1 Effort to Oesign Change
L)
10
B0y
o0 18
42
40
30
2
[k
ey Hed i Hard Formid Uniknouny
[KAN 1] 1] To | Pay To GT 3 Days
1 Dny 3 Days

fffort

SEL3 Effort to fnke Change

FIGURE 10 EFFORT TO CHANGE
NONCLERICAL ERRORS

=IMAa3m

ma

=2 =

EDO=3MmMrA

- ~ZmEamT

W M-=omMmCrOze T

70
B0
50 51
0]
36
30]
20
o "
4
)
Enay tedtim Har d
AN T 1] 1R Ia GT | Dayp
I Day
Effnrt
SL? Effurt Yo flestgn Change
8o 1
70
6y
50
o
30
22
20]
10]
1
Simple Hed lum MifFicalt
Lesa Than A Few He-a Tk c Than
A Few ks To N Few Doya A Few Daps
Effort

A £fforl to Fix

A-35

50 — B
[
R
50 C 501
2
4 10 H)
40 T an
N |
0
3y F 3
2%
E
o R a0
R
° Li ¢
104 T
|||a[~|||_-’ 5 i
Easy Hedium Mard Hot [{] Unknown
LEIe 1tk To Gl 4 Oay Foond _Manﬂv “r_ﬂ:ﬂ.. m_......_ hiknouwn
I flay : ° 1 1 Nay
£ifort 1 (s .
Effort
SEL) SEL.3
!
3]
LT
E
R
C 50
E
H
LI
o
Foy 29
E
R 20
R
a
R _oJ
5
- E Hed !IIJFIILIIIIPIIQ
any 2 1im Hard [k
LE | H- I 1o GU 1 Day ne
1 Uay

Effort

BELY

FIGURE 11 EFFORT TO ISOLATE ERROR CAUSE

ALL ERRORS

A-36

PO
EH
RC
ct
EE
HR
L

GA
FL

olh

B0y
51 50
H
FO
40] EN 10
L3 RC 3G 16
3
[B
¥ EE 3
HR
T
C
2 oA I0
FL 1
i3 . 12] or
10 1 . 8
fany Hedium Hard Hat HA Uk hown Easy Hedium tard W TRkt ot
LE |)4 FW o G} Day Found LE | W Lk To 61 | Doy
1 Day I flay
Effort Effart
SELL 60 SELe
56 .
504
H
Fo .
en
RC
cL 10
EE 39
HR
i
C
on 20
FL
5
10 9
3
Easy Hedlium Hard Wiknown
(2N 'S 1y To G I Day
| Day
Effort
SEL3

FIGURE 12 EFFORT TO ISOLATE ERROR CAUSE
NONCLERICAL ERRORS

i
P
(3]
R
L
tE
HR

11

0n
[

A-37

[y

rof " 7o)
P}
B0 EH 60
RC
& 50 UL 59
"’ EE 1%
HR
40
40 Ja 11 .
C 33
3u oa 30
FL
5
20 201
1 1oy = Ll
7] 8
¢ [d
Easy Fed daim Har d Unknown asy Fedtum N Hard Inknowty
LE | I It To Gl | Day LE 1w __:m To 6T 1 Dy
18 ay
.uv. Effort Effort
SEL b SELZ
9,
fild
80
7y
N
L]
en
REC
CL 5o
EE
HR 10
T
-” -
on 39
FL
3 20f
104
0 3
asy Medium Hard
LE | He 1 To GY | Doy
1 flay
Effart

SEL

FIGURE 13 EFFORT TO ISOLATE ERRORS CAUSE

CLERICAL ERRORS

A-38

PG
e
RO
[

EC
tn
m

C
kil "
n M ode
1]
P
i) EE
M e RD 39
C
EE
2 HO
™
p 20 19
oo
[F4 FH 3]
104 19 L
1 L i0
v %
3 2 -9 S 1
-1 _ _ | 1 3
o L— I
b2 3 4 s 6 79 18 w2 0 : Ll
1 ? 3 L] 5 6 I a ¢ 10 15 16
Murbier OF Changes
Morser OF Lhanges
s 0 SEi 2
C
H
A 401
H
PG
EL
RO 30 29
C
EE
Hi
TH 44
1
oo
Fu 1}
€
n 'Y -2
T 5 .
S — 3 2
‘ _._________.._._.__
2 3 + 5 6 T 8 1w ¥ 1315

Hubier of Changes

SELY

FIGURE 14 FREQUENCY DISTRIBUTION OF

CHANGES

A=39

Hit
e

0K

W o= I

PE
£ED

cc
(]
Hit
1P
0t

FE
H

60

au

304

25

£0
tH
1p

0t
FE

-

10

6o—80

50|

101

SEL

Thinser Of Fiues

X -

£n

SEL3

Hurkor of Fines

(1]

