Taechnical Report TR-1501 May 1985

Comparing the Effectiveness of
Software Testing Strategies

Victor R. Basili
Richard W. Selby, Jr.

Department of Computer Science
University of Maryland
College Park

KEYWORDS:
software testing, functional testing, structural testing, code reading,
off-line software review, empirical study, methodology evaluation,
software measurement

Research supported in part by the Air Force Office of Scientific Research
Contract AFOSR-F49620-80-C-001 and the National Aeronautics and Space
Administration Grant NSG-5123 to the University of Maryland. Computer
support provided in part by the facilities of NASA/Goddard Space Flight
Center and the Computer Science Center at the University of Maryland.

ABSTRACT

This study compares the strategles 61’ code readlng, functional testlng, and structur-
al testing in three aspects of software testing: fault detectlon effectlveness, fault detec-
tlon cost, and classes of faults detected. Thirty two professional programmers and 42
advanced students applled the three techniques to four unlt-sized programs In a frac-
tional factorial experlmental design. The major results of thls study are the following.
1) With the professlonal Programimers, code reading detected more software faults aﬁd
had a higher fault detection rate than did functional or structural testing, while funec-
tlonal testing detected more faults than dld structural testing, but functional and struc-
tural testlng were not different In fault detectlon rate. 2) In one advanced student sub-
Ject group, code readlng and functlonal testing were not different In faults found, but
were both superlor to structural tesf,ing, while 1n the other advanced student sﬁb_]ect
gi‘?}'up there was no difference among the technlques. 3) With the advanced student sub-

Jects, the three technlques were not different in fault detectlon rate. 4) Number of

faults observed, fault detectlon rate, and total effort In detectlon depended on the type

of software tested. 5) Code reading detected more Interface faults than did the other
methods. 6) Functlonal testlng detected more control faults than dld the other
methods. 7) When asked to estimaie the percentage of faults detected, c'ode_readers'
gave the most accurate estimates while functional testers gave the least accurate est!-

mates.

{
1
|
1
{
!
I
[
|
|

Table of Contents

1 TDETOGUCEION ceeeeereomsomusssssssssnsssasssassnsrrsmsnmmnsnasssesstssnstesssansessssssssnsineessssnssssassassassssses
2 Testing TeChNIQUES .vciccicrnmrrersrsessonssasnsarnans eevererenatasereeresranaranaTnistatsitertnsasaranarTanan
2.1 Investigation Goals errecane . eeersesesresnasesresersesntarresnnrinstarentsarauasesas

3 EMPITICAl STUAY ceereccncencrronssnseansiaerssisssssassssesmnssnsansestsssnansarssssssssssssasssessssssansrsssnseny
3.1 Tteratlve EXperimentatiOon .ivicesssiscrecssmncsssnnsresacrnsersssssisssnssnsssnsorsarsasnsssasssssssess
3.2 Subject and Program/Fault SelectlOn ...ucciiverererscereerimioresssenanssieninseneansesssaonees
3.2.1 SUDJECES .veerceccracensssssssossssosnnarssssrssssnssasesnmasstetanssssssrasnasnpessstsssrsasssnsosssss

3.2.2 PTOCIAIMNS ccecerisiiisssrmastesasnnsssesssassmnsesnssonsnssssanssass eetssaressmnssssenssannnserreaanas

3.2.3 FPAUILS cevrrreeerroarersssreresssssssesssnssssssansansesssansenansssssssosmsssssanssnsnns emeeveenersans
3.2.3.1 Fault OTIZI ciiciiicinieermersssssennmennnnrsmssssssesanessasnans eemrereseasseceseres

3.2.3.2 Fault Classificatlon Settesanencteesisetatsnerransansenansanasiisinsne

_ 3.2.3.3 Fault DeSCTIPHION ccccccomreiuierescesesisssansoisarioresssnsnassrisnasmasassrsssses
3.3 Experimental DeSIZN .ovevesessessnsesressesrans reecestesseestisarereerneaaranaraann e nesansreanes
3.3.1 Independent and Dependent VariableS .ccccccvecrereicrmiiencsissnseiisnessnnsssens

3.3.2 Analysls of Varlance Model .iecciccnsirnciiimieiiisnrsionmsnrsisestorsiossssesisensnss

3.4 Experimental Operatloncceieereeeees eemtsteseennsrasaceresrivbisintasnsersannransnstasnnevstntnn

4 Data ANalysls ..cccesiccecrens enrertaneesessareruserenttsiisnEINIaTRRITRaaan an e neRa s R At sa s s Rnas
4.1 Fault Detectlon EfectlVeness occcriiiriiiiisonemmssisntesnctonnseansesrsionerinsssrsstssesasass
4,1.1 Data DIStIIDULIONS ccireiisrsisinsrernesnrerenssrimssrsssnensersnssasesarsassssses reevmessanass

4.1.2 Number of Faults Detected rrevesseresareseasesesmensbertatestanaereraestansrserssrbeben :

4.1.3 Percentage of Faults Detected .viivrrcaicicaiimassacasicencensiatercessrsosasnsasanes
4,1.4 Dependence ON SOt WATe THDE weeecrcncesaiossrsasesmsnrsnsrsasrannecnnsssresnsorsasrsrracs

4.1.5 Observable vs. ObServed FPAUILS ..ccivesrersesssaresrsrssrrrasasnsssveseases resessensnans '

4,1.6 Dependence on Program COVETALZE iecersrecscarsrerrasesvsasseamasesncasasaessnsnsrrass

- 4.1.7 Dependence on Programmer EXDertiSe ...ceceemsemismcssesesseesscrscmssasiscasnns
4.1.8 Accuracy of Self-FEStImMAates .irercccrccmmcsriirsissnrsnisrisssressssarsissssssassansssoncnes
4.1.9 Dependence on INtEractlons iivcceiiiiciriiienmiiiinmuninin i,
4.1.10 Summary of Fault Detection Effectiveness ..o
4.2 Fault Detectlon CoSt .iviireerssernssesrmensnieaninneisniuiiians ceeteneeaeerenaesesesnasneserass
4.2.1 Data DIStTIDUIIONS .eiiiiessiiraiiristsssressssntesscsnssssresnrarancaasissssasssnsesersnrests
4.2.2 Fault Detectlon Rate and Total TIME ccvicccvirasniriicemsssneniransesmnsceeiniaens
4,2.3 Dependence o1 SOftWAre TYDE iiciriirircririssnsasnsnnicsesiessescnssssanesssnrsnsssssses
4.2.4 COMDULET COBHS vrrernrrsrrrecsassasionmssesnsssssssisssnsnsessrsssnsarasansrasassicsssssosorssnsns
4.2.5 Dependence on Programmer EXpertlse ... reseersnnennsessinitnecens

WO G 0~ oG W WW N NP

T S I N X A R T il e T e e e O A o
NN RO QO © @Wwo I~ o ook Rk

N

4.3.4 Summary of Characterization of Faults Detected weeeerernsseioserssseenss

5 CONCIUSIONS ercerreerersreeenssenaen e rereratserasenreatnettanriranrararrRatbanstasbannnenarntneneereneresanas
8 ACKNOWIBAZEMEDE iiieericmceriarerrrannierernsnanersrsesssssssssnessessessennsssssonsessssrsesssassnnsssnmmnnnns
7 ADDEIAICES cirereerrecsrcrnessasmmioserenrvesesnsesssssmessesnssssssasssssssessssssesennsssssssssemnssneessnssesnnnne
7.1 Appendix A. The Speclfications fOr the PrOZTAINS cusveeeceeseemeeieessssesssssssssses
7.2 Appendlx B. The Source Code fOT the PTOZIAINS vveveeeerecersnsonseesrssonsssssssssnnssss

8 RETETRIICES .ireeiiriieereiieniisssssnnrerssrrruvessssnesssssennsesnssssenssssensressmsnmmmnnnsnssnssssnsssssessssmsnnnn

23
23
23
24
24
25
25
26
28
28
29
29
32
50

1. Introduction

The processes of software testing and defect detection continue to challenge the
software community. Even though the software testing and defect detection activities
are lnexact and Inadequately understood, they are cruclal to the success of a software
proleci. The controlled study presented addresses the uncertalnty of how to test soft~
ware eﬂ‘ectlvely; In thls i‘nvestlgatlom common testing technliques were applled to
different types of software by subjects that had a wide range of professlonal experience.
This work 1s intended to characterize how testlng effectlveness relates to several factors:
testing technlque, software type, fault type, tester experience, and any interactlons
among these factors. This examlna.tl_qn extends previous work by Incorporating different
testing technlques and a greater number of persons and programs, while broadening the

scé‘pe of 1ssues examined and adding statistleal slgnlficance to the conclusions.

' The following sectlons descrlbe the testlng techniques examlned, the Investigation

goals, the experlmental deslgn, operation, analysis, and conclusions.

2. Testing Techniques

To demonstrate that a particular program actually meets 1ts specificatlons, profes-
slonal software developers currently utilize many different testing methods. Before
presenting the goals for the emplrical study comparing the popular technlques of code
readlng_, functional testlng; and structural testing, a descriptlon will bg glven of the test-
ing strategles and thelr different capabilities (see Flgure 1.). In fuﬁctlona_,l testing, which
Is a **black box’ approach [Howden 80], a programmer constructs test data from the
program’s speclfication through methods such as equlvalence partitionlng and boundary
value analysls [Myers 79]. The programmer then executes the program and contrasts its
actual behavior with that Indicated In the speclfication. In structural testing, which Is a

“white box” approach [I—IoWden 78, Howden 81], a programmer lnspects the source code

‘and then devises and executes test cases based on the percentage of the program’s state-

ments or expressions executed (the “‘test set'coverage") [Stuckl 77]. The structural cov-
erage criterla used was 10093 statement coverage. In code reading by stepwise abstrac-
tlon, a person ldentifles prime subprograms In the software, determines thelr functions,

and composes these functions to determine a function for the entire program [Mills 72,

1

Linger, Mills & Witt 79]. The code reader then compares this derlved funetlon and the

speclficatlons (the Intended functlon). In order to contrast these various strategles, an

- emplrical study has been conducted using the technlques of code reading, functlonal

testlng, and structural testing.

2.1. Investigation Goals

The goals of thls study comprise three different aspects of software testing: fault
detectlon effectlveness, fault detectlon cost, and classes of faults detected. An applica-
tlon of the goal/questlon/metric paradigm [Basllt & Selby 84, Baslll & Welss 84] leads to
the framework of goals and questlons for this study appearing in Flgure 2.

The first goal area Is performance oriented and lncludes a natural first question
(I.A): which of the technlques detects the most faults In the programs? The comparison
bet_gweén the technlques Is belng made across programs, each with a different number of
fal;its. An alternate lnterpretation would then be to compare the percentage of faults
found In the programs (questlon I.A.1). The number of faults that a technique exposes
should also be compared; that is, faults that are made observable but not necessarlly ob-
served and reported by a tester (I1.A.2). Because of the differences in types of software

and In testers’ abilltles, 1t 1s relevant to determine whether the number of faults detect-

“ ed 1s elther program or programmer dependent (I.B, I.C). Since one technique may find

a few more faults than another, It becomes useful to know how much effort that tech-

nlque requires (ILA). Awareness of what types of software require more effort to test
(]I.B) and what types of programmer backgrounds require less effort in fault uncovering
(II.C) Is also quite useful. If one Is Interested In detecting certain classes of faults, such
as In error-based testing [Foster 80, Valdes & Goel 83], it Is appropriate to apply a tech-
nlgque sensit'lve to that particular type (III.A). Classifylng the types of faults that are

observable yet go unreported could help focus and increase testing effectiveness (IIL.B).

