TR-1403 May 1984

4 Quantitative Analysis of a
Software Development in Ada+¥

Vietor R. Basili,
Nora Monina Panlilio-Yap,
Connie Loggia Ramsey,
Chang Shih,
and Elizabeth E. Katz

Department of Computer Science
University of Maryland
College Park MD 20742

+ Ada is a trademark of the Department of Defense.'.
* Research for this study was supported in part by the 0ffice of Na-

val Research and the Ada Joint Program Office under grant NOOO14-82-K-
0225 to the University of Maryland.

_ABSTRACT

A considerable amount of money and resources has been spent on the
development of the new programming language Ada. The University of
Maryland and General Electric have studied the development of a software
project written in Ada. This paper presents the analysis of the effort,
change, and error data. The total effort spent on training and metho-
dology was 20% of the total effort spent on the project; this was more
than the effort spent on any other phase. The greatest error rates
appeared to be associated with the most Ada-specific features: tasking,
generics and compilation units. Experience with high-level languages
seemed to be associated with a better ability to grasp Ada concepts.
Finally, the results strongly indicate the need for support tools for an

Ada programming environment.

Acknowledgement

The authors would like to thank John W. Bailey, James T. Ramsey,
and Dr. Marvin V. Zelkowitz for their invaluable assistance in this pro-
Jject. '

1. INTRODUCTION

The Department of Defense has spent a considerable amount of money
and resources on the development of the new programming language Ada.
To develop a better understanding of the nature of this language, it is
necessary to pull it out of the research arena and use it in an indus-
trial envircnment where one must deal with issues such as training,
budgets and support facilities.

To gain insight into the use of this new language, the University
of Maryland and General Electrie have jointly undertaken a study of the
development of a software project written in Ada. A subset of a previ-
ously written satellite ground control system was $o be reimplemented by
four GE programmers over a period of approximately one year using Ada.
The process involved two separate groups: (1) a team consisting of four
programmers whose task was to build the software and to view this as a
fnormal”™ industrial task to as great an extent as possible, and (2) a
team consisting of individuals from GE and the University of Maryland
who would observe the programmers with a minimal amount of interference.

A set of goals and questions was established at the beginning of
the project. These included generic goals for any software development
project, goals relating to Ada as a design and implementation language,
and goals relating to metrics for the Ada Programming Suppert Environ-
ment (APSE). Data collected from the project were analyzed. This paper
describes the observations which provide answers to a subset of the
goals and questions. While some of the answers are relevant only to our
particular environment, others apply to any group wishing to use Ada for
the first time, and still others apply to any Ada environment. More
specifically, this paper addresses those goals that are related %o

effort, changes, errors and programmer characteristics.

2. BACKGROUND

The project under study involved the redesign and implementation in
Ada of a portion of a satellite ground control system originally written
in FORTRAN. This subset included an interactive operator interface,
‘graphic ocutput routines, and concurrent telemetry monitoring.

Four programmers with diverse backgrounds were selected for this
project in order to determine whether a programmer’s experience and edu-
cation will influence his understanding and use of Ada. Table 2.7 shows
the education and experience of each programmer and the programming
languages each is familiar with. The lead programmer was fluent in FORw
TRAN and assembler languages. He had many years of industrial experi-
ence working in the application area. The senior programmer had a
master’s degree in computer science and had worked with many languages,
such as COBOL, PL/1, Lisp, ALGOL, and SNOBOL in addition to FORTRAN and

assembler. He had 2 reasonable amount of experience with the applica-
tion area, though not nearly as extensive as the lead programmer. The
Junior programmer had just obtained a bachelor’s degree in computer sci-
ence and had programmed in Pascal as well as all the languages that the
senior programmer knew. He had no industrial experience whatsoever and
was not at all familiar with the application area. The librarian’s com-
puter science background consisted of a single course in FORTRAN pro-
gramming.

None of the programmers knew Ada before the project began. They
received one month of intensive training in Ada. They viewed fifteen
hours of videotaped lectures given by Ichbiah, Firth, and Barnes (the
major developers of the language) over a period of four days. This was
followed by six days of further training given by George W. Cherry of
Language Automation Associates which was spread over a period of four
weeks. During this time, the programmers also practiced writing Ada
programs, read the Ada reference manual and reviewed their class notes.
The NIU Ada/Ed interpreter was uzed for programming assignments which
included a 500-line team project. Finally, the programmers were given a
half-day class on software engineering techniques by Vietor R. Basili of
the University of Maryland. Among the topics discussed were chief-
programmer teams, design and code walkthroughs, and siructured program-
ming. .

The programmers never saw the comparable Fortran source programs.
It was estimated that the equivalent Fortran subset was about 10,000
lines of Fortran code - a size amenable for the programmers to build in

a year.

Table 2.1 « Backgrounds of Programmers

Programmer Years of Education Languages
Professional
Experience

Lead 9 B.S3. FORTRAN, Assembler

-(Comp. Sei.)

Senior 7 M.S. - FORTRAN, Assembler,
(Comp. Sei.) | COBOL, PL/1, Lisp,
ALGOL, SNOBOL

Junior 0 B.S. FORTRAN, Assembler,
(Comp. Sei.) | cosBOL, PL/1, Lisp,
. ALGOL, SNOBOL, Pascal

Librarian (I High School FORTRAN
Degree

The project began in February 1982 and ended in July 1983.
Requirements analysis of this project was done concurrently with train-
ing during the first month. Following this, system design using an
Ada-like Programming Design Language (PDL). <c¢oding, and testing were
done. ’

3. GOALS

This study attempts to answer goals and questions from four dif-
ferent areas of the Ada project. We characterized the effort, the
changes, and the errors. We also tried to associate each programmer’s
background with his use of Ada and his performance on the project.

In order to collect the data necessary for the study, the program-
mers were asked to complete various forms. The forms relevant to this

study are:

a) component status report forms

b) change request forms

¢) error description forms

d) individual document change report forms

A component status report form contains information on the weekly break-
down of effort spent by a programmer on each phase of the project. Each
time a need for change was detérmined, a change request form was filled
ocout. If the change was an error correction, an error description form
was also completed. An individual document change report form was
filled out for every component involved in a change. Samples of these
forms may be found in Appendix 7.

In addition to the data collected on the forms, a copy of the last
design and code versions for each module was kept. The source code
measures used in this paper were taken from the latest version for all

modules.

3.1 Effort

In order to analyze the effort in the project, we determined how
the effort was distributed over the phases (i.e. requirements, design,
coding, testing, training, ete.) of the project. In addition, we deter-
mined how the effort for the project was distributed over time.

3.2 Changes

Our second goal was to analyze the changes in the project. We cal-
culated the number of each type of change, where the types of changes
ares:

a) error corrections

b) changes in problem domain

¢) planned enhancements

d) avoidances of apparent problems with the compiler

e} avoidances of other problems in the developing environment
f'} adaptations to a change in the developing environment

g) improvements of clarity, maintainability or documentation
h) optimization of time, space or accuracy

i) insertion or deletion of debug code

3) other than above

Furthermore, the number of changes according to document type was tabu-
lated based on the highest level document modified in any component for
each change. The document types are requirements, PDL, and code
modules.