12

0

kL)

208

e

S

10

1]

60§

50]

RIL

20

14

SEL2

Hurbier) Fiues

<

FIGURE 15 FREQUENCY DISTRIBUTION OF FIXES

N

Huvber OF Fives

A-40

60y

50
5l P
501 £ 50
n
C
3
10)
VIR
1
M 0 3 29
ﬂ
C
204 18 w20
n
12 it
0 T
E
5
[T IC W M\ st nFI o I I i _ _
P a £ m F5 ® ® &8 m ® o wm s

Subsystem (& = All Others)

SELA

FIGURE 16 CHANGES BY SUBSYSTEM

m;fuv.m.m! (x = Al Ofhera)

L2

L

A-41

WM X e

60y
S0
| P]
£ 18
R
« 40
0 m
1]
L}
30
2 18 ; A
ﬂ
20
ol (11 .
i
Lll_ :
£
! L - 1 5 Lt
€] m w iC 1] tG El .
Subsysten (k =~ ANl Othera) F
F3 w 6o G2 . n m Gl L]
SELL Finas By Subaystem
. Siayslem (o - Al Othera)
SELZ Fixes By Subrsysten
P 80
£
R
c 12
€ 40
H
Y 33
30
0
F
F 20
1
X
E oy
5 i]
0 L ?
RY (L} RE A ur R PA
odule

AFF Fixes By Module

FIGURE 17

P60 P
E E
" 5l R
t 50 C
£ [
H H
T 4 T
0 37 [t
LI 10 F
E [
R g0 R
] R
a 13
3] 0 R
5 S
4
FiL NESIGH COE & UKIE
SEC TEST
Deve lopment Phase
SELL
70,
o~
3 P &0}
< ¢ o
R
[5o
E
H
LT
0 Ir
F s
£
R,
R
[t}
Ry
5

{OE &
TEST

Qn(u_u—.:sn._.- Phase

Sty

66

B
50
401
30
22
26f
o 12
1 1
REQ Fr. LESIGH LK & JTRIETY
SPEC T€51

Ry S—— T

UK

FIGURE 18 PHASE OF ERROR ENTRY

Davelopment Phase

SEL2

A-43

mQa

wZTo=am™

I

B

50]

20

1

Progr amier

Sl

MO ~ZMmMmMADMmT

[- = - R

70

60

50

10

Jo

22

£0

- memgm

-

nITamTMm

Prcogr ammer

SEL3

FIGURE 19 ERRORS

BY PROGRAMMER

0

6%

&0)

bl

40

30|

24

23

L]

SEL?

Progr ammer

A-44

PG
ER
Hn
cH
&n
HE
TR

GS

aR
FR

- 57
50
40
30 29
20
11
i
1)
y DESIGH £
SINGLE
Wi
EFRIR TFE
PROGWTER 8 ERAIAS
&
51
sof -
40
3t
0
20
M.
10]
2 F4
o I
TLRCAL ESIGH 0E5) G [11)] DLER
SIELE QTR
cor P
EROR TYPE

PO IER 0 ERANS

i}
P&
ER
"n
cn
En
HE
TR
a

ma

wIaICIIM

CH

FIGURE 20

60,
52
5
0]
W
20 10
12
to
g L]
M 3
01 RCAL Fia SN tesIGH Lowns (1] anER
SELCS SIHAE M-
oy e
£ e
PROFPNTER C ERFTIS
B
5
40
33
3oy
2 4
11 1
5 5
[RRC oL L&) L8 DESIGN (FS[GH Ltes (LS
FECS SHRE mrng- :
cor cor
ERFYR 1YIE

FRINRAITR £ EWHS

A~45

Rn
cn
£En
HE
IR
a-
GS

OR

FR

&
.
m 5
i 50
5 P&
ER .
RN qp ’
cn
0 £t
ME
TR 30
30 28 nr
65
£ 20
£ i7
20f OR 14
16 FR i
n o B
10 R
. 5
o ,
CLACAL Rq Frt. IS I SieH
o - - FEC SHEALE -
aReaL REQ - DESIN CESIG e e e
SHILE HLTI- ERRIN TYPE ’
e ar
ERROR TYFE
FROGROVIER | ERIORS
FRUGRAMER B ERRORS ‘
6,
[53
R
50
)
PG
£R
RA 49
cit
£n
ne
TR uer
e
6GS
£ 2 ad
£
aR
FR
o 1y
R 5
s
v
CLACAL FHL {ESI6H IFS1GH
SPEES SIMALE LT
e e
EFRIR TIPES

PROGYWTER | ERERS

FIGURE 20 (CONTINUED)