3. Empirical Study

Admlttedly, the goals stated here are qulte ambitlous. In no way 1s 1t lmplied that
this study can definltlvely answer all of these questlons for all environments. It 1s In-
tended, however, that the statistically slgnificant analysis presented lends Imsights into

thelr answers and Into the merit and appropriateness of each of the technlques. Note

2

that this study ecmpares the 1ﬁd1v1dual appllcation of the three testilng technlques in
order to ldentify thelr distinct advantages and disadvantages. This approach Is a first
step toward proposing a composlite testing strategy, which possibly Incorporates several
testing methods. The following sections describe the empirical study undertaken to pur-
suite these gdals and questlons, Including the selection of subjlects, programs, and experi-

mental design, and the overall operation of the study.

3.1. Iterative Experimentation

The emplrical study consisted of three phases. The first and second phases of the
study took place at the Unlversity of Maryland In the Falls of 1982 and 1983 respectlive-
ly. The third phase took place at Computer Sciences Corporation (CSC - Sllver Spring,
MD) and NASA Goddard Space Flight Center (Greenbelt,‘ MD) 1n the Fal} of 1984. The
h seg_uentlal experimentation supported the Iteratlve nature of the Iearmng process, é.nd
en.a,bled the Inltlal set of goals zind questions to be expanded and resolved by further
analysis. The goals Weré further reflned by discussions of the prellml_nary results [Selby
83, Selby 84]. These three phases enabled the pursult of result reproduclbllity_across_ en-

- vironments having subjlects with a wide range of experlence.

3.2. Subject and Program /Fault Selection

A primary cons!deration In this study was to use a realistlc téstlng environment to
assess the effectiveness of these different testing strategles, as opposed to creating a best
possible testing sl.tuatlon [Hetzel 76]. Thus, 1) the subjects for the study were chosen to
be representative of different levels of expertise, 2) the programs tested correspond to
different types of software and reflect common programmling style, and 3) the faults In
the prograrus were representatlve of those frequently occurring in software. Sampling
‘the sublects, programs, and faults in thls manner Is Intended to evaluate the testing
methods reasonably, and to facllitate the generallzation of the results to other environ-

ments,

3.2.1. Subjects

The three phases of the study Incorporated a total of 74 subjects; the individual

phases had 29, 13, and 32 subjects respectively. The subjects were selected, based on

several criterla, to be representative of three different levels of computer sclence exper-
tlse: advanced, Intermediate, and Junlor. The number of subjects In each level of exper-

tise for the different phases appears In Flgure 3.

The 42 subjects In the first two phases of the study were tle members of the upper
level “*Software Deslign and Development® course at the Unlversity of Maryland In the
Falls of 1982 and 1983. The Indlviduals were elther upper-level computer sclence majlors
or graduate students; some were working part-tlme and all were In good academic
standing. The topics of the course Included structured programming practlces, funetion-
al correctness, top-down deslgn, modular specificatlon and deslgn, step-wlse refinement,
and PDL, In addltlon to the presentation of the techniques of code reading, functional
testing, and structural testlng. The references for the testlng methods were [putls 75,
Fagan 76, Myers 79, Howden 80], and the lectures were presented by V. R. Basili and F.
’I";"‘}Baker. The subjects from the Unlversity of Maryland spanned the !ntermedlate and
juﬁlor ievels of computer sclence expertise. The assignment of individuals to levels of
expertise was based on professlonal experlence and prior academlc performance In
relevant computer sclence courses. The Individuals 1n the first and second phases had
overall averages of 1.7 (SD == 1.7) and 1.5 (SD == 1.5) years of professional experience.
The nlne intermedlate subjects In the first phase had from 2.8 to 7 years of professional
experience (average of 3.9 years, SD = 1.3), and the four In the second phase had from
2.3 to 5.5 years of professional experience (average of 3.2, SD = 1.5). The twenty
Junlor subjects 1n the first phases and the nlne in the second phase both had from O to 2
years professional experlence (averages of 0.7, SD == 0.8, and 0.8, SD == 0.8, respectlve-
1y).

The 32 subjlects ln the third phase of the-study were programmlng professionals
from NASA and Computer Sclences Corporation. These indlviduals were mathemati-
clans, physlcists, and englneers that develop ground support software for satellites.
They were famlllar with all three testing techniques, but had used functional testing pri-
marily. A four hour tutorial on the testlng technlques was conducted for the subjects
by R. W. Selby. This group of subjects, examined In the third phase of the e}:perlment,
spanned all three expertise levels and had an overall average of 10.0 (SD == 5.7) years

professlonal experience. Several criterla were considered In the assignment of subjects to

expertise levels, Including years of professional experlence, degree background, and their
manager’s suggested asslgnment. The elght advanced sublects ranged from 9.5 to 20.5
years professlonal experlence (average of 15.0, SD == 4.1). The eleven intermedlate sub-
Jects ranged from 3.5 to 17.5 years experlence (average of 10.9, SD = 4.9). The thirteen

junlor subjects ranged from 1.5 to 13.5 years experlence (average of 8.1, SD = 4.4).

3.2.2. Programs

The experimental design enables the distinctlon of the testing techniques while al-
lowing for the effects of the different programs beilng tested. The four programs used 1n
the lnvestigatlon were chosen to be representative of several different types of software.
The programs were selected speclally for the study and were provided to the subjects for
testing; the sublects did not test progi'ams that they had written. All programs were
written In a high-level language with which the sub)ects were famillar. The three pro-
gl‘.fé.ms tested in the CSC/INASA 'phase were written In FORTRAN, and the programs
‘tested 1n the Universlty.of Maryland phases' were written 1n the Slmpl-T structured pro-

gramming language [Bas_lll & Turner 76]. ! The four programs tested were P) a text
processor, P ,) a mathematlcal plotting routine, P s a numerle abstract data type, and
P 4) a database malntalner. The programs are summarized in Flgure 4. There exists
some differentiation in slze, and the programs are a reallstic size for unit testing. Each
of the subjects tested three programs, but a total of four programs was used across the
three phases of the study. The programs tested In each of the three phases of the study
appear 111_ Flgure 5. - The-speclficatlons -for the programs -appear ln ‘Appendix A, and

thelr source code appears in Appendix B.

The first program ls a text formatting program, which also appeared In [My_ers 78].
- A verslon of thls program, origlnally written by [Naur 89] using techniques of program-
correctness proofs, was analyzed \n [Goodenough & Gerhart 75]. The second program Is
a mathematlical plotting routine. Thils program was written by R. W. Selby, based

'r'oughly on a sample program In [Jensen & Wirth 74]. The third program 1s a numeric

! Simpl-T 1s a structured language that supports several strlng and . file bandling -
primitives, In addition to the usual control flow constructs avallable, for example, In -
Pascal. '

data abstractlon consisting of a set of list processing utllitles. This program was sub-
mitted for a class proJect by a member of an Intermedlate level programming course at
the Unlversity of Maryiand. [McMullln & Gannon 80]. The fourth program Is a main-
talner for a database of blbllographle references. This program was analyzed In [Hetzel
76|, and was wrltten by a systems programmer at the Universlty of North Carolina com-

putation center.

Note that the source code for the prégra.ms contalns no comments. This creates a
worst-case sltuatlon for the code readers. In an environment where code contalned help-
ful comments, performance of code readers would likely lmprove, especially If the source
code contained as comments the Intermediate functions of the program segments. In an

environment where the comments were at all suspect, they could then be lgnored.

3.__2_.3; Faults

- The faults contalned In the programs tested represent a reasonable distribution of
faults that commonly oceur In software [We!ss & Baslll 85, Baslli & Perricone 84]. All
the faults In the database malntainer and the numeric abstract data type were made
. dur_lng the actual development of the programs. The other two programs contaln a mlx
: .. of faults made by the origlnal programmer and faults seeded In the code. The programs
contalned a total of 34 faults; the text formatter had nine, the plotting routine had six,

. the abstract data type had seven, and the database maintalner had twelve.

3.2.3.1. Fault Origin

The faults In the text formatter were preserved from the artlcle In which it ap-
peared [Myers 78], except for some of the more contrdversial ones [Callliau & Rubln 79].
In the mathematlical plotter, faults made durlng program translatlon were supplemented
by additlonal representative faults. The faults In the abstract data type were the orlgl-

nal ones made by the program’s author during the development of the program. The

faults in the database maintalner were recorded during the development of the program,

and then reinserted Into the program. The next section deseribes a classification of the
different types of faults I1n the programs. Note that thls i_nvestlgation of the fault
detecting ablllty of these technlques Involves only those types ocecurring In the source

code, not other types such as those 1n the requirements or the speclfications.

6

3.2.3.2. Fault Classification

The faults In the programs are classified according to two different abstract
classificatlon schemes [Baslll & Perricone 84]. One fault categorization method separates
faults of omlsston from faults of commission. Faults of comm!isslon are those faults
present as a result of an Incorrect segment of existing code. For example, the wrong ar-
lthmetlc operator is used for a computation In the rlght—han‘d-slde of an asslgnment
statement. Faults of omisslon are those faults present as a result of a programmer’s for-
getting to Include some entlty in a module. For example, a statement 1s missing from

the code that would assign the proper value to a varlable.

A second fault categorizatlon scheme partitlons software faults lnto the six classes
- of 1) Inltlalization, 2) computation, 3) control, 4) Interface, 5) data, and 6) cosmetic.
_ Improperly Initlallzing a data structure constitutes an initlallzatlon fault. For example,
asslgnlng a variable the wrong value on eniry to a module. Computatlon faults are
those that cause a calculation to evaluate the value for a variable incorrectly. The
above example of a wrong arlthmetic operator in the right-hand-side of an asslgnment,
statement would be a computation fault. A control fault causes the wrong control flow
path In a program to be taken for some Inpu_t. An incorrect predlcate In an IF-THEN-
ELSE statement would be a control fault. Interface faults result when a module uses
and makes assumptlons about entlitles outslde the module’s local environment. Interface
faults would be, for example, passing an Incorrect argument to a procedure, or assuming
| In a module that an array passed as an argument was filled wlth blanks by the passing
routine. A qata fault are those that result from the incorrect use of a data structure.
For example, Incorrectly determining the index for the last element In an array. Flnally,
_ ébsmetic faults are clerical mistakes when entering the program. A spelllng milstake In

an error message would be a cosmetle fault.

Interpreting and cI_asslfﬂng faults In software Is a difflcult and lnexact task. The
(_:a.tegorizatlon process often requires trying to recreate the original programimer's
misunderstanding of the problem {Johnson, Draper & Solowa_y 83]. The above two faulﬁ
classiflcation séhemes attempt to dlstinguish among different reasons that programmers

make faults In software development. They were applied to the faults in the programs

In a conslstent Interpretation; 1t 1s certalnly possible that another analyst could have ln-
terpreted them differently. The separate application of each of the two classification
schemes to the faults categorized them In a mutually excluslve and exhaustive manner.

Flgure 6 displays the dlstributlon of faults In the programs according to these schemes.

3.2.3.3. Fault Description

The faults In the programs are described In Flgure 7. There have been various
efforts to determine a precise counting scheme for ‘“‘defects’” In software [Gloss-Soler 79,
IEEE 83]. Acéordlng to the explanatlons given, a software ‘“‘fault” 1s a specific manifes-
tatlon In the source code of a programmer ‘“‘error.” For example, due to a misconception
or document dlscrepancy, a programmer commlts an “error” (In his/her head) that may
result In more than one ‘“‘fault” In a program. Uslng this interpretation, software
“f?,ults” reflect the correctness, or lack thereof, In a program. The entities examined in

this analysls are software faults.

3.3. Experimental Design

The experimental design applied for each of the three phases of the study was a
fractlonal factorial deslgn [Cochran & Cox 50, Box, Hunter, & Hunter 78]. This experl-
mental deslgn distingulshes among the testing technlques, while allowlng for varlation In
the abillty of the particular individual testing or In the program belng tested. Flgure 8
dlsplays the fractlonal factorlal deslgn appropriate for the third phase of the study.
Subject §; Is In the advanced expertise level, and he structﬁrally tested program P,
functlonally tested program P » and code read program P 4 Notlce that all of the sub-
Jects tested each of the three programs and used each of the three technlques. Of
course, no one tests a glven program more than once. The deslgn appropriate for the
third phase 1s dlscussed in the following paragraphs, with the minor. differences between
this design and the ones_a.pplled in the first two phases being discussed at the end of the

section.