Another aspect of the analysis involved determining how the changes
were distributed over the software development cycle. We calculated the
number of components involved in each change and the number of interface
changes made. Finally, we determined how long it took to establish the

~need for change and how long it took to design and implement the change.
From these results, we hoped to answer other questions such as how
effective Ada is in producing software that is easily changed and
whether the need for change was easily determined.

3.3 Errors

Our third major goal was to characterize the errors that resulted.
We wanted to determine which of the following types of errors cccurred:

a) requirements incorrect

b) requirements misinterpreted

¢) design incorrect

d) design misinterpreted

e) code incorrect

f) external enviromment misunderstood (not language or compiler)
g) clerical error

There were specific questions that we tried to answer regarding the
errors. What activities were used to detect and isolate the errors?
Were they easy to find and to correct? How much effort was required to
correct them? Where was the information needed to correct errors found?
At which stage in the project did they enter the system? For each type
of error, we defermined the highest level document that needed to be .
changed. We also obtained the number of interface errors and the dis-
tribution of errors over time.

The errors were classified as follows:

a) Language
b) Problem
e) Clerical

Language errors were those which involved the syntax or semantics of a
feature or those which involved the concept behind a feature. The prob-
lem category encompassed logic errors and errors related to the environ-
ment. Clerical errors included those due to carelessness, 2.g. tEypo-
graphical errors.

We determined which features of Ada are commonly involved in
errors. We also summarized the programmers’ responses to questions
regarding their understanding of the features, such as: Does the docu-
mentation explain the features clearly? Can the errors be attributed to
lack of understanding of Ada? 1lack of experience with a feature? confu-
sion with another language?

We tried to determine if the use of Ada PDL causes a preoccupation
with syntax during the design stage. Furthermore, we attempted to find
out if there were errors uncovered during the design stage that ordi-
narily would have been found during coding because of the use of Ada
PDL.

3.4 Programmers

Our fourth major goal was to determine whether there was any rela-
tionship between the background of the programmers involved and their
use of Ada. We obtained breakdowns of effort, changes, and errors by
programmer. Are certain types of errors associated with particular pro-
grammers? Are some features of the language used incorrectly or inap-
propriately by the programmers? Finally, we tried to determine if pro-
grammers with no or little previous high-level language experience have
more or fewer problems with Ada than programmers with substantial high-
level language experience.

4. OBSERVATIONS

4.1 FACTORS

Several factors affected the outecome of this study, and it is
important to understand them so the results of the analysis can be
interpreted properly. First of all, no full production quality proces-
sor was available at the time the experiment was being conducted, and
this had a major impact on the project. No compiler was available ini-
tially, and several rumored products were "promised" imminently.
Finally, it became apparent that no such compiler would be made

available, so the useful, but very slow, NYU Ada/Ed interpreter was
uzed, However, even that became unusable towards the end of the project
as the size of the developing system grew. This had a demoralizing
effect on the programmers who did not finish coding or testing the pro-
jeet. When the ROLM compiler became available, some further testing was
done., The results in this paper are based on data collected through
coding and some unit testing. The effort data used in this study show
that little time was spent on testing. (See Table U4.1a.) In addition,
the vast majority of the Ada-related errors were syntax errors. This
might not have been the case if the code had-actually been executed and
testing had been completed. It is probable that many more logic errors
would have been uncovered had syntax error-free compilation of all the
modules been achieved.

Secondly, the lack of an automated PDL processor prevented the pro-
grammers from investigating deeper logic issues instead of simple syntax
errors. Many errors which first appeared in the design stage would have
been caught then had a PDL processor been used. However, they were not
caught until compilation during the coding stage. In several of these .
cases, the code was changed but the programmers failed to correct the
design document.

Thirdly, even though the requirements were taken from a previous
FORTRAN project, only a subset of the project was to be recoded in Ada.
Thus, the requirements document had to be cut down accordingly. The
resulting set of requirements was improved and made into a consistent
subsystem. This accounts for the effort spent on requirements and the
substantial number of requirements changes. (See Tables 4.1a and 4.2a.)

Appendix 1 shows the effort spent on coding throughout the project.
There was a ‘false start” in the 12th week of the project. Since the
programmers had a problem with methodology, in particular, writing
abstract PDL, they began coding the project before they were prepared to
do so. They were told to stop, and they did not resume coding until the
25th week of the project. This accounts for the large gap of no coding
activity for nine weeks in the middle of the figure.

The project was temporarily discontinued after the 49th week, and
further testing was resumed in the 62nd week by the junior programmer.
This explains the periods of no activity in the graphs of effort,
changes and errors over time contained in the appendices.

A final factor which influenced the results was that Ada is a com-
pletely new language with features not present in any other programming
language. Thus, 20% of the total effort was spent on training and
methodology, which is more than the effort spent on any other phase of
the project. (See Table 4.17a.) This is a much higher percentage than
would typically be spent on most projects. Furthermore, even this
amount seems insufficient because the programmers indicated that they
did not feel comfortable with Ada until after they left the project.

4.2 DISCUSSION

'4,2,1 Bffort

Table 4.1a shows the amount of effort spent on each phase of the
project. As stated previously, training and methodology accounted for
20% of the effort, a very high percentage compared to most other Pro-
Jects. The distribution of effort over time follows normal software

development patterns and is shown in Appendix 1.
ured and is presented in Table 4.1b.

Productivity was meas-

It was determined that 18.52 lines

of code (including comments but excluding blank lines) and 9.82 lines of
text (lines containing part of an Ada statement) were developed per hour
spent in code development. Productivity for the effort spent on the
entire project was also calculated, but the values are upper bounds (and
may not be meaningful) since the project was not completed.

Table 4.1a - Effort for Each Phase of the Project

Project Phase Amount Of Time Percentage
{in hours)
Requirements Analysis 530.5 12.73%
‘Requirements Writing 113.6 2.73%
Design Creation 514.4 12.34%
Design Reading 37.7 0.91%
Formal Design Review 162.4 3.89%
Coding 305.6 7.33%
Code Reading 13.3 0.32%
Formal Coding Review 62.3 - 1.50%
Unit Testing 332.7 7.98%.
Integration Testing 0 ' 0.00%
Review Testing 0 0.00%
Training and Methodology 849,1 © 20.38%
Other Activity 12U45.7 29.89%
Total Requirements 64,1 - 15.46%
Total Design T14.5 _ 17.14%
Total Code Development 381.2 9.15%
Total Testing 332.7 7.98%
Total Training and Methodology 89,1 . 20.38%
Total Other Activity 1245.7 29.89%
Entire Project 4167.3 100.00%
Table 4.1b - Productivity
Productivity

(Lines of Code per Hour)

Code Developed Total Code Entire Project
Development

Text 9.83 1.09

All Non-blank Lines 18.52 2.04

Note - Text refers to any line containing part of an Ada statement. .

4,2.2 Changes

The analysis of the 337 change request forms and the 439 individual
document change forms resulted in the following observations. The
number of changes according to document type (the highest level of docu-
ment modified in any component for this change) is displayed in Table
4.2a. Code changes accounted for 61% of the changes. As stated previ-
ously though, many of these changes were errors which should have been
caught at the design stage. Thirty-two percent of the changes were in
design documents, and only seven percent were in requirements documents.
The number of overall changes and the number of non-error changes per
thousand lines of code are presented in Tables 4.2b and 4.2¢ respec-
tively. These numbers are lower bounds and may not be meaningful
because the project was not completed.

The breakdown by type of change is shown in Table 4.3. The major-
ity (57%) of the changes were error corrections which will be described
in detail later. Of the non-error changes, 52% were improvements of
clarity, maintainability and documentation. Most of these were PDL and
requirements changes as shown in Appendix 2; this indicates that there
was concern for good design.

The time to determine the need for change was one hour or less in
almost all cases as shown in Table 4.4. In addition, #6% required only
one tenth of an hour. This indicates that the need for these changes
was easily determined. There were a few changes which took much longer
than the average of one half hour per change. It took one or more daya
to determine the need for each of two planned enhancements. This was
reasonable for the type of change. A different code change which took

Table 4.2a - Changes by Document Type

Document Type Number of Changes Percentage
Requirements 24 7-12%
"~ PDL 107 31.75%
Code Module 206 61.13%

Table 4.2b - Number of Changes per Thousand Lines of Code

Changes in Code | All Changes
Modules Only '

Text . udy - 71
Non=blank lines 23 38

Table 4.2¢ - Number of Non-Error Changes per Thousand Lines of Code

Changes in Code 411 Changes
Modules Only :

Text 12 31
Non=blank lines 7 16

Table 4.3 - Breakdown of

Changes by Type

Type of Change Number of Changes Percentage
Error Corrections 192 56.96%
Changes in Problem Domain 1 0.29%
Planned Enhancements 9 2.67%
Avoidances of Apparent Problems 18 5.37%
with the Compiler
Avoidances of Other Problems in 2 0.59%
the Developing Environment
Adaptations to a Change in the 7 2.08%
Developing Environment)
Improvements of Clarity, Maintain- 76 22.55%
ability or Documentation
Optimization of Time, Space or 2 0.59%
Accuracy
Insertion or Deletion of Debug Code 9 2.67%
Other Than Above 21 6.23%

two days involved avoiding a problem with the compiler. Another change
which invelved a global definitions package took two days. It entailed
the detailed modification and interfacing of several components.

Surppisingly, the amount of time needed to design and implement
changes was very small.. (See Table 4.5.) Again, the vast majority of

Table 4.4 - Time to Determine Need for Change .

Effort Number of changes Percentage
0.1 hour 155 ' 46,009
0.2 hour 81 2h,0l4%
0.3 hour : 23 6.82%
0.4 hour 2 . 0.59%
0.5 hour | - 36 10.68%
0.6 hour 5 - 1.48%
0.8 hour g9 2.67%

0.9 hour 3 0.89%

1 hour B 3.26%
2 hours 2 0.59%
3 hours 1 0.30%
I hours y 1.19%
5 hours 1 0.30%

1 day 1 0.30%

2 days 3 0.89%

Total Effort = 166.3 hours
Mean = 0,49 hours per change
Standard Deviation s 1.64 hours per change
Median = 0.20 hours per change

changes took one hour or lesas to handle. Of the code changes, all
except five took two hours or less. Two changes, which took three hours
and one day respectively,. involved avoiding problems with the compiler.
One change which took one and a half days resulted from an adaptation to
a change in the development environment. One code change which took
four hours was an error correction and will be discussed in the errors
section. One code change took four days; this involved the same global
definitions package as deseribed above. The few other changes which
took much longer than usual were mostly planned enhancements and
improvements of clarity, maintainability and documentation of require-
ments documents. The change which took one week was a planned enhance-
ment in a requirements section.

Table 4.5 - Time to Design and Implement Changes

Effort Number of Changes Percentage
0.1 hour 164 - 48.66%
0.2 hour 78 23.149
0.3 hour 19 ‘ 5.63%
0.4 hour 14 4.14%
0.5 hour 15 4. uh43
0.6 hour 7 2.08%
0.7 hour 2 0.59%
0.8 hour 0 0.00%
0.9 hour 2 " 0.59%

1 hour 10 2.97%
1.7 hours 2 0.59%
1.2 hours -1 0.30%
1.3 hours 0 0.00%
1.4 hours 1 0.30%
1.5 hours) 1.19%
2 hours 4 1.19%
3 hours 1 0.30%
3.5 hours 1 0.30%
4 hours 1 0.30%
5 hours 1 0.30%
5.2 hours 1 0.30%
6 hours 1 - 0.30%
0.8 day 1 0.30%
-1 day 2 0.59%
1.5 days 1 0.30%

2 days 1 0.30%

3 days 1 0.30%

4 days 1 0.30%

1 week 1 0.30%

Total Effort = 260.1 hours
Mean = 0.77 hours per change
Standard Deviation = 3.34 hours per change
Median = 0.20 hours per change

10

The total effort spent on determining the need for and implementing
changes was U26.4 hours, which is 10% of the total effort for the entire
project. The average cost was 1.27 hours per change. However, it
should be noted that most of the changes took much less time than this.
The changes began in the nineteenth week of the project and the distri-
bution of the changes throughout the software development cycle is shown
in Appendix 3.

The number of components involved in each change is shown in Table
4.6. Only one component was modified in 77% of the changes, but up to
five components were involved in some changes. We also determined the
number of interface changes. (See Tables 4.7a and 4.7b.) In this paper,
an interface change is defined as one which entails a change in more
than one component at the same level of document. There was a total of
70 interface changes (21% of all changes). Only 2.9% of these were in
the requirements, and the rest were equally divided between design and -
code. As many as five components were involved in these interface
changes.

Table 4.6 - Number of Components Ihvolved in Each Changé by Type of Do-
cument

Number of Changes by
_ ' Type of Document
Number of Req. PDL Code All Levels
Components Involved of Document *
1 - 23 82 177 260
2 2 19 .24 7
3 : 0 7 7 17
y : 0 6 3 10
5 0 2 0 3

¥ The first three columns do not add up to the last column. This is be-
cause a change may involve several components at different levels of do-
cument. (e.g. one change may involve three components - two PDL com-

ponents and one code component.)

Table 4.7a = Interface Changes:

Number of Components Involved . '
. 2. 3 b 5 Total %
Regq. 2 0 0 0 2 2.86%
PDL 19 7 6 2 34 48.57%
Code 24 7 3 0 34 48.57%
Total | 45 14 g 2 70 100.00%
% 64.28% | 20.00% | 12.86% | 2.86% | 100.00%

11

Table %.7b - Non-Error Interface Changes

Number of Components Involved
2 3 Y 5 Total 4
Req.-| 2 0 0 | O | 2 | 3.92%
PDL 14 3 6 2 | 25 %9.02%
Code 14 T 3 0 2y 47,.06%
Total | 30 10 g 2 51 100.00%
% 58.82% | 19.61%] 17.65% | 3.92% | 100.00% | 100.00%

§.2.3 Errors

A total of 192 error description forms were examined. Each of
these forms corresponds to a change request which falls under the error
correction category. Table 4.8 shows a breakdown of the errors by type.
From this, we can see that the vast majority (79%) of the errors were
due to incorrect code. Most of the remaining errors were attributable
to incorrect design.