3.3.1. Independent and Dependent Variables

The experimental design has the three independent variables of testing technlque,

software type, and level of expertise. For the design appearing in Figure 8, appropriate _

8 .

for the third phase of the study, the three maln effects have the following levels:

1) testlng technique: code reading, functional testing, and structural testing

2) software type: (P ;) text processing, (P ¢) numerlc abstract data type, and (P 4) data-

base malntalner

3) level of expertise: advanced, int_ermedlate, and Junlor

Every combination of these levels occurs in the design. That s, programmers In all
three levels of expertise appllied all three testing technlques on all programs. In addition
to these three maln effects, a factorial analysls of varlance (ANOVA) model supports the
analysls of Interactlons among each of these maln effects. Thus, the Interactlon effects
of testing technlque * software type, testing technique * expertlse level, software type %

-expertise level, and the three-way interaction of testing technlque % software type % ex-
pertise level are Included In the model, There are several dependent variables examined
lﬁ_;}the study, Including number of faults detected, percentage of faults detected, total
fai_ﬁt detectlon time, and fault detectlon rate. Observatlons from the on-line methods of
fuﬁctional and structural testlng also had as dependent varlables number of computer
runs, amount of cpu-time consumed, maxlmum statement coverage achleved, connect
time used, number of faults that .Were observable from the test data, percentage of
faults that were observable from the test data, and percentage of faults observable In

the from the test data that were actually observed by the tester.

3.3.2. Analysis of Variance Model
The three main effects and all the two-way and three-way Interactlons effects are
called fixed effects 1n this factorial analysls of varlance model. The levels of these effects
glven above represent all levels of Interest In the Investigation. For example, the effect
of testing technlque has as particular lévels code reading, functional testlng, and strue-
tural testlng; these particular testing technlques are the only ones under comparlson in
thls study. The effect of the particular subjects that participated in this study requlres
é. little dlfferent interpretation. The subjeets examined In the study were random sam-
bles of programmers from the large population of programmers at each of the levels of
. expertlse. Thus, the effect of the subjlects on the varlous dependent varlables is a ran-

dom variable, and this effect therefore Is called a random effect. If the samples exam-

ined are truly represeniative of the population of subjeéts at each expertise level, the
Inferences from the analysis can then be generallzed across the whole population of sub-
Jects at each expertise level, not Just across the partleular subjects In the sample chosen.
Since thls analys!s of varlance model contalns both fixed and random effects, it Is called
a mlxed model. The actual ANOVA model for the design appearing In Figure 8 is given

below.
Tij = p+ oy +B; +v + 8y +afy; + oy + Brp + abve + €n
where

T,-'J-H. 13 the observed response from subjlect 1 of experlence level k uslng testing

) technique 1 on program } |

M Is the overall mean response

@; 1s the maln effect of testing technique 1 (1 = 1,2,3)

B; 1s the main effect of program J (J = 1, 3, 4)

Y 1s the maln effect of expertise level k (k == 1, 2, 3)

by 1s the random effect of subject 1 within expertise level k, a random varlable (1
=1, 2 v, 323 k == 1, 2, 3) _

ozﬂ,-}- Is the Interactlon effect of testlng technlque ! with program J (1 = 1, 2, 3; }
=1, 3, 4) '

oYy 1s the Interaction effect of testing technlque 1 with expertise level k (1 = 1,
2,3 k==1,23)

Pyp 1s t.he_'lnt.eractlon effect of program] with expertise level k.(j == 1,3, 4 k=
1, 2, 3)

aﬁfy,-jk Is the Interactlon effect of testing technique 1 with program] with experi-

R ence level k {1 = 1, 2, 3;]=1,34k=1,2, 3)

€ijx 18 the experlmental error for each observation, a random varlable

10

The F tests of hypotheses on all the flxed effects mentloned above use the error
(residual) mean square In the denominator, except for the test of the expertise level
effect. The expected mean square for the expertise level effect contalns a component for
the actual varlance of sublects within expertise level. In order to select the appropriate
error term for the denominator of the expertise level F test, the mean square for the
effect of subjects nested within expertise lev_el Is chosen. The parameters for the random
effect of subjects within expertise level are assumed to be drawn from a normally distri-
buted random process with mean zero and common variance, The experlmental error

terms are assumed to have mean zero and common varlance.

The fractional factorlal design applied In the first two phases of the analysls

differed slightly from the one presented Vabove for the third phase.? In the third phase of
tl_:u?_ study, programs P, Pg and P 4 Were tested by subjlects In three 'levels of expertise,
| _Ini-';-‘j-both phases one and two, there were only subjlects from the levels of Intermedlate
an"’d Junior expertlse. In phase one, programs P, Py and P, were tested. In phase
two, the programs tested were P, P, and P 4 The only modifications necessary to the
above explanation for phases one and two are 1) ellminating the advanced expertise lev-
' -él, 2) changing the program P subscripts approprlately, and 3) leaving out the three way
nteractlon term In phase two, because of the reduced number of subjects. In all three
of the phases, all subjects used each of the three techniques and tested each of the three
programs for that phase. Also, within all three phases, all possible combinations of ex-

pertise level, testing techniques, and prografns oceurred.

The order of presentation of the testing technlques was randomlzed among the sub-
Jects In each level of expertlse In each phase of the study. However, the Integrity of the
results would have suffered If each of the programs 1o a glven phase was tested at
different times by different subjects. Note that each of the testlng sesslons took place
on a 'dlﬂ'erent. day because of the amount of effort required. If different programs would

have been tested on different days, any discusslon about the programs among subjects

2 Although the data from all the phases can be analyzed together, the number of
empty cells resulting from not having all three experlence levels and all four programs in
all phases limits the number of parameters that can bhe estlmat.ed and causes non—unlque

" Type IV partlal sums of squares.

11

between testlng sesslons WOlﬂd have affected the future performance of others. There-
fore, all subjects In a2 phase tested the same program on the same day. The actual order
of program presentation was the order in which the programs are listed In the previous

paragraph.

3.4. Experimental Operation

Fach of the three phases were broken Into five distinet pleces: tralnlng, three test-
Ing sesslons, and a follow-up sesslon. All groups of subjects were exposed to-a slmilar

amount of tralnlng on the testing technlques before the study began. As mentloned ear-

lter, the Unlversity of Maryland subjects were enrolled 1n the “*Software Deslgn and De-

velopment” course, and the NASA/CSC Subjects were glven a four-hour tutorlal. Back-
ground Informatlon on the subjects was captured through a questionnalre. Elementary
exerclses followed by a pretest coverlng all technlques _were' administered to all sublects
after the tralning and before the testing sesstons. Reasonable effort on the part of the
University of Maryland sublects was enforced by thelr belng graded on the work and by
thelr needing to use the technlques In a major class project. Reasonable effort on the
part of the NASA/CSC subjects was certaln because of thelr desire for the study’s out-
come to lmprove thelr software. testing environment., All subjeéts groups were Judged
highly motivated during the study. The subjects were all famlllar with the editors, ter-

minals, machines, and the programs’ implementation language.

The Individuals were requested to use the three testing technlques to the best of
thelr ablllty. Every subjlect participated in all three testing sesslons of hls/her phase,
uslng all technlques but each on a separate program. The individuals using code reé.ii—
Ing were each glven the speclification for the program and lts source code. They were
then asked to apply the methods of code readlng by stepwise abstraction to detect
discrepancles between the program’s abstracted function and the specification. The
functlonal testers were each glven a specificatlon and the abllity to execute the program.
They were asked to perform equlvalence partitlonlng and boundary value analysls to
select a set of test data for the program. Then they executed the program on Ehis ¢ol-
lectlon of test data, and inconslstencles between what the program actually performed

and what they thoug]i the specificatlon sald 1t should perform were noted. The strue-

12

tural testers were glven the source code for the program, the abllity to execute it, and a
description of the Input format for the program. The structural testers were asked to
examlne the source and generate a set of test cases that cumulatively execute 1009% of
the program's statements. When the subjects were applying an on-llne technique, they
generated and executed their own test data; no test data sets were provided. The pro-
grams were Invoked through a test drlver that supported the use the of multiple input
data sets. This test driver, unbekho'wn to the subjlects, dralned off the Input cases sub-
mitted to the program for the experimenter’s later analysls: the programs could only be

accessed through a test driver.

A structural coverage tool calculated the actual statement coverage of the test set
and which statements were left unexecuted for the structural testers. After the struc-
tural testers generated a collectlon of test data that met (or almost met) the 100%% cov-
'erage criterla, no further executlon of the program or reference to the source code was

| . allowed. They retalned the program’s output from the test cases they had generated.
. These testers were then provided with the program’s specification. Now that they knew
.What the program was Intended to do, they were asked to contrast the program’s.
specificatlon with the behavior of the program on the test data they derived. This
scenario for the structural testers was necessary so that *“‘observed’ faults could be com-

pared.

At the end of each of the testing sesslons, the subjects were asked to glve a reason-
able estimate of the amount of tlme spent detecting faults with a given testing tech-
nique. The Unlverslty of Maryland subjects were assured that this had nothing to with

the grading of the work. There seemed to be little Incentive for the subjects In any of

the groups not to be truthful. At the completlon of each testing sesslon, the

NASA/ CSC subjects were also asked what percentage of the faults In the program that
they thought were uncovered. After all three testing sesslons in a glven phase were
completed, the subjects were requested to critique and evaluate the three testlng tech-
ﬁlques'regarding thelr understandablllty, naturalness, and effectlveness. The Unlverslty
-of Maryland subjects submitted a written critlque, while a two hour debrlefing forum
“was conducted for the NA_SA/CSC Individuals. In addlsion to obtainlng the impressions

of the Indlviduals, these follow-up procedures gave an understanding of how well the

13

sublects were comprehending and applylng the methods. These Anal sessions azlso
afforded the partlcipants an opportunity to comment on any particular problems they

had with the techniques or In applying them to the given programs.

4. Data Analysis

The analysls of the data collected from the varlous phases of the experlmenﬁ ls

presented according to the goal and questlon framework dlscussed earller.

4.1. Fault Detection Eﬂ‘ectivéness

The first goal area addresses the fault detectlon effectiveness of each of the tech-
nlques. Flgure 9 presents a summary of the measures that were examined to pursue this
goal area. A brief description of each measure Is as follows — (%) means only relevant for
on—llne testing. a) # Faults detected — the number of faults detected by a subject ap-
plylng a glven testing technique on a given program. b) 9% Faults detected — the per-
centage of a program’s faults that a subjlect detected by applying 2 testing technlque to

the program. c) 7 Faults observable (%) — the number of faults that were observable

- from the program’s behavior glven the Input data submitted. d) % Faults observable

{(*) — the percentage of a program’s faults that were cbservable from the program'’s

. behavlor glven the lmput data submiltted. e) 9% Detected/observable (x) — the percen-

= tage of faults observable_ from the program’s behavior on the glven input set that were

actually observed by a sublect. f} 9% Faults felt found — a subject’s estlmate of the per-

centage of a program’s faults that he/she thought were detected by hls/her testing. g)

Maximum statement coverage (%) — the maxlmum percentage of a program’s statements

that were executed In a set of test cases.

4.1.1. Data Distributions

The actual distribution of the number of fauits observed by the subjects appears In
Figure 10, broken down by phase. From Figures 9 and 10, the large variation in perfor-
mance among the subjects Is clearly seen. The mean number of faults detected by the
sutbjects is displayed in Figure 11, broken down by technique, program, expertlse level,

and phase.