The activities used in an attempt to detect errors were mostly com-
pilation, design reading, design walkihroughs, c¢ode reading, or some
combination of these. Approximately half of the errors were success-
fully detected through compiler messages, and a slightly smaller number
were successfully detected through readings and walkthroughs. These
same activities were used to isolate the source of the error. Code
reading was more successful at isolating the source of the error than at
detecting it, and the opposite is true of compiler messages. In the
caze of design reading and walkthroughs, detection of the error and isoc-
lation of its source usually tock place simultaneously, but in many
cases Lthe programmer only checked the detection columns on the form. A
complete listing of the activities used to detect and isolate errors is
provided in Appendix X4,

Table 4.8 - Breakdown of Errors by Type

Type of Error : Number . Percentage’
of Errors

requirements incorrect ' 2 1.04%
requirements misinterpreted L 2.08%
design incorrect 30 15.63%
design misinterpreted - 0 0.00%
code incorrect 151 78.65%
external environment 0 0.00%
misunderstood (not language

or compiler) _
clerical error - _ 5 2.60%

142

Over 80% of the errors took at most twelve minutes (0.2 hour) to
isolate. Approximately as many errors required as little time to
correct. Only seven errors took an hour or more either to isolate or to
correct. One error took an hour to isolate but only required 0.1 hour
to correct. It was a design incorrect error which involved renaming a
file. Another error classified as code incorrect took two hours to iso-
late but only 0.3 hour to correct. An undefined part of a string was
passed as an argument to a function. Two errors involving incorrect
design each required only 0.1 hour to isolate but over an hour to
correct. One of these was a tasking error involving a synchronization
problem between two components and it required 5.2 hours. Another,
which required 1.5 hours, was a logic error involving input/output. The
remaining three errors took an hour or more to isolate and an hour or
more to correct. Two of them involved incorrect code. One required the
insertion of error checks and exception handlers in a routine to conform
to the specifications; this took one hour to isolate and one hour to

“correct. The other took four hours to isolate and four hours to
correct; it was an input/output syntax error. The last error which took
one hour to isolate and one hour to correct was a requirements incorrect
error. A superfluous requirements section was found, and this was even-
tually deleted. Table 4.9 shows the time required to isolate errors;
Table 4.10 gives a breakdown by error type of effort needed to correct
errors.,

Table 4.11 shows when errors entered the system. Seventy-two per-
cent occurred during the Ada coding stage. Twenty-four percent also
_entered the system during design. As stated previously, several of the
errors reported as coding errors actually originated in the design
stage.

A summary of the different types of errors and the highest level
document that had to be changed for each one is presented in Table.
h.12a, Eight errors where the code was incorrect involved changes in
the PDL. This may seem anomalous. However, these errors resulted in mere
code changes to the PDL document and not changes to the design itself.

Table 4.9 - Time to Isolate Errors

Effort (hours) Number of Eprrors Percentage
0.1 115 59.90
0.2 yy - 22.92
0.3 10 ' : '5.21

- 0.5 9 4,69
0.6 2 1.08
0.8 5 2.60
0.9 2 1.04
1.0 3 1.56
2.0 1 0.52
4.0 1 0.52

Mean = 0.23 hours per error
Standard Deviation = 0.36 hours per error
Median = 0.10 hours per error

13

Table 4.10 - Time to Correct Errors

Effort (hours) Number of Errors Percentage
0.1 116 60.43
0.2 u7 24,48
0.3 12 6.25
0.4 5 2.60
0.5 5 2.60
0.6 2 1.04
1.0 2 1.04
1.5 1 0.52
4,0 1 0.52
5.2 1 0.52

Mean = 0.22 hours per error
Standard Deviation = 0.48 hours per error
Median = 0.10 hours per error

Table 4.11 - Stage in Whieh Error Entered the System

Stage of the Project Number of : Percentage
BErrors
requirements 2 1.04
design e 46 23.96
Ada coding _ 139 72,40
testing ‘ : 1. 0.52
implementing another change 4 2.08
other or can’t tell 0 0.00

(For example, a semicolon error in the PDL document would have been
counted as incorrect code, not incorrect design.) Table 4.12b shows the
number of errors per thousand lines of code.

The number of interface errors (those errors which entailed modifi-
cations in more than one component at the same level of document) was

Table 4.122 - Type of Error vs. Highest Level Document Changed

Type of Error Number of Errors

Req. PDL code

module
requirements incorrect 2 0 0
requirements misinterpreted { 0 L 0
design incorrect 0 30 0
design misinterpreted 0 0 o]
code incorrect 0 8 143
external environment 0 0 0

misunderstood

elerical error 0 0 5
TOTAL ' 2 42 148

PERCENTAGE 1.04 |.21.88 77.08

1%

Table 4.12b - Number of Errors per Thousand Lines of Code

Errors in Code All Errors
Modules Only

Text 31 41
Non=-blank lines 17 22

calculated. Only 10% of all the errors were interface errors. Approxi-
mately half were in the design, and half were in the code. The maximum
number of components involved for any single error was three. (3ee
Table 4.13.)

Appendix 5 contains the distribution of errors over the software
development cycle. The errors displayed a normal development pattern.

As explained in Section 3.3, the errors were classified as follows:

a) Language
b} Problem
e) Clerieal

Language errors were those which involved the syntax or semantics of a

feature or those which involved the concept behind a feature. The prob-
lem category encompassed logic errors and errors related to the environ-
ment. GCleriecal errors 1ncluded those due to carelessness, e.g. typo- '

- graphical errors.

. Of the 192 error description forms examined, 146 (76%) claimed that
the use of Ada contributed to the error. As shown in Table 4.14, the
vast majority of the errors were language errors, and furthermore, 69%
of these were merely syntax errors, which explains why so many of the
errorg took so little time to correct. There were 24 syntax errors per
thousand lines of text (any line containing part of an Ada statement)
and 13 syntax errors per thousand non~blank lines. The
language/problem/clerical classification is further broken down by error
type in Table 4.15. As might be expected, most of the errors involving
requirements were problem errors, and most of the errors 1nvolv1ng
incorrect design or code were language-related errors.

Table 4,13 - Interface Errors

- Document Number of Errors
2 components 3 components
involved involved
Requirements ¢ 0
PDL _ 5 B
Code 10 c

15

Table 4.14 =~ Number of Language, Problem and Clerical Errors

Language 166
Concept 7
Syntax 114
Semantics 45

Problem 21

Cleriecal 5

Table 4.15 - Type of Error vs. Language, Problem or Clerical Classifica-
tion '

Type of Error Number of Errors
Language Problem Clerical
requirements incorrect 0 2 0
requirements misinterpreted 1 3 0
design incorrect 25 5 0
design misinterpreted 0 o 0
code incorrect ‘ 140 11 o
external environment o . 0 0
misunderstood
clerical error 0 0 5
- TOTAL) 166 21 5

- Several Ada language features were involved in errors. Most common
among these were low-level syntax {e.g. semicolon, parenthesis, assign-
ment} and loops. There were also a considerable number of errors
involving tasks, separate compilation, generiecs, procedures/functions,
parameters, and declarations. As previously stated, most of the errors
were syntax errors. There were only seven concept errors, and these
involved tasking, exceptions, access types, file input/output and pack-
ages. O0Of the forty-five semantic errors, there were six each involving
parameters and generics and five each involving compilation units and
declarations. (See Table U.16a.)

The errors involving the various Ada language features were normal-
ized with respect to the number of times each feature was used. (See
Table 4,16b.) For example, there were eight errors involving tasks and
21 occurrences of tasking in the project; this gives a 38% error rate
for tasking which was the highest percentage for any feature. Access
types and generics had error rates of 27% and 24% respectively. Compi-
lation units and PRAGMA each had a 13% error rate. It is worthwhile to
note that all of these features are specific to Ada.

The error description forms included questions to assesa the pro-
grammers’ comprehension of Ada features. For errors in the PDL or code,
the programmer said that the documentation explained the features :
clearly in most cases and that he understood the features but did not
apply them correctly. In some cases, the programmer did not understand

16

Table 4.16a ~Errors Categorized by Ada Language Feature

Ada Language
Feature

Concept

Number of Errors
Semantics Syntax

TOTAL

semicolon
parenthesis
¢olon
quotes
comment
identifier
loop

CASE

IF
BEGIN/END
RETURN
scoping
typing
aggregate
strings
arrays
records
access type
declarations
© parameters
procedures/
functions
tasking
exceptions
generics
packages
compilation units
attributes
PRAGMA
‘file input/output
overloading

1eo—~r~roo0co-=0mmn

17
12

—

FAUNMNDW=L2 =2 000000 0000000
O =200MN =N - = N FOONMNMOOUVIN =0 o - = = hw

WO NN

—
N =

- el =
- O W

W MM =~ N e o

17

Table 4.16b - Errors Normalized with Respect to Feature Usage

- Ada Language : Percentage of Errors

Feature Concept Semantics Syntax | TOTAL
semicolon 0 0 0.48 0.48
parenthesis 0 0 3.81 3.81
colon 0 0 0.28 0.28
g= 0 0 0.82 0.82
comment 0 0 0.08 0.08
identifier 0 0.27 1.07 1.34
loop 0 0 6.55 6.55
CASE o 0 5.88 5.88
IF 0 0 2.73 2.73
BEGIN/END 0 0 2.08 2.08
RETURN 0 0 0.83 0.83
aggregate 0 0.06 0 0,06
strings 0 0.38 0 0.38
arrays 0 0.21 0.14 0.35
records 8] 0.25 0.25 0.50
access type 9.09 18.18 0 27.27
declarations 0 0.37 0.59 0.96
parameters o 0.96 0.63 1.59
procedures/ 0 0.70 1.23 1.93
functions -
tasking 9.52 9.52 19.05 38.09
exceptions 1.01 0 0.51 1.52
generics 0 18.18 6.06 24,24
packages 6.25 0 6.25 12.50
compilation units 0 10.00 k.00 14,00
attributes: 0 0.70 0 0.70
PRAGMA 0 12.50 0 12.50

the features fully, and in a few others he understood the features
geparately but not their interactions. The programmer usually remem-
bered how the features should be applied or obtained information from
another programmer to correct the error. For more details, see Appendix
6. : : :

4,2.4 Programmers

Table U4.17a shows a breakdown of the effort for each programmer.
The productivity of each programmer is shown in Table 4.17Tb. The types
of changes versus the programmer who authored the document in which the
change was made are presented in Table 4.18a, while the types of changes
requested by each programmer are presented in Table 4.18b. In all
except 67 cases, the programmer who requested the change was the same
-person who had authored the document in which the change was made. In

18

~Tables 4.19a and 4.19b, we see how many of each type of error the vari-
ous programmers committed and found. Table 4.19¢c shows the number of
errors per thousand lines of code for each programmer.

The lead programmer who had the most industrial experience and the
most experience in the specific application area apent most of his time
working on the requirements of the project, and a considerable amount of
time on design. He made and found the vast majority of the design
errors.

The senior programmer worked mostly on design. He made and found
all four of the requirements misinterpreted errors. Note that the
highest level document changed for these errors was the PDL. He did not
do much coding, but was by far the most productive of the four. He
averaged 39.85 lines of text per hour during code development (six times
more productive than the other programmers) and 2.81 lines of text per
"hour for the entire project.

The junior programmer spent almost an equal amount of time on
design and coding. He seemed to have the easiest time grasping ideas in
Ada, but he had the highest error rate. He did most of the unit testing
and therefore found most of the coding errors. He and the senior pro=-
grammer requested 80% of the changes. They also made the most coding
errors, but they had written the most code and their code was tested

Table 4.17a - Effort for Each Programmer

Amount of Time {in hours)

spent by each programmer
Project Phase Lead Senior Junior Librarian
Requirements Analysis 284.5 91.0 110.0 0
Requirements Writing: 86.3 B.9 17.9 0
Design Creation 139.1 118.1 222.7 38.5
Design Reading 16.0 9.7 3.5 4.5
Formal Design Review 62.7 bz.2 50.1 7.4
Coding 88.0 34.5 164.6 18.5
Code Reading 0 6.0 7.3 0
Formal Coding Review 22.6 14,2 19.2 6.3
Unit Testing 0 T0.5 241.5 20.7
Training and Methodology 226.5 216.5 270.2 135.9
Other Activity 321.0 167.9 292.6 us58.7
Total Requirements 370.8 99.9 127.9 0
Total Design 217.8 166.0 276.3 | 50.4-
Total Code Development 110.6 S54.7 191.1 | 24,8
Total Testing 0 70.5 241.5 20.7
Total Training and 226,51 216.5 .. 270.2 135.9
Methodology .
Total Other Activity . 321.0 167.9 292.6 458,.7
Entire Project ' 1286.7 775.5 1399.6 690.5

19

Table 4.17b = Productivity of Fach Programmer

Productivity
{Lines of Code per Hour)
Code Developed Amount of Entire Project
Code Developed
Text Lead 6.56 0.58
Senior 39.85 2.81
Junior 6.08 0.83
Librarian 6.33 0.23
All Non-blank Lead 11.50 - 1.02-
Lines Senior T1.k4 5.04
Junior 18.47 2.52
Librarian 7.78 0.28

Note - Text refers to any line containing part of an Ada statement.