14

:'n{\\f

4.1.2. Number of Faults Detected

The first questlon under this goal area asks which of the testing techniques detected
the most faults In the programs. The overall F—teé’n of the techniques detectlng an equal
number of faults In the programs is relected In the first and third phases of the study
(x<.024 and «<<.0001, respectlvely; not rejected In phase two, &> .05). Recall that the_
phase three data was collected from 32 NASA/CSC subjects, and the phase one data
was from 29 Un_iverslty of Maryland subjects. WIth the phase three data, the contrast
of “reading — 0.5 * (functional + structural)” estlmates that the technique of code read-

Ing by stepwlse abstractlon detected 1.24 more faults per program than did elther of the
other technlques (@<.0001, ¢.l. 0.73 — 1.75).%2 Note that code reading performed well
éven though the professional subjects’ primary experlence was with functional testing.

A_ls_o with the phase three data, the contrast of “functional — strucsural’ estlmates that

| the technique of functlonal testing detected 1.11 more faults per program than did -

structural testing (o<<.0007, c.l 0.52 — 1.70). In the phase one data, the contrast of
“0.5 * (readlng + functional) — structural” estlmates that the technlque of structural
testing detected 1.00 fault less per program than did elther reading or functlonal testing
(x<<.0085, c.l. 0.31 - 1.69). In the phase one data, the contrast of “reading — funectlon-
al’” was not statistlcally different from zero (@>.05). The poor performance of structur-
| .. al testlng across the phases suggests the inadequacy of using statement coverage criteria.

The above palrs of contrasts were chosen because they are linearly Independent.

 4.1.3. Percentage of Faults Detected

Since the programs tested each had a different number of faults, a question in the
earller goal/question framework asks Whlch technlque detected the greatest percentage
of faults In .t;he programs. The order of performance of the technlques ls the same as
_above when the percentage of the programs’ faults detected are compared. The overall
F-tests for phases one and three were relected: as before (x<<.037 and @ <<.0001 respec-
“tlvely; not rejected In phase fwo, @>>.05). Applylng the same contrasts as above: a) In

' phase three, reading detected 16.09% more faults per program than did the other tech-

8 The probably of Type I error is reported, the probablllity of erroneously rejecting
the null hypothesls._ The abbreviation ““c.l.”” stands for 95% confidence Interval.

15

‘nlques (a<.0001, c.l. 9.9 — 22.1), and functional detected 11.2% more faults than dld

structural (a<<.003, c.l. 4.1 — 18.3); b) In phase one, structural detected 13.29% fewer of

' a program’s faults than did the other methods (@< .011, c.l. 3.5 — 22.9), and reading and

: functlonal were not statistically dlifferent as before.

4.1.4. Dependence on Software Type

Another question In this goal area queries whether the number or percentage of
faults detected depends on the progi‘am belng tested. The overall F-test that the
aumber of faults detected 1s not program dependent s relected only In the phase three
data (@<C.0001). Applying Tukey’s multiple comparison on the phase three data reveals
that the most faults were detected In the abstract data type, the second most In the
text formatter, and the least number of faults were found in the database maintalner
(simultaneous a<.05). When the percentage of fauits found In a program ls considered,
ho*;irever, the overall F-tests for the three phases are all relected (x<<.027, a<.01, and
a < .0001 in respective order). Tukey's multiple compariscn yields the followlng order-
ings on the programs (all simultaneous «<.05). In the phase one data, the ordering was
(data type —= plotter) > text formatter; that 1s, a higher percentage of faults were

detected in elther the abstract data type or the plotter than were found 1n the text for-

“ matter: there was no difference between the abstract data type and the plotter In the

) perc_enta-ge found. In the phase two data, the ordering of percentage of Taults detected

was plotter > (text formatter == database malntalner). In the phase three data, the
ordering of percentage of faults found In the programs was the same as the number of
faults found, abstract data type > text formatter > database malntalner. Summariz-

ing the effect of the type of software on the percentage of faults observed: 1) the pro-

- grams with the hlghest percentage of thelr faults detected were the abstract data type

_and the mathematical plotter, the percentage detected between these two was not sta-
tistically different; 2) the programs with the lowest percentage of thelr faults detected
were the text formatter and the database malntainer; the percentage detected between
these two was not statistleally different in the phase two data, but a higher percentage

of faults In the text formatter was detected In the phase three data.

16

4.1.5. Observable vs. Observed Faults

One evaluation criteria of the success of a software testing sesslon Is the number of
faults detected. An evaluation criteria of the particular test data generated, however, Is
the ablllty of the test data to reveal faults 1n the program. A test data set’s ablllty to
uncover faults In a program can be measured by the number or percentage of a
program’s faults that are made observable from execution on that lnput.r Distinguishing
the raulté observable In a program from the faults actually observed by a tester
' highlights the differences In the activitles of test data generatlon and program behavior
examinatlon. As shown In Figure 8, the average number of the programs' faults observ-
able was 68.09; when Indlviduals were elther functlonal testing or structu_rally testing.
Of course, Wlth a nonexecution-based technique sﬁch as code readlng, 1009 of the rfaults
are 'obser\.rable. Test data generated by sﬁbjects uslng. the technique of functlonal test-
lng resulted in 1.4 more observable faults (a<<.0002, c.l1. 0.79 — 2.01) than did the use of
'st;xzjlﬁctura,l testing ih phase one of the study; the percentage dlfference of functlonal over
structural was estimated at 20.0% (@<.0002, c.l. 11.2 — 28.8). The technlques did not
IdliTer In these two measures In the third phase of the study. However, just consldering
the faults that were observable from the submitted test data, functlonal testers detected
18.5% more of these observable faults than did structural testers In the phase three data
(<<.0018, c.l. 8.9 ~ 28.1); they did not differ In the phase one data. Note that all faults
In the programs could be observed In the programs’ output given the proper Input data.
When usilng the on-line technliques of functlonal and structural testing, subjects detected
70.3% of the faults observable 1n the program's output. In order to conduct a successful

testing session, faults In a program must be both revealed and subsequently observed.

4.1.6. Dependence on Program Coverage

Another measure of the abllilty of a test set to reveal a program’s faults Is the per-
centage of a program's statements that are executed by the test set. The av.erage max-
Imum statement coverage achleved by the functional and structural testers was 97.0%.
The maxlmum statement coverage from the submltted test data was not statistically
| different between the functlonal_ and structural testers {o>>.05). Also, there was no

~correlatlon between maximum statement coverage achleved and elther number or per-

17

centage of faults found (a>.05).

4.1.7. Dependence on Programmer Expertise

A flnal questlon in this goal area concerns the contribution of programmer expertise
to fault detection effectlveness. In the phase three data from the NASA/CSC profes-
sional envlronment, subjects of advanced expertise detected more faults than did elther
the subjects of Intermediate or junior expertise (x<<.05). Wlien the percentage of faults
detected s compared, howev.er, the advanced subjlects performed better than the junlor
subjects (x<C.05), but were not statistically different from the Intermediate subjlects
(a>.05). The intermedlate and Junior subjecﬁs were not statistlcally different 1n any of
the three phases of the Study 1n terms of number or percentage faults observed. When
several subject background attrlbutes were correlated with the number of faults found,
total years of professlonal expeljleﬁce had a2 mlpor relatlonship (Pearson R = .22,
a<.05). Corres_pondence of performance with background aspects was examlined across
all 'observa,tlons, ‘and within each bf t.h.e phases, including previous academlc perfor-
mance for the Unlversity of Maryland subjlects. Other than the above, no relationships

were found.

4.1.8. Accuracy of Self-Estimates

Recall that the NASA/CSC subjects In the phase three data estimated, at the com-
pletion of a testing sesslon, the percentage of a program’s faults they thought they had
uncovered. This estlmatlon of the number of faults uncovered correlated reasonably
Well with the actual percentage of faults detected (R = .57, @<.0001). Investlgating
further, Individuals using the different techniques were able to give betler estimates:
code readers gave the best estimates (R = .79, a<<.0001), structural testers gave the
second best estimates (R = .57, a<.0007), and functlonal testers gave the worst esti-
mates (no correlation, a>>.05). This last observatlon suggests that the code readers

were more certaln of the effectiveness they had In reveallng faults In the programs.

4.1.9. Dependence on Interactions

There were few signlficant Interactions between the main effects of testlng tech-

nique, program, and expertise level. In the phase two data, there was an Interaction

18

between testing technlque and program In both the number and percentage of fauits
found (a<<.0013, a<.0014 respectively). The effectiveness of code readlng lncreased on
the text formatter. In the phase three data, there was a slight three-way interaction
between testing techmlique, program, and expertise level for both the number and per-

- centage of faults found (@<.05, @< .04 respectively).

4.1.10. Summary of Fault Detection Effectiveness

Summarizing the major results of the comparison of fault detection effectiveness: 1)

In the phase three data, code reading detected a greater number and percentage of

faults than the other methods, with functional detectlng more than structural; 2) In the

Phase one data, code reading and functional were equally effective, while structural was

Inferior to both — there were no differences among the three technlques In phase two 3)

the number of fauits observed depends on the type of software: the most faults were

detected In the abstract data type and the mathematical plotter, the second most 1n the

text formatter, and.(ln the case of the phase three data} the least were found in the da-
" tabase malntalner; 4) fﬁnctionally generated test data revealed more observable faults
than did structurally generated test data In phase one, but not In phase three; 5) sub-
Jects of Intermedlate and junlor expertlse were equally effectlive In detecting faults, while
a.dira.nced subjlects found a greater number of faults than did elther group; and 8) self-
estimates of faults detected were most accurate from subjects applylng code reading, fol-
lowed by those dolng structural testlng, with estimates from persons funectlonally testing

having no relationshlp.

4.2, Fault Detection Cost

The second goal area examilnes the fault detection cost of each of the techniques.
Figure 12 presents a summary of the measures that were examined to Investigate this

goal area. A brlef description of each measure is as follows — (%) means only relevant for

~ on-line testing. a) # Faults / hour — the number of faults detected by a sublect apply-

~Ing a glven technique normalized by the effort in hours required, called the fault detec-
tlon rate. b) Detectlon tlme — the total number of hours that a subjeet spent in testing
a program uslng a technlque. ¢) Cpu-tlme (%) — the cpu-tlme In seconds used durlng the

testlng sesslon. d) Normallzed cpu-time (x) — the cpu-time In seconds used durlng the

19

testing session, normallzed by a factor for machine speed.? e) Connect time (*) — the
number of minutes that a Individual spent on-llne while testing a program. f) # Pro-
gram runs {*) — the number of executlons of the program test driver; note that the
driver supporfed multiple sets of lnput data. All of the on-line statistles were monitored

by the operating systems of the machines.

4.2.1. Data Distributions

The actual distribution of the fault detection rates for the subjects appears In Flg-
ure 13, broken down by phase. Once agaln, note the many-to-one differential In subject
performance. Flgure 14 displays the mean fault detection rate for the subjlects, broken

down by technlque, program, expertise level, and phase.

422 Fault Detection Rate and Total Time

- The flrst question in thls 'goa.l area asks which testing technlque had the highest
fault detection rate. The oirerall F-test of the'technlques’. having the same fault detec-
tlon rate was rejected In the phase three data (a<<.0014), but not In the other two
phases {@>.05). As before, the two contrasts of “readlng - 0.5 x (functional + structur—
al)” and “‘functlonal — structural” were examined to detect differences among the tech-
nlques. The technlque of code reading was estlmated at detecting 1.49 more faults per
hour than did the other techniques In the phase three data {(<<.0003, c.l. 0.75 — 2.23).
The techniques of functlonal and structural testing were not statistically different
(a>.05). Comparlng the total tlme spent in fault detectlon, the technlques were not
statistically different n the phase two and three data; the overall F-test for the phase
one data was relected (w<<.013). In the phase one data, structural testers spent an es-
timated 1.08 hours less testing than did the other technlques (a<.004, c.l. 0.39 — 1.78),
while code readers were not statlstically different from functlonal testers. Recall that In
phase one, the structural testers observed both a lower number and percentage of the

programs’ Taults than did the other techniques.