Table 4.18a - Types of Changes vs. Document Author

Type of Change Lead . Senior Juniior Librarian
Total Changes - 48 143 139 7
and % of all changes 14.24 42.43 41.25 2.08
Requirements _ g Y 10 1
PDL 29 b5 33 0
Code Module ' 10 gl g6 6
Error Corrections 28 75 85 !
Changes in Problem Domain 1 0 0 0
Planned Enhancements 3 3 3 0
Avoidances of Apparent

Problems with the Compiler 0 7 11 0
Avoidances of QOther Problems ‘

in the Developing Env. ¢ 1 1 0
Adaptations to a Change in '

the Developing Env. 0 6 0 1
Improvements of Clarity, : _

Maint. or Documentation 9 37 28 2
Optimization of Time, Space

or Accuracy 0 1 1 0
Insertion or Deletion of
" Debug Code 0 7 2 0
Other Than Above T 6 8 : 0

20

Table 4.18b - Types of Changes Requested by Each Programmer

Type of Change Lead Senior Junior Librarian
Total Changes 56 90 178 13
and % of all changes 16.62 26,70 52.81 3.86
Requirements 9 y 10
PDL 29 43 34
Code Module 18 h3 134 11
Error Corrections 31 hg 104 8
Changes in Problem Domain 1 0 ¢ 0
Planned Enhancements 3 1 3 2
Avoidances of Apparent

Problems with the Compiler 0 4 14 0
Aveidances of QOther Problems

in the Developing Env. 0 1 1 0
Adaptations to a Change in- :

the Developing Env. 0 2 4 1
Improvements of Clarity,

Maint. or Documentation 9 32 33 ' 2
Optimization of Time, Space : _
" - or Acecuracy 0 1 ' 1 ' ‘ 0
-Insertion or Deletion of . . '

Debug Code C) 0 0 -9 0
Other Than Above h 12 0 9 0

Table ¥.19a - Types of Errors Made by Each Programmer

Type of Error ' Number of Errors
: Lead Senior Junior Librarian

requirements incorrect 1 0 1 c
requirements mis- ' 0 4 0 0
interpreted

design incorrect 17 9 4 0
- design misinterpreted | 0 0 .0 0
code incorrect - 10 60 77 i3
external environment 0 0 0 0
misunderstood

¢lerical error 0 2 3 #]

21

Table 4.19b - Types of Errors Found by Each Programmer

Type of Error Number of Errors
Lead Senior Junior Librarian

requirements incorrect 1 0 1 0

requirements mis- 0 4 0

interpreted

design incorrect 17 9 4 0

design misgsinterpreted 0 0 0 0
" code incorrect 13 33 97 8

external environment ¥ 0 0 0

misunderstood

clerical error 0 3 2 0

Table 4.19c - Error Rate (Errors per thousand lines of code)

Type of Code Number of Errors per 1000 LOC
Lead Senior | Junior Librarian

Non-blank lines 22.0 19.2 24,1 20.7

. more fully than the other programmers’ code. In addition, they imple-
mented most of the improvements of clarity, maintainability and documen—
tation.

The librarian who had the least programming experience spent the
least time on coding; he wrote only one module, 1.74% of the total
amount of non-blank lines of code. He was mainly responsgible for
librarian duties. He requested only 4% of the changes, and these were
mostly error corrections. He made four coding errors but caught a total
of eight coding errors.

A breakdown by author of errors classified as language, problem and
clerical is presented in Table 4.20a. The senior programmer was respon-
" gible for 67% of the problem errors, probably because he worked mostly
on design. He and the junior programmer made 83% of the language
errors. Furthermore, the junior programmer made over half of all the
syntax errors and had the highest rate for these errors as shown in
Table 4.20b. However, it should be noted that the junior programmer
probably tested his own code more thoroughly than the other programmers’
code using the ROLM compiler. :

Table 4.21a shows the errors categorized by Ada language feature
for each programmer and Table 4.21b shows the errors involving each
feature normalized by usage for each programmer. Although tasking, gen-
erics and compilation units were not used much, they presented the most
problems to all the programmers who used them. Again, it should be
emphasized that these features are unique to Ada. The lead programmer
had the highest error rate for these three features but he did not use
them as much as the junior and senior programmers did. Exceptions were

22

Table #.20a - Error Classification by Programmer

Error Class Number of Errors
Lead Senior Junior Librarian TOTAL
language 25 59 78 y 166
concept 2 5 0 0 7
syntax 17 34 60 3 114
semanties b 20 18 1 45
problem 3 14 E} 0 .21
elerical 0 2 3 ¢ ' 5

Table 4,20b - Syntax Errors per Thousand Lines of Code for Each Program-
mer :

Type of Code Number of Syntax Errors per 1000 LOC |

- | Lead Senior Junior Librarian
Text -1 23.4 15.6 36,1 19.1
Non-blank lines 13.4 - 8.7 17.0 15.5

used a total of 117 times and only the lead programmer had difficulty
using this feature. Two of the three exception errors he made were con-
cept errors. Eighty-eight percent of the PRAGMA usage was by the lead
programmer and both of the PRAGMA errors were made by him. Six out of
the eleven uses of access types were by the senior programmer; all three
of ‘the errors were made by him. Being a recent computer science gradu-
- ate, the junior programmer was most familiar with Pascal. It is
interesting to note that he was not respensible for any of the concept
errors.

Table U4.22 shows how the programmers responded to questions on the
error description forms regarding understanding Ada features. As
expected, the senior programmer and the junior programmer who were the
most well-versed in high-level languages understood features in Ada and
tried to apply them, sometimes unsuccessfully as evidenced by the
errors. However, they recognized them readily and tried to correct
them. The lead programmer had the most difficulty understanding Ada
features. . o

Table 4.21a -Errors Categorized by Ada Language Feature

Ada Language Number of Errors
Feature Lead Senior Junior Librarian ; Total
semicolon c 3 13 1 17
parenthesis 3 5 y 0 12
colon ' 2 1 0 0 3
1= 0 2 4 0 6
quotes 1 2 1 0 y
comment 0 2 2 0 4
identifier 1 1 3 0 5
loop 4 2 5 0 11
CASE 1 0 0 0 1
IF 0 2 3 1 6
BEGIN/END 0 1 3 4] b
RETURN 0 0 1 0 1
scoping 1 4] 1 0 2
typing 0 3 3 0 6
aggregate 0 1 0 0 1
strings 0 1 0 0 1
arrays 0 3 2 0 5
records 0 1 3 0 4
access type 0 3 0 o 3
declarations 0 4 - 8 1 13
parameters 2. Lt 3 1 10
procedures/ 1. 3 T 0 11
functions
tasking 1 5 2 0 8
exceptions 3 0 0 0 3
generices 1 2 5 0 8
packages 0 1 1 0 2
compilation units 2 3 2 0 7
attributes 0 1 o 0 1
PRAGMA 2 0 0 0 2
file input/ocutput 0 2 0. 0 2
overloading o 1 2 0 3

24 B

Table 4.21b - Errors Normalized with Respect to Feature Usage for Each
Programmer

Ada Language Percentage of Errors
Feature Lead Senior Junior ; Librarian

semicolon 0 0.20 0.97 0.03
parenthesis 9.3 4,10 2.65 0
colon 2.Th 0.13 0 0
HES 0 0.81 1.29 4]
comment 0 0.10 0.09 0
identifier 0.76 0.67 4.23 0
loop 8.00 3.77 9.26 o .
CASE 3.33 0 0 ¥
IF 0 3.13 3.13 6.25
BEGIN/END 0 1.64 3.26 0
RETURN 0 0 1.64 0
aggregate +] 0.1% 0 0
strings 0 0.68 0 *
arrays 0 0.48 0.41
records 0 0.36 0.88 *
access type 0 50.00 0 *
declarations 0 0.54 1.70 3.22
parameters 6.25 1.01 1.60 8.33
procedures/ 1 0.89 3.50 0
functions o -
tasking 100.00 38.46 28.57 *
exceptions 11.11 0 0 0
generics 50.00 11.76 35.71 *
packages * 20.00 - 9.10 ¥
compilation units 50.00 15.00 8.00 0
attributes 0 1.85 0 0
PRAGMA 14,29 * 0 *

Note - An "*'" means that this programmer never used this feature.

25

Table 4,22 - Understanding Features By Programmer

UNDERSTANDING FEATURES BY PROGRAMMER

Lead ; Senior | Junior | Librarian
ne reply 3 3 2 o
understood features 1 1 6 1
separately, but not
their interaction
understood features 15 bl 83 5
but did not apply
them correctly ,
did not understand i2 1 12 - 2
features fully
confused feature with 0 0 1 0

a feature in another
language

26

5. SUMMARY AND CONCLUSIONS

. This report analyzes the data from the development of a system in
Ada by four programmers at GE. The data analyzed include effort, change
and error data as well as basic metrics on the size of the project and
features of the language used. The project was not completed, and 1it-
tle time was spent on testing. (Only unit testing was done and even
that was not completed.) Several modules were never coded.

The majority of the changes were error corrections. Most of the
remaining changes were improvements of clarity, maintainability or docu-
mentation. The highest level document changed was the code module in
most cases. The vast majority of the coding errors were code incorrect.
In addition, design incorrect accounted for 16%. There are probably
many more errors still in the system since it was not fully tested.

A large number of language errors were made. Many involved Ada-
specific features. The programmers used most of the language features
of Ada, but not necessarily as they were intended by the language
designers. The error rates of the Ada-specific features were generally
very high. There were only a few concept errors, and these involved
tasking, exceptions, access types, packages and file input/output.

- Tasking, generics and compilation units were not used much, but they
presented the most problems to all the programmers who used them. These

- features are unique to Ada.

The need for change was determined in less than an hour foér almost
all of the changes. 1In addition, the time to design and implement the
change was one hour or less for almost all of the changes. Most errors
took less than fifteen minutes to isolate and as little time to correct.
(Many of the errors were syntax errors.) :

Because of the learning curve, it was not possible to judge the
impact of Ada on schedules, costs or milestones. Because Ada is a com- .
pletely new language with features not present in other programming
languages, about 20% of the total effort was spent on training and
methodology, which is more than the effort on any other phase of the
project. This is a much higher percentage than would typically be spent
. on most projects. Furthermore, even this amount seems insufficient
because the programmers indicated that they did not feel comfortable
with Ada until after they left the project.

Lack of support tools discouraged the programmers. This shows that
automated tools are paramount for success in a software project. This
is especially true given a language with the complexity of Ada. Many
syntax errors were uncovered, and programmers could have spent this time
- looking for logic errors. Tools needed include a structured editor,
~data dictionaries, call structure and compilation dependency tools, and
cross references. Errors could be caught earlier in development with a
PDL preocessor. (The earlier an error is caught, the less expensive it
is to fix in general.)

The greatest error rate appeared to be associated with the most Ada
specific features: tasking, generics and compilation units. The lead

27

programmer had the highest error rate in these categories. The junior
programmer did not make any of the concept errors and he seemed to have
the easiest time grasping ideas in Ada. The junior programmer had
recently graduated, while the lead programmer had worked in industry for
many years.

There is further analysis that can and will be done. The effec-
tiveness of the features will be examined. The use of packages has
already been studied [Gannon, et al. 8313,

28

Appendix 1.1 Distribution of Requirements Effort Over Time

80
60 | -
hours _ : .
- of 40 - A ‘ i
effort . .
20 ' _
0 ; 11 DV V- PG . S— .
20 _40 60 80

week in project

Appendix 1.2 Distribution of Design Effort Over Time

80

60 | ﬂ

hours
of
effort . .\

20 40 60

week in project

80 .

hours
of

effort

Appendix 1.3 Distribution of Coding Effort Over Time

80

60L

40

201

20

40

week in project

60

80

Appendix 1.4 Distribution of Testing Effort Over Time

80 ' —
60 : : -
hours .
of 40t | : -4
effort
20L J
0 / 1 A 1 T . e

week in project

Appendix 2 - Improvements of Clarity, Maintainability or Documentation
by Type of Document

Number of Changes

I ! I i
] Type of Document | | Percentagel
| ! |]
] I | !
| Requirements] 14 } 18.42% |
| PDL | 54 | 71.05% |
| Code Module ! 8 ! 10.53% |
| Total i 76 | 100.00% |
| I] |

Appendix 3. Distribution of Changes Over Time

40 ' T T T

301

#
changes 20
made .

10}

0 £ _ J A 1

20 ' 40 60

week in project

Appendix % - ACTIVITIES USED TO DETE?T AND ISOLATE ERRORS

DETECTING ERROR:

ISOLATING SQOURCE:

I
!

[l I
| | |
! | ACTIVITIES] ACTIVITIES | ACTIVITIES| ACTIVITIES|
! | USED FOR | SUCCESSFUL | TRIED TO | SUCCESSFULI|
g | PROGRAM | IN DETECTING | FIND CAUSE| IN FINDING]
; | VALIDATION| ERROR SYMPTOMS| i CAUSE]
| | I ! I I
! I | | | |
| design reading | 34 } 24] 19 ! 17 I
| design walkthrough ! 35 | 31] 18 | 15 |
| code reading f 58] 31 | 57] 57 |
] code walkthrough i 2 | 1 | 3 | 2]
| talk with other programmer | 2 I 2 ! 2 | 2 {
| reading documentation f 3 I 1] 6 [y |
| compiler messages | 105 [105 | 76 | 75 |
| system error messages | y | b] 3 | 3 I
| project error messages i 1 | 1 | 1 i 1 I
| trace ! 5] 5 ! 6 [6 |
| dump - ! 0 I 0 i 0. i 0 I
| inspection of output | 1 I 1 | 1 | 0 I
| pre-acceptance test run ! y I 2 I 1 I 1 !
| acceptance test I 0 | 0 | 0 I 0 |
| Ada runtime check | 0 | 0 | 0 [0 |
| other | 4 [4 | 2 | 2 !
] [[|] I |

Appendix 5. Distribution of Errors Over Time

40 T i 1

30

errors

found
T 90 L

i0

O 1 . 1 l 1
| 20 40 60

week in project

Appendix 6 - FOR AN ERROR IN THE PDL OR CODE

DOES THE DOCUMENTATION EXPLAIN THE FEATURE CLEARLY?

not applicable 16 8.33%
yes 157 81.77%
no 19 9.90%

WHICH OF THE FOLLOWING IS MOST TRUE?

no reply 8 4.17%
understood features separately, but not their interaction 9 4,69%
understood features but did not apply them correctly 147 76.56%
did not understand features fully 27 14.06%
confused feature with a feature in another language 1 0.52%

WHERE THE INFORMATION NEEDED TO CORRECT ERROR WAS FOUND

no place specified 4 :
class notes 6
Ada reference manual T
another programmer 19
remembered 144
viewgraphs from tapes ' 0
test program _ 1

other L 16

. Page 1 of 2

Appendix 7.1
CHANGEZ REQUEST =

Person requesting change Approved by Date / /

1
4 -

What is the reason for this change?