4 In the phase three data, testing was done on both a VAX 11/780 and an IBM
4341, As suggested by benchmark comparisons [Church 84], the VAX cpu—times were
divided by 1.8 and the IBM cpu-times were divided by 0.9. :

20

4.2.3. Dependence on Software Type

. Another questlon in this area focuses on how fault detectlon rate depends on soft-
ware type. The overall F-test that the detectlon rate 1s the same for the programs 1s re-
Jected In the phase one and phase three data (x<<.01 and a<<.0001 respectively); the -
detectlon rate among the programs was not statistleally different In phase two. Apply-
ing Tukey’'s multlple comparisons on the phase one data finds that the fault detection
rate was greater on the abstract data type than on the plotter, while there was no.
difference either between the abstract data type and the text formatter or between the
text formatter a.nd the plotter (stmultaneous a<.05). In the phase three data, the fault
detectlon rate 'was higher in the abstract data type than It was for the text formatter
and the database malntalner, with the text formatter and the database malntalner not
belng statistlcally different (simultaneous «<C.05). The overall effort spemt in fault
defé.ctlon was different among the programs in phases one and three (x<<.012 and
<<.0001 respectlvely) while there was no difference in phase two. In phase one, more
effort was spent testing the plotter than the abstract data type, while there was no sta-
tistical difference elther between the plotter and the text formatter or between the text

formatter and the abstract data type (stmultaneous ®<<.05). In phase three, more time

" was spent testing the database maintalner than was spent on elther the text formatter

“*-.or on the abstract data type, with the text formatier not differing from the abstract

data type (slmultaneous «<<.05). Summarlzlng the dependence of fault detection cost -
on software type, 1} the abstract data type had a higher detectlon rate and less total
detection effort than did elther the plotter or the database malntalner, the latter two
were not dliferent In elther detection rate or total detectlon time; 2) the text formatter
and the plotter dld not differ In fault detectlon rate -or total detection effort; 3) the text

formatter and the database malntalner did not differ In fault detection rate overali and

dld not differ 1n total detectlon effort in phase two, but the database maintalner had a

‘hlgher total detection effort In phase three: 4) the text formatter and the abstract data

type dld not differ In total detection effort overall and did not differ in fault detectlon

' rate in phase one, but the abstract data type had a hlgher detectlon rate In phase three.

21

'4.2.4. Computer Costs

: In addlition to the effort spent by Individuals in software testing, on-line methods
incur machine costs. The machine cost measures of cpu-time, connect tlme, and the
number of runs were compared across the on-llne techniques of functlonal and structural
i testlng 1n phase three of the study. A nonexecution-based technique such as code read-
ing, of course, Incurs no machine time costs. When the machine speeds are normalized
(see measure' definitlons above), the technlque of funetlonal testlng used 26.0 more
seconds of cpu-time than did the technlque of structural testlng (x<.016, ¢.l. 7.0 —
45.0). The estlmate of the difference 1s 29.6 seconds when the cpu-times are not normal-
1zed (@<<.012, cl. 9.0 — 50.2). Indlviduals uslng functlonal testing used 28.4 more
| mlinutes of connect time than did those uslng structural testing (ax<<.004, cl. 11.7 ~
45.1). The number of computer ruﬁs of a progr'am’s test drlver was not different
bet’Ween the two techniques (a>>.05). These results suggest that Individuals using func-
““tlonal testing spent more tlme on-line and used more cpu-time per computer run than

" did those structurally testing.

4.2.5. Dependence on Programmer Expertise

The relation of programmer expertise to cost of fault detectlon is another question
“1in this goal sectlon. The expertlse. level of the subjects had no relation to the fault
#“detection rate in phases two and three (@>>.05 for both F-tests). Recall that phase
three of the study used 32 professional subjects with all three levels of computer sclence
expertise. In phase one, however, the Intermedlate subjects detected_ faults at a faster
rate than did the junior subjects {a<<.005). The total effort spent In fault detection was
not different among the expertise levels In any of the phases («>.05 for all three P-
tests). When all 74 subjects are consldered, years of professlonal experl-énce correlates
posttively with fault detection rate (R = .41, ®<<.0002) and correlates slightly negative-
ly with total detection tlme (R == -.25, @<C.03). These last two observatlons suggest
that persons with more years of professional experlence detected the faults faster and
spent less total tlme dolng so. Several other subject background measures showed no
relationship with fauit detectlon rate or total detection tlme (a<.05'). Background

measures were examined across ali subjects and within the groups of NASA/CSC sub-

22

Jects and Unlversity of Maryland subjects.

4.2.6. Dependence on Interactions

There were few slgnificant interactlons between the maln effects of testing tech-
nlque, program, and eXpertlse level. There was an Interaction between testing technique
and software type In terms of fault detection rate and total detectlon cost for the phase
three data («<.003 and a<.007 respectlvely). Subjects uslng code reading on the
abstract. data type had an Increased fault detectlon rate and a decreased total detection

time.

4.2.7. Relationships Between Fault Detection Effectiveness and Cost

_ There were several correlations between fault detectlon cost measures and perfor-
mance measures. Fault detectlon rate correlated overall with number of faults detected
. (R'= .48, ®<.0001), percentage of faults found (R = .48, ®<.0001), and total detec-
tlon time (R == -.53, @<C.0001), but not “.rit.h normallzed cpu-time, raw cpu—time, con-
nect tlme, or number of computer runs (@>>.05). Total detection time corrélated with
normallzed cpu-time (R = .36, @<{.04) and raw cpu-time (R == .37, «<C.04), but not
with connect time, number of runs, number of faults detected, or percentage of faults
detected. The number of faults detected In the programs correlated with the amount of
- machine resources used: normallzed cpu-time (R = .47, @<.007), raw cpu-time (R =
-52, @<{.002), and connect tlme (R = .49, &< .003), but not with the number of com-
puter runs (a>.05). The correlatlons for percentage of faults detected with machine
resources used were simllar. Although most of these correlations are minor, they suggest
that 1) the hlgher the fault detection rate, the more faults found and the less tlme spent
In fault detectlon; 2) fault detectlon rate had no relatlonship with use of machlne
resources; 3) spendlng more tlme In detecting faults had no 'relatlonship with the
- amount of faults detected; and 4) the more cpu-time and connect time used, the more

faults found.

4.2.8. Summary of Fault Detection Cost

Summarizing the major results of the comparison of fault detection cost: 1) In the

bhase three data, code reading had a higher fault detectlon rate than the other methods,

23

with no difference between functional testing and structural testing; 2) in the phase one -

and two data, the three technlques were not different In fault detection rate; 3) In the
phase two and three data, total detection effort was not different among the technlques,
| but ln phase one less effort was spent for structural testing than for the other tech-
nigues, while reading and functlonal were not different; 4) fault detectlon rate and total
| effort in detectlon depended on the type of software: the abstract data type had the
highest detectlon rate and lowest total detectlon effort, the plotter and the database
maintalner had the lowest detectlon rate and the highest total detection effort, and the
text formatter ‘was somewhere In between depending on the phase; 5} functional testing
used more cpu-time and connect time than did structural testlng, but they were not
different In the number of runs; 8) In phases two and three, sublects across expertise lev-
els were not dlfferent in fault detection rate or total detection time, 1n phase one Inter-
mediate subjects had s higher detectlon rate; and 7) there was a moderate correlation

between fault detectlon rate and years of professional experience across all subjects.

4.3. Characterization of Faults Detected

The third goal area focuses on determining what classes of faults are detected by
the different techniques. In the earller sectlon on the faults in the software, the faults
were characterized by two different classificatlon schemes: omlssion or commIlssion, and
inltiallzation, control, data, computailon, interface, or cosmetic. The faults detected
across all three study phases are broken down by the two fault classificatlon schemes In
Figure 15. The entries In the flgure are the average percentage (with standard devia-
tlons) of faults In a glven class observed when a partlcular technique was being used.
Note that when a subjlect tested a program that had no faults In a glven class, he/she

was excluded from the calculation of this average.

4.3.1. Omission vs. Commission Classification

When the faults are partltloned accordlng to the omisslon/commission scheme,'

there 1s & distinctlon among the technlques. Both code readers and functlonal testers
observed more omisslon faults than did structural testers {«<C.001), with code readers
and functional testers not belng different (a>>.05). Silnce a fault of omlisslon occeurs as a

result of some segment of code belng left out, you would not expect structurally generat-

24

ed test data to find such faults. In fact, 449 of the subjects applylng structural testlng
found zero faults of omission when testing a program. A distribution of the faults ob-

served accordlng to this classification scheme appears In Figure 186.

4.3.2. Six-Part Fault Classification

‘When the faults are divided according to the second fault; classiflcatlon scheme,
several differences are apparent. Both code reading and functional testlng found more
Inltlallzatlon faults than did structural testing (o <<.05), with code reading and functlon-
al testlng not belng different (a>>.05). Code readlng detected more Interface faults than
dld efther of the other methods («<<.01), with no difference between functlonal and
structural testing (a>.05). This suggests that the code reading process of abstracting
and composing program functions across modules must be an effectlve technique for
ﬂndlng Interface faults. Functlonal testing detected more control faults than did elther
of ‘the other methods (x<.01), with code reading and structural testing not belng
dlﬂ‘erent (0e>.05). Recall that the structural test data generation criterla examined ls
based on déternﬁlnlng the executlon paths In a program and derlving test d'ata that exé-
cute 100% of the program’s statements. One would expect that more control path
'fault_s would be found by such a technique. However, structural testing did not do as
well as functional testing In this fault class. The technlque of code reading found more
computatlon faults than dld structural testing («<<.05), with functional testlng not be- -
Ing different from elther of the other two methods (a>>.05). The three techniques were
not statistlcally different In the percentage of faults they detected in either the dat;a or
cosmetlc fault classes («>>.05 for both). A distribution of the faults observed according

to this classlfication scheme appears In Flgure 17.

4.3.3. Observable Fault Classification

Figure 18 dlsplays the average percentage (with standard deviatlons) of faults from

'e_ach class that were observable from the test data submltted, yet were not reported by

the tester.® The two on-llne technlques of functlonal and structural testing were not

5 The standard devlatlons presented in the figure are high because of the several In-
stances In which all observable faults were reported.

25

“different In any of the faults classes (@>.05). Note that there was only one fauit in the

cosmetic class.

4.3.4. Summary of Characterization of Faults Detected

Summarizing the major results of the comparlson of classes of faults detected: 1)

code reading and functional testing both detected more omlssion faults and initlalization

‘ faults than did structural testing; 2) code reading detected more Interface faults than

did the other methods; 3) functlonal testing detected more control faults than dld the

%other methods; 4) code reading detected more computation faults than did structural

testing; and 5) _the on-line technlques of functional and structural testing were not

different In any classes of faults observable but not reported.

5. Conclusions

This study compares the strategles of code reading by stepwise abstraction, func-
tloﬁal testing using equivalence class partitlonlng and boundary value analysls, and
structural testing using 100% sta,tement coverage. The study evaluates the technlques
across three data sets In three different aspects of software testing: fault detecilon

effectiveness, fault detection cost, and classes of faults detected. Kach of the three test-

Ing techniques showed merlt In this evaluation. The Investigation is intended to com-

- pare the different testing strategies In representative testlng situatlons, uslng program-

mers with a wlde range of experience, different software types, and common software
faults.

The major results of thls study are 1) with the professlonal programmers, code
reading detected more software faults and had a higher fault detectlon rate than dld '
functional or structural testlng, while functional testing detected more faults than did
structural testing, but functional and structural testing were not dlfferent in fault detec-
_tlon rate; 2) In one UoM subject group, code reading and functional testing were not
different in faults found, but were both saperlor to structural testlng, while In the other
UoM subject group there was no dlfference among the technlques; 3) with the UoM sub-
jects, the three technlques were not different lﬁ fault detection rate; 4) number of faults
observed, fault detectlon rate, and total effort In detection depended on the type of soft-

ware tested; 5) code reading detected more interface faults than did the other methods;

26

6) functional testing detected more control faults than did the other methods; and 7)
when asked to estlmate the percentage of faults detected, code readers gave the most

accurate estlmates while functlonal testers gave the least accurate estimates.

The results suggest tha.t.code readlng by stepwlse abstractlon (a nonexecution-
based method) s at least as effective as on-line functional and structural testing In
terms of number and cost of faults observed. They also suggest the ina,dequacy of using
1009% statement coverage criterla for structural testing. Note that the prdfessional pro-
grammers examined preferred the use of functional testing because they felt 1t was the

most effective technique; thelr intultion, however, turned out to be Incorrect.

In comparing the resuits to related _s_tudles, there are mixed coneclusions. A proto-
type analysls done at the Unlversity of Maryland in the Fall of 1981 [Hwang 81] sup-
ported the bellef that code 'readlng by stepwise abstraction does as well as the_
cémputer-based methods, with each strategy having lts own advantages. .In the Myers
exberiment [Myers 78], the three technlques compared (functlonal testing, 3-person code
reviews, control group) were equally effective. He also calculated that code reviews were
less cost-effectlve than the computer-based testlng approaches. The first observation s
-supported in one study phase here, but the other observation Is not. A study coﬁducted
; by Hetzel [Hetzel 76] compared functional testlng, code reading, and ‘‘selective’’ testing
. (a composlte of functlional, structural, and reading techntques). He observed that func-
tlonal and ‘‘selectlve’ testlng were equally effectlve, with code reading belng Inferior.
As noted earller, this 1s not supported by this analysls. The study described in thls..
analysls examined the technlque of code reading by stepwise abstraction, while both the
Myers and Hetzel studles examined alternate approaches to off-line (nonexecution-based)

revlew/reading.

A few remarks are appropriate about the comparison of the cost-effectlveness and
phase-avallablllty of these testing technlques., When examinlng the effort assoeclated
with a technique, both fault detectlon and fault Isolatlon costs should be compared.
The code readers have both detected and Isolated a fault; they located it In the source
_ code. Thus, the readlng process condenses fault detectlon and lsolation Into one activi-
ty. Functlonal and structural testers have only detected a fault; they need to delve Into

the source code and expend additional effort In order to 1solate the defect. Also, a

27

nonexecution-based reading process can be applled to any document produced during
the development process {e.g., high-level deslgn document, low-level deslgn document,
source code document). While functional and structural executlon-based technlques
-may only be applied to documents that are execut_able (e.g., source code), which are usu-

:ally avallable later in the development process.

| Investigations related to this work include studles of fault classification [Welss &
.Baslu 85, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83, Baslll & Perricone 84]
-and Cleanroom software development [Selby, Baslll & Baker 85]. In the Cleanroom soft-
'Ware development approach, technlques such as code reading are used ln the develop-
ment of software completely oﬂ?—line_(i.e., without program execution). In the above
 study, systems developed using Cleanrcom met system requirements more completely
;and had a higher percentage of successful operational test cases than dld systems

developed with a more traditlonal approach.

The empirical study presented 1s Intended to advance the understanding of how
varlous software testing strategles contrlbute to the softWare development process and
to one another. The results glven were calculated from a set of indlviduals applylng the
three techniques to unit-sized programs — the direct extrapolation of the findlngs to oth-
er testing environments 1s not Implled. However, valuable inslghts Into software teétlng
have been gained. Further work applying these and other results to devise effectlve

testing environments Is underway.

6. Acknowledgement

The authors are grateful to the sublects from Computer Sclences Corporation,
NASA Goddard, and the University of Maryland for thelr enthuslastic partlcipation In

the study.

28

7. Appendices

- 7.1. Appendix A. The Specifications for the Programs
Program 1

Glven an Input text of up to 80 characters conslsting of words separated by blanks
or new-line characters, the program formats 1t into a Hne-by-llne form such that 1) each
output Hne has a maximum of 30 characters, 2) a word In the Input text ls placed on a
single output llne, and 3) each output line is fllled with as many words as possibie.

The Input text Is a stream of characters, where the characters are categorlzed as el-
ther break or nonbreak characters. A break character 1s a blank, a new-line character
(&), or an end-of-text character (/). New-llne characters have no speclal slgnificance;
they are treated as blanks by the program. The characters & and / should not appear
in the ocutput.

A word Is deflned as a nonempty sequence of nonbreak characters. A break Is a. se-
quence of one or more break characters and Is reduced to a slngle blank character or
start of a new line In the output. ' B

o ‘When the program Is lxivoked, the user types the Input line, followed by a / (end-
_of-text) and a carriage return. The program then echos the text input and formats it on
~ the terminal. '

If the input text contalns a word that Is too long to it on a slngle output line, an

error message Is typed and the program terminates. If the end-of-text character 1s miss-

-1ng, an error message 1s Issued and the program awalts the lnput of properly terminated
llne of text.

Program 2

Glven ordered palrs (X,y) of elther posltlve or negatlve Integers as Input, the pro-
gram plots them on a grid with a horlzontal x-axis and a vertlcal y-axis whlch are ap-
propriately labeled. A plotted polnt on the grid should appear as an asterisk (x).

The vertical and horizontal scallng 1s handled as follows. If the maximum absolute
value of any y-value 1s less than or equal to twenty (20), the scale for vertical spacing
will be one ilne per Integral unit (e.g., the polnt (3,8) should be plotted on the slxth line;
two llnes above the polnt (3,4)). Note that the orlgln (polnt (0,0)) would correspond to

- an asterlsk at the the Intersectlon of the axes (the x-axls Is referred to as the Oth line).
If the maximum absolute value of any x-value Is less than or equal to thirty (30), the
scale for horizontal spacing will be one space per Integral unit (e.g., the polnt (4,5)
should be plotted four spaces to the right of the y-axls; two spaces to the right of (2,5)).
However, If the maximum absolute value of any y-value Is greater than twenty (20), the
scale for vertlcal spaclng will be one llne per every (max abs of yval)/20 rounded-up.
{e.g., If the maximum absolute value of any y-value to be plotted is 66, the vertical line
spacing wlill be a line for every four (4) lntegral units. In such a data set, polnts with
y-values greater than or equal to elght and less than twelve will show up as asterlsks In
the second line, poluts with y-values greater than or equal to twelve and less than six-

29

teen will show up as asterisks In the third ilne, etc. Continuing the example, the point
(3,15) should be plotted on the third llne; two llnes above the polnt (8,5).) Hortzontal
scallng Is handled analogously.

: It two or more of the polnts to be plotted would show up as the same asterlsk in

‘the grid (ke the polnts (9,13) and (9,15) In the above example), a number '2’ (or what-
ever number 1s appropriate) should be printed instead of the asterlsk. Polnts whose as-
i terisks will lie on 2 axis or grid marker should show up In place of the marker.

Program 3

‘ A list s deflned to be an ordered collection of Integer elements which may have ele-
ments annexed and deleted at elther end, but not In the middie. The operations that
need to be avallable are ADDFIRST, ADDLAST, DELETEFIRST, DELETELAST,
FIRST, ISEMPTY, LISTLENGTH, REVERSE, and NEWLIST. Each operation Is
descrlbed in detall below. The lists are to contaln up to a maximum of five (5) ele-
ments If an element 1s added to the front of a *‘full” list (one contalning five elements
already), the element at the back of the llst 1s to be discarded. Elements to be added to
‘ the back of a full list are disearded. Requests to delete elements from empty llsts result
111 an empty list, and requests for the first element of an empty list results In zero (0) be-

‘ lng returned. The detalled operation descriptions are as below:

ADDFIRST(LIST L, INTEGER I)
; Returns the list I with I as Its first element followed by all the elements of L. If L
1s “full” to begin with, L’s last element 1s lost.
ADDLAST(LIST L, INTEGER I}
Returns the list with all of the elements of L. followed by I. If L Is full to begln
with, L Is returned (Le., I 1s ignored).
. DELETEFIRST(LIST L)
' Returns the list containing all but the first element of L. If L 1s empty, then an
empty list is returned. -
' DELETELAST(LIST L)
| Returns the list contalning all but the last element of L. IT L ls empty, then an
| empiy list Is returned.

" FIRST(LIST L)
‘ Returns the first element In L. If L 1s empty, then it returns zero (0).

ISEMPTY(LIST L)
Ret.l_lms one (1} If L 1s empty, zero (0) otherwise.

LISTLENGTH(LIST L)
Returns the number of elements In L. An empty list has zero (0) elements.

NEWLIST(LIST L)
Returns an empty llst.
REVERSE(LIST L)
" Returns a list contalning the elements of L In reverse order.

30

Program 4
(Note that a 'flle’ is the same thing as an IBM ’dataset’.)

The program malntalns a database of bibllographle references. It first reads a mas-
ter flie of current references, then reads a file of reference updates, merges the two, and
produces an updated master flle and a cross reference table of keywords.

The first lnput flle, the master, contalns records of 74 characters with the rollowlng
format: :
column comment

1 - 3 each reference has a unique reference key
4 - 14 author of publlcation
15 - 72 tltle of publication
73 - 74 year Issued
The key should be a three (3) character unlque 1dentifler consisting of letters between
A-Z. The next Input file, the update flle, contalns records of 75 characters In length.
The only difference from a master file record 1s that an update record has elther an ‘A’
-(capttal A meaning add) or a 'R’ (capital R meaning replace) 1n column 75. Both the
master and update flles are expected to be already sorted alphabetleally by reference key
- when read into the program. Update records with action replace are substituted for the
matching key record In the master flle. Records with actlon add are added to the mas-
- ter file at the appropriate locatlon so that the file remalns sorted on the key fleld. For
example, a valld update record to be read would be (lncluding a numbered llne just for
reference) :

© 1234568789012345678001234567890123456789012345678901234567890123456780012345

BlTbaker an 1ntroduction to program testing 83A

_ The program should produce two pleces of output. It should first print the sorted

list of records in the updated master flle In the same format as the original master file.
It should then print a keyword cross reference list. All words greater than three charac-
ters In a publicatlon’s title are keywords. These keywords are listed alphabetleally fol-
lowed by the key flelds from the appleable updated master file entries. For example, If
the updated master flle contalned two records,

ARCKkermi ¢ Introduction to software testing 82
IMxXJones the realltles of software management 81

then the keywords are introductlon, testlng, realltles, software, and management. The
cross reference Iist should look like - : : '

Introduction
ABC
-management
DD
reailties

31

DDX

- software

' ABC

: DDX

testing
ABC

; Some possible error condltions that could arlse and the subsequent actions Include
‘the followlng. The master and update files should be checked for sequence, and if a
record out of sequence is found, a message slmllar t0 'key ABC out of sequence’ should
. appear -and the record should be dlscarded. If an update record Indicates replace and
the matching key can not be found, a message simllar to 'update key ABC not found’
should appear and the update record should be:-lgnored. If an update record indlcates
‘add and 2 matchlng key 1s found, something ltke 'key ABC already in file’ should ap-
pear and the record should be ignored. (End of speclfication.) :

7.2. Appendix B. The Source Code for the Programs

Program 1

001; ¢ NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTION MATCH'.
' 002:'C IT IS DESCRIBED THE FIRST TIME IT IS USED; AND ITS SOURCE CODE
003: C IS INCLUDED AT THE END FOR COMPLETENESS.