When was the need for the chanage determined? / /

Describe the necessary change:

To completely implement the desired change, the highest level document that

needs changing is:

(complete one:) requirements section:
- PDL module:

code module:

When did the effort beg1n to unders;and and isolate this change? - / /

How much effort has been spent so far in isolating and unders;and1ng

~ what needs to be changed?

! . ! S 1 ! e

1 hr, 4 hrs. 2 days _l,wk,' 2;wks; 1 mo. 2 mos.

This change is a/an (check one):

_error correction {attach completed ERROR DESCRIPTION FORM)
change in the probTem domain

p?anned enhancement ;
avoidance of an apparent problem with the compiler (exp]aTn below)

avoidance of some other problem in the deve1opment environment
(explain below)
adaptation to a change in the deve]opment environment

(describe below)

improvement of clarity, maintainability or documentation
optimization of time, space or accuracy

insertion or deletion of debug code

other than above {describe below)

Ill

HH

{over)

Page 2 of 2

(8 8]

List all known documents which will require a change as & result of this
change request to maintain systam consistency:

(to be filled in by liararia
date change

Rgmts. PODL Code .. section nos./module name submitted to librarian

! ! ! ! / /

; | I ! ' / /

1 ! 1 I / /
N ! ! ' / /

!] | ! / /

| I | ! / /

! ! ! ! / /

I ! ! ! / /

! L ! | | A

! ! ! ! / /

' ! I ! / /

i ! 1 ; / /

i ! ! I / /

! i N i /7

I I !] / /

| I] ! / /

(Note that each of these will require a separate Individual Document Change Report.)

$. What additional documents were examined or will be examined in determining the chane

_'quts. POL Code section nos./module name

Page 1 of 2

Appendix 7.2

ERROR DESCRIPTION FORM for CHANGE REQUEST #

1. Type of Error:

requirements incorrect

requirements misinterpretad

*design incorrect

*desion misinterpreted

*Code incorrect

external environment misunderstood {not language or compiler)
clerical error :

*Was the error in the use of data or in function ?

11

0id the use of Ada as a design and impiementation language contr1bute to this
error? If so, was it on]y a syntax error?

3. Whether reiated to Ada or not, which language featurss were involved in the error?

¢. For anerror in the PDL or code:
a. does the documentation explain the feature clearly? Yas NO

b. which of the following is most true?

understood features separately, but not their interaction
understood features but didn't apply them correctly
didn't understand features fully

confused feature with a feature in another language

Cc. where was the information needed to correﬁt the error found?
class notes

Ada reference manual

ancther programmer

remembered

viewgraphs from tapes

test program

other:

LT

Detecting error:

Activities Activities Activities
Used for Successful Tried to
Program in Detecting Find Cause

Validation = Error Symptoms

Isolating source:

Page 2 of 2

Activities

Successtul

in Finding
Cause

Oesign rezading

Design walkthrough

Code reading

Code walkthrough

Talk w/other programmer

Reading documentation

Compiler messages

System error messages

Project error messages

Trace

Dump

Inspection of output

Pre-acceptance test run

Acceptance iest

A= BTt BE Sm B B B A B U = bmog = g o=

Ada runtime checking

G dm g sm G Bm Fe E e A Am o AE A — S S G — A P b g e w

L R R I R I R R R R R L L L R R
Ao ™ e = tm B An T b #= S S tm U e = Em ™ S G e kO

B S m b BE Sw b Bm AT o am SR g R B B B S B M g gy g

Sw dr dm dm A dm R b Bm B e g Bam b= R B

(Qther:

6. What was the time used to iso?ate the sourcé af the error?

] 1 t] i i]
a . - .

- - -

1 hr.

4 hrs. 2 days 1 wk. 2 wks. 1 mo. 2 mos.

If never found, was a workaround used? (Explain in 8, below.)

7. When did the error enter the system?
reguirements design

implementing znother change, Change Report No.

. Ada ceding

other or can't tell (explain below)

testing

8. Use this space to give any additional information that might help in understanding

the cause of the change and its ramifications:

1.

2.

3.

4.

5.

Appendix 7.3
INDIVIDUAL DOCUMENT CHANGE REPORT

This change has been approved through CHANGE REQUEST #

Document being changed (complete one):
requirements spec. section
PDL module:
code module:

How much effort (person-time) was spent changing this document (not Tlibrarian's time)?
[}] 3 1 []]])

15ﬁ1n Thr 4hrs Tday 2days Twk 2wk Tmo
Person responsible for this change ' Date / /.
Instructions to Librarian: ‘ ‘Priority (H, M, L)

See Listing
Other {Explain)

Should this module be compiled?

Remainder of form to be completed by Librarian:

] L] .

Is the Change Request indicated in question 1 of this form on file?
(1f not, do not make change. Return form 1ncomplete.)

2. Has question 9 of the Change Request jndicated in guestion 1 here been updated By

author of this form?

3. If this is a change to a compiled module of design or code, 1ist any other modules

subsequentiy requiring recompilation: e

‘Date Change completed / / (or returned 1hcomp1ete / /)

ONINIYHE
1831 29y
SONI2IIW
) SWHO
T13AVHL :
M3IAIY M3IAIY : |
SUH | ALAMOV | mMIA3M | 93N uNn ey | ovau 3003 | juwuos | OVAH | 3av3u0 | oNiwm SISATYNY
_ ININOdWO)
HIH10 : 1831 ‘ INIW40T3A30 3009 ‘ N9IS30 ‘SANIWIHINDIY
= 3lvo T B IWWYEO0Ud

. . 140434 SNLV1S ININGWO)
#* [Xrpuaddy

Selected References

[Basili et al. 82]
Victor R. Basili, John D. Gannon, Elizabeth E. Katz, Marvin V. Zel-
kowitz, Jochn W. Bailey, Elizabeth E. Kruesi, and Sylvia B. Shep-
pard, "Monitoring an Ada Software Development Project,"™ Ada Letters
T, 1 (July 1982), 1.58-1.61.

[Basili, Katz 83] :
Victor R. Basili and Elizabeth E. Katz, "Metrics of Interest in an
Ada Development," IEEE Workshop on Software Engineering Technology
Transfer, Miami, FL, April 1983, pp. 22-29.

[Basili, Weiss 82]
Vietor R. Basili and David M. WElBS, "A Methodology for Collecting
Valid Software Engineering Data," Computer Scilence, Univ. of Mary-
"~ land, 1982, UOM-1235.

[Duncan, et al. 84]
A.G. Duncan, J.S3. Hutchison, J.B. Bailey, T.M. Chapman, A. Fregly,
E.BE. Kruesi, T. McDonald, D. Merrill, S.B. Sheppard, "Communica-
tions System Design Using Ada," Proe. Tth Intl. Conf. on Software
Engineering, Orlando, FL, March 1984, pp. 398-407. :

{Gannon, et al., 83]
John D. Gannon, Elizabeth E. Katz, and Vietor R. Basili, "Charac-
terizing Ada Programs: Packages," The Measurement of Computer:
" Software Performance; Los Alamos National Laboratory, August 1983.