L 004: C
. 005: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE
A LEADING -
| 006: C AND REQUIRED ' * FOR CARRIAGE CONTROL
. 007:
| 008: C VARIABLE USED IN FIRST, BUT NEEDS TO BE INITIALIZED
L 009 INTEGER MOREIN
i010r
| 011: C STORAGE USED BY GCHAR
| 012: INTEGER BCOUNT
| o13: CHARACTER*1 GBUFER(80)
i oL4: CHARACTER#*80 GBUF
- 015: C GBUFER AND GBUFSTR ARE EQUIVALENCED
016:
017: C STORAGE USED BY PCHAR
018: INTEGER I
019: CHARACTER=+*1 OUTLIN(31)
020: C OUTLIN AND OUTLINST ARE EQUIVALENCED
021:
022: CHARACTER#*1 GCHAR
023: _
024: C CONSTANT USED THROUGHOUT THE PROGRAM
025: CHARACTERx*1 EOTEXT, BLANK, LINEFD
026: INTEGER MAXPOS '
028: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
029: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
030:

031: DATA EOTEXT, BLANK, LINEFD, MAXPOS / '/*, '’ "&’, 31/

32

032:

033:
034: CALL FIRST

035: END

036:

037:

038: SUBROUTINE FIRST

039: INTEGER K, FILL, BUFPOS

040: CHARACTERx*1 CW

041: CHARACTER=*1 BU'FFER(31)

042:

043: INTEGER MOREIN, BCOUNT, I, MAXPOS

044 CHARACTER#*1 QUTLIN(31), GCHAR, EOTEXT, BLANK LINEFD,
045: X GBUFER(30)

046: CHARACTER=*80 GBUF

047:

048: COMMON /ALL/ MOREIN, BCOUNT, I, MAXFPOS, OUTLIN,

049: X . EOTEXT, BLANK, LINEFD, GBUFER, GBUF
050:

051: BUFPOS = 0 -
052: FILL = 0
053;:° CW==""
e, 054 '

_055: " MOREIN = 1

" 0BB:
057: I=1
058: K=1
059: DOWHILE (K .LE. MAXPOS)
060: OUTLIN(K) =
061: K=K+1
062: ENDDG -
063: .)
064: BCOUNT =1

" 0B5: K1 _
066: ' DOWHILE (K .LE. 80)
067: GBUFER(K) = '2’
068: K=K+1
0869: ENDDO '
G70: o o -
o71: DOWHILE (MOREIN)
072: "~ CW == GCHAR()
073: IF ((CW .EQ. BLANK) .OR. (CW .EQ. LINEFD) .OR.
074: X j (CW .EQ. EOTEXT)) THEN
075: ' IF (CW .EQ. EOTEXT) THEN
076: o _ MOREIN = 0

- 07T - ENDIF -
078: IF ((FILL+1+BUFPOS) .LE. MAXPOS) THEN _
079: : ' CALL PCHAR(BLANK)
080: FILL = FILL + 1
081: o ELSE
082: CALL PCHAR(LINEFD)
083: o ' FILL =0
084: - ENDIF
085: . K=1

036: DOWHILE (K .LE. BUFPOS)

33

087: CALL PCHAR(BUFFER(K))

088: K=K+1
029: ENDDO

| 090: FILL = FILL + BUFPOS

LO91: BUFPOS = 0

' ogg; ELSE
093: : IF (BUFPOS .EQ. MAXPOS) THEN
094: WRITE(6,10)

095: 10 FORMAT(" ’, ***WORD TO LONG#*x")
096: ~ MOREIN == 1

L 097: , ' ELSE

| 098: BUFPOS == BUFPOS + 1
099: BUFFER(BUFPOS) = CW
100: ENDI® '

i 101: ENDIF

' 102: ENDDO
103: CALL PCHAR(LINEFD)

104: END

105:

106: .
107: CHARACTER+1 FUNCTION GCHARY()

108: INTEGER MATCH
109:" CHARACTER#80 GBUFSTR
110:

L 111: INTEGER MOREIN, BCOUNT, I, MAXFOS
112: CHARACTER#*1 OUTLIN(31), EOTEXT, BLANK, LINEFD,
113: X GBUFER(80)

114: CHARACTER+*30 GBUP
115: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
116: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
117: :
| 118: EQUIVALENCE (GBUFSTR,GBUFER)
119
120: IF (GBUFER(1) .EQ. 'Z2") THEN
i21: READ(5,20) GBUF
122: 20 FORMAT{AS0)
123: C

124: C MATCH{CARRAY,C) RETURNS 1 I} CHARACTER C IS IN
CHARACTER ARRAY
125: C CARRAY, RETURNS 0 OTHERWISE. ARSIZE IS THE SIZE OF CARRAY.

126: C

127: IF (MATCH(GBUF,EOTEXT) EQ. 0) THEN
128: WRITE(6,30) :
129: 30 FORMAT(’, *#*xNQO END OF TEXT MARK#*#*")
130: GBUFER(2} = EOTEXT

131: ELSE
"132: C GBUFER(1) = GBUF

133: GBUFSTR = GBUF

134: ENDIF

135: ENDIF

1386: GCHAR = GBUFER(BCOUNT)

137: BCOUNT = BCOUNT + 1

138: END

139:

140:

34

141:
142
143:
144:

SUBROUTINE PCHAR (C)
CHARACTER=*1 C .
CHARACTER#31 S0UT, OUTLINST
INTEGER K

1435:

146:
147:
148:
149:
150:
151: -

INTEGER MOREIN, BCOUNT, I, MAXPOS
CHARACTER#*1 OUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD,
X GBUFER(80)
CHARACTER*80 GBUF
COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
X EOTEXT, BLANK, LINEFD, GBUFER, GBUF

152:

153:

EQUIVALENCE (OUTLINST,OUTLIN)

154:

155:
156:
157:
158:
159
160:
161:
162: -
. 163:.
'164;
165:
166:
167:
168:
169:

1
2
3
4
5:
6
7
8
9

10:
- 11:
12:
13:
14:
15:
16:
SAT
- 18:
19:
20:
21:
22:
23:

IF (C .EQ. LINEFD) THEN
SOUT = OUTLINST
WRITE(6,40) SOUT

40 FORMAT(’ ',A31)

K=1

DOWHILE (K .LE. MAXPOS)
OUTLIN(K)} = :
K=K+1

ENDDO

I=1

. ELSE
OUTLIN(I) = C
I=I+1
ENDIF
END

Program 2

: INT WIDTH = 30,

HEIGHT = 20,

GRIDWD = 61,

LARGENUM == 100000000
STRING TICKS[61] =

I A R !

: PROC SORT (INT ARRAY KEYBUF, INT ARRAY FREEBUF, INT N)

INT I, MAXP
INT ARRAY SRTKEYB(100), SRTFREEB(100)

I=—0

WHILE I << N DO
SRTKEYE(I) := KEYRBUFR{I)
SRTFREEB(I) := FREEBUF(I)
I:=1+1
END ’

I:=N

WHILE I > 0 DO
MAXP == MAXELE(SRTKEYB,I)

35

24 KEYBUF(N-I) ;= SRTKEYB(MAXP)

25: FREEBUF(N-I) :=— SRTFREEB(MAXP)
26: CALL REMOVE(SRTKEYB MAXP.I)
27: CALL REMOVE(SRTFREEB,MAXP,I)

. 28: Ti=1-1

| 2g; END

: 30: :

- 31:

L 32

33: INT FUNC MAXELE (INT ARRAY BUF, INT N}
34: :
35: INT I, MAXPTR, MAX
36:

37: MAXPTR ==-1
: 38: MAX = -LARGENUM

39: I:=20
40: WHILE I < N DO
41: IF BUF(I) > MAX
42 THEN
43: MAX = BUF(I)
44 MAXPTR (=1
45: END
46: I:=1I1+1
477 END
48: RETURNMAXPTR)
I 14
- 50:
51:
52: INT FUNC MINELE {INT ARRAY BUF, INT N} -
53: :
54; INT I, MINPTR, MIN
55:

56: MINPTR = -1
57: MIN = LARGENUM

58: I:=20

59: WHILE I < N DO

60: IF BUF({I) < MIN

61: THEN

£2: MIN :== BUF(I)

63: . MINPTR =1

64: - END

65: Ii=1I+1 ’
66: END

67: RETURNMINPTR)

68:

69: -

70: .
71: PROC REMOVE (INT ARRAY BUF, INT PTR, INT N)
72: :

73: INTI

T4

75: I1:=PTR

76: WHILE I << N-1 DO
77: BUF(I) := BUF(I+1)
78: Ii=I+1

36

79; END

BO:
81:
82:
83: INT FUNC ABS (INT VAL)
84: '
85: IF VAL < 0
86: THEN
87: RETURN(-VAL)
88: ELSE
89: RETURN(VAL)
- 90: END
g1:
92:
93:
94: INT FUNC SLASH (INT TOF, INT BOT)
95:
96: INT RES
. 97:

98: RES :== TOP/BOT
99: IF TOP <> RES*BOT .AND,

100: {TOP > 0 .AND, BOT > 0 .OR. TOP < 0 .AND. BOT<0)
-101: THEN RES :== RES + 1 .

102: END

103: RETURN(RES)

104: :

105: INT FUNC MOD (INT N, INT M)

106:

107; INT VAL

108:

109: VAL = N-N/Mx*M
110: IF VAL < 0

111: THEN

112: VAL := VAL + M
113: END

114: RETURN (VAL)
116:

1_16:)

117: PROC MAIN

118:

119: .CHAR ARRAY GRID(61)

. 1200 STRING STR[61]

121: INT ARRAY XVAL(100), YVAL(100) ,
122: INT I, J, NUMOBS, MAXY, MAXX, MINX, HORISP, VERTSP, VLINE
123: : : .
~124: I:=0

"125: . WHILE .NOT. EOI DO

126: READXVAL(I), YVAL(I)
127: I:=1+1

128: END

129: NUMOBS =1

130:

181: CALL SORT(YVAL,XVAL,NUMOBS)
132 MAXY = YVAL(0)
133: VERTSP = SLASH(MAXY HEIGHT)

37

134:

135: MAXX = XVALMAXELE(XVAL,NUMOBS))}
136: MINX := XVAL(MINELE(XVAL ,NUMOBS))
137: IF ABS(MINX) > ABS(MAXX)

138: THEN
139: HORISP := SLASH(ABS(MINX), WIDTH)
140: ELSE
141: HORISP := SLASH(ABS(MAXX),WIDTH)
| 142: END
| -143:
144 STR =" X AXTS’

145: WRITE(STR,SKIP)
146 I:=0

147: VLINE :=— HEIGHT
148: WHILE VLINE > 0 DO

149:
150: Ji=0)
151: IF MOD(VLINE,5) = 0
152: THEN
. 153: UNPACK(TICKS,GRID)
[154: ELSE
155: WHILE J << GRIDWD DO
156: GRID(J) ;=" "
157: Joim=J 41
158: END
159: END
160:
161: VLINE := VLINE - 1
162:;)
163: - WHILE VLINE+«VERTSP < YVAL(I) DO
164: IF XVAL(I) >=¢ ‘
165: THEN
166: GRID{WIDTH + SLASH(XVAL(I},HORISP)) :=— "*"
167: ELSE '
188: GRID(WIDTH - SLASH{(-XVAL(I},HORISP)) = "%"
169: END ' o
170: I=1+4+1
171: END
172:
173: GRID(WIDTH) := ~|”
174: PACK(GRID,STR)
175: WRITE(STR,SKIP)
176: END
177:
178: STR ==

el S s s) e e e R el S
179: UNPACK(STR,GRID)
180: WHILE 0 <= YVAL(I) .AND. I <== NUMOBS DO

181: IFXVAL(I) >=0

182: THEN

183: . GRID(WIDTH + SLASH(OIVAL(I)LHORISP)) 1= "»"
184: ELSE '
185: GRID(WIDTH - SLASH(-XVAL(I),HORISP)) == "%”
186: END :
187: Ii=1I+1

38

“f

188:
189:
190:
191;
192;
193:
194:
195:

001:
002:

003:
004:

005:
006:
007:
- Q08:
. 009:
010:
- 011:
012:
013:
Ol4:
015:
016:
017:
.- 018:
 019:

.. 020:
021:
022:
023:
024:
025:
026:
027:
- 028:
029:
030:
031:
032:
.033:
034:
035:
036:
037:
038:
039:
040:
041

END

PACK(GRID,STR)
WRITE(STR,SKIP)

STR == * Y AXIS’
WRITE(STR,SKIP)

START MAIN

Program 8

C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTIONS

DRIVER, GETARG,

C CHAREQ, CODE, AND PRINT. THEIR SOURCE CODE IS

DESCRIBED AND

C INCLUDED AT THE END FOR COMPLETENESS.
C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS

C
C

QQ

Q0

C

INCLUDE A LEADING
AND REQUIRED ’ * FOR CARRIAGE CONTROL _

INTEGER POOL('T), LSTEND

INTEGER LISTSZ

COMMON /ALL/ LISTSZ

LISTSZ = 5
CALL DRIVER (POOL, LSTEND)
STOP

END

FUNCTION ADFRST (POOL, LSTEND, I)
INTEGER ADFRST

INTEGER POOL(7), LSTEND, I
INTEGER LISTSZ

COMMON /ALL/ LISTSZ

INTEGER A

IF (LSTEND .GT. LISTSZ) THEN
LSTEND = LISTSZ - 1

ENDIF
LSTEND = LSTEND + 1
A = LSTEND

'DOWHILE (A .GE. 1)

POOL(A+1) = POOL{A)

A=A-1
. ENDDO
POOL(1) =1
ADFRST = LSTEND
RETURN

END

39

042: C
043:
044:

. 045:
| 046:

L 04T:

. 048: C
: 049:
| 050:
. 051:
| 052:
¢ 053:
L 054:
. 055!
. 056:
© 057
. 058:

QQ

059:
060:
061:
062:

063: C
064:

065:-
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
o78:
078
080:
08l1: C
082:
083:
084:
085:
086:
O87:
08s: C
089: C
090:
09%:
Gg2:
083: C
Qg4
095:
096:

S Ne]

FUNCTION ADLAST (POOL, LSTEND, I)

INTEGER ADLAST
INTEGER POOL(7), LSTEND, I
INTEGER LISTSZ

COMMON /ALL/ LISTSZ

IF (LSTEND .LE. LISTSZ) THEN
LSTEND == LSTEND + 1
POOL(LSTEND) = I

ENDIF .

ADLAST = LSTEND

RETURN '

END

FUNCTION DELFST (POOL, LSTEND) -

INTEGER DELFST
INTEGER POOL(7), LSTEND
INTEGER LISTSZ

COMMON /ALL/ LISTSZ

INTEGER A
IF (LSTEND .GT. 1) THEN
A=1
LSTEND = LSTEND - 1
DOWHILE (A .LE. LSTEND)
POOL(A) == POOL(A+1)

A=—A4+1
ENDDO
ENDIF
DEL#FST = LSTEND
RETURN
END

FUNCTION DELLST {LSTEND)
INTEGER DELLST
INTEGER LSTEND

IF (LSTEND .GE. 1) THEN
LSTEND = LSTEND - 1

ENDIF

DELLST = LSTEND

" RETURN

END

FUNCTION FIRST (POOL, LSTEND)
INTEGER FIRST
INTEGER POOL(7), LSTEND

IF (LSTEND .LE. 1) THEN
FIRST = 0 '
ELSE

40

097: FIRST = POOL(1)

098: ENDIF
099: RETURN
100: END
101: C
102: C
108: FUNCTION EMPTY (LSTEND)
104: INTEGER EMPTY
105: INTEGER LSTEND
106: C
107: IF (LSTEND .LE. 1) THEN
108: EMPTY ==1
109: ELSE
130: EMPTY =0
1i1: ENDIF
112: RETURN
113: END
114: C
115: C
116: FUNCTION LSTLEN (LSTEND)
117 INTEGER LSTLEN ‘
118; INTEGER LSTEND
119 C :

1200 LSTLEN == LSTEND - 1
121: RETURN
122: END
123: C
124: C _

125: . FUNCTION NEWLST (LSTEND)
126: INTEGER NEWLST
127: INTEGER LSTEND
128: C
129: NEWLST ==0
130: RETURN
131: END
132: C
'133: C

- 134: SUBROUTINE REVERS (POOL, LSTEN'D)
135: INTEGER POOL(7), LSTEND
136: C
137: INTEGER I, N
138: C
139: N = LSTEND

" 140: I=1
141: DOWHILE (I .LE. N)
142: POOL(I) = POOL(N)
143: : N=N-1
144; ' I=I+1
145: ENDDO
146: RETURN

147: END
Program 4

- 001: C NOTE THAT YCU DO NOT NEED TO VERIFY THE ROUT]NES

41

DRIVER, STREQ, WORDEQ,

002: C NXTSTR, ARRCPY, CHARPT, BEFORE, CHAREQ, AND WRDBEF.
THEIR SOURCE

003: C CODE IS DESCRIBED AND INCLUDED AT THE END FOR

o COMPLETENESS.

004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS
INCLUDE A LEADING

005: C AND REQUIRED * * FOR CARRIAGE CONTROL

006: C THE SFORT LANGUAGE CONSTRUCT *.IF (EXPRESSION)’ BEGINS

A BLOCKED
007: ¢ IF-THEN[-ELSE] STATEMENT, AND IT IS EQUIVALENT TO
THE F77
008: C ’IF {EXPRESSION) THEN'.
009: C
010: CALL DRIVER
011: STOP
012: END
013: C :
014: C
015: SUBROUTINE MATNSB
016: C

017: . LOGICAL#*1 USKEY(3),USAUTH(11),USTITL(58),USYEAR(2),USACTN(1)
018:: LOGICAL*1 MSKEY(3), MSAUTH(11),M$TITL(58),M$YEAR(2)

o19: LOGICAL#*1 ZZZ(3), LASTUK(3), LASTMK(3)

020: 'LOGICAL=*1 STREQ, CHAREQ, BEFORE, CHARPT

021: INTEGER I

022: C

023: LOGICAL*1 WORD(500,12), REFKEY(1000,3)

024: INTEGER NUMWDS, NUMREF, PTR(500), NEXT{1000}

025: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
026: C '
027: WRITE(8,290)

028: 200 FORMAT(’ *,’ UPDATED LIST OF MASTER ENTRIES’)

029: DO 3001 =1,3

030: LASTMK(I) = CHARPT(’ °)

031: LASTUK(I) = CHARPT{’ *)

032: ZZZ{I) = CHARPT{'Z")

033: 300 CONTINUE

034; C

035: - NUMWDS =0

036: ‘NUMREF = 0

037: CALL GETNMMSKEY MSAUTH,M$TITL M$YEAR LASTMK)

038: CALL GETNUP(USKEY,USAUTH,USTITL, USYEAR, USACTN,LASTUK).

039: C
040: DOWHILE ({.NOT.(STREQ(MS$KEY,ZZZ,3)}} .OR.
041: X (NOT.(STREQ(USKEY,ZZZ,3))))
©042: JF (STREQ(USKEY MSKEY,3))
043: JF (NOT.(CHAREQ(USACTN(L), R))
044: WRITE(6,100) USKEY
045: 100 FORMAT(’ ’,KEY ',3A1,’ IS ALREADY IN FILE")
046: ENDIF
047: : CALL OUTPUT(USKEY, USAUTH,U$TITL,USYEAR)
048: CALL DICTUP(USKEY,U$TITL,58)
049: CALL GETNM(M$KEY MSAUTH,M$TITL M$YEAR,LASTMK)

050: CALL GETNUP(USKEY,USAUTH,U$TITL, USYEAR, USACTN,LASTUK)

42

051:
052:
053:
054:
055:
056:
067:
058:
059:
060:
061:
062
063:
Q64:
065:
066:
067:
068:
069:
Q70:
071:
072:
073;
074:
075:
076:
077
0o78:
-079:
080:
081:
G82:
083:
084:
085:
086:
087:
- 088:
089:
080
091:
. 092:
093:
094:
095:
- 096:
097:
098:
099:
300:
101:
102:
103:
104:
105:

ENDIF

IF (BEFORE(MS$KEY,3,USKEY,3))

CALL OUTPUT(MSKEY M$AUTH MSTITL MSYEAR)

CALL DICTUP(M$KEY M$TITL,58)

CALL GETNM(M$KEY MSAUTHMSTITL M$YEAR, LASTMEK)
ENDIF :

IF (BEFORE(USKEY,3 MSKEY,3))
JF (CHAREQ{USACTN(1),’R")
WRITE(6,110) USKEY
110 FORMAT(’ ", 'UPDATE KEY ’,3A1," NOT FOUND"’)
ENDIF
CALL OUTPUT(U$KEY,USAUTH,USTITL, USYEAR)
CALL DICTUP(USKEY,U$TITL,58)

CALL GETNUP(USKEY,USAUTH,U$TITL, USYEAR, USACTN,LASTUK)

ENDIF
ENDDOQ

CALL SRTWDS
CALL PRTWDS
RETURN

END

Qan

SUBROUTINE GETNM(KEY,AUTH, TITL,YEAR,LASTMK)
LOGICAL*1 KEY(3),AUTH(11), TITL(58), YEAR(2), LASTME(3)

LOGICAL#*1 SEQ, INLINE(80)

LOGICAL#1 BEFORE, CHARPT, CHAREQ
LOGICAL#¥1 GOM, GOSU '
COMMON /DRIV/ GO$M, GOSU

SEQ =1
DOWHILE (SEQ)
IF (GO$M) -
C
C READ FROM THE MASTER FILE
C
READ(10,200,END=299) INLINE
ELSE

o

C
INLINE(1) = CHARPT('%")
ENDIF '
200 FORMAT(80A1)
DO216I=1,3
KEY{I) = INLINE(L)
210 CONTINUE
DO 220I=1, 11
AUTH(I) = INLINE(3+I)
220 CONTINUE
DO 2301 =1, 58
TITL(I) = INLINE{14+1)

43 .

C SEE REMARK ABOUT THE CHARACTER '%’ LATER IN THE ROUTINE.

106: 230 CONTINUE

107: DO2401I=1, 2

108: YEAR(D) = INLINE(72+1)
109: 240 CONTINUE

110: C

111: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT
THE CHARACTER *%’

112: € AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS
FOR MULTIPLE

113: C SETS OF INPUT CASES.

114: C
115: IR ((NOT.(CHAREQ(KEY(1),"%"))) .AND.
116: X (BEFORE(KEY,3LASTMK,3)))
117: WRITE(6,250) KEY
118: 250 FORMAT("KEY ’,3A1,” OUT OF SEQUENCE’)
119: ELSE . _
120: CALL ARRCPY(KEY,LASTMK,3)
121: SEQ =0
122: ENDIF .
123: IF (CHAREQ(KEY(1),'%5%))
Po124 SEQ =0 '
;125 DO 2701=1,3
. 126; KEY(I) == CHARPT('Z") -
127: 270 CONTINUE
128: ENDIF
120 ENDDO

130: RETURN
131: 299 CONTINUE

132: GO$M == 0
133: DOzsoI=1,3
134: KEY{I) = CHARPT('Z")
‘135: 260 CONTINUE
136: RETURN
127: END
138: C
139;: C
140: SUBROUTINE GETNUP(KEY,AUTH, TITL,YEAR,ACTN,LASTUK)
141: LOGICAL#1 KEY(3),AUTH(11), TTTL(58), YEAR(2),ACTN(1),LASTUK(3)
142: C

143: LOGICALx1 SEQ, INLINE(80) _
1441 LOGICALx1 BEFORE, CHARPT, CHAREQ

145: LOGICAL*1 GO$M, GOSU
146: COMMON /DRIV/ GO$M, GOSU
147: C
L 148: SEQ =1
I 14e: DOWHILE (SEQ)
150: IF (GOSU)
151: C
152: C READ FROM THE UPDATES FILE
153: C .
154: READ(11,200,END=—29%) INLINE
155: ELSE
156: C
157: C SEE REMARK ABOUT THE CHARACTER ‘%’ LATER IN THE ROUTINE..
158: C ' ' :

44

159:
160:
161
162:
163:
164
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:

177:

178:
179;
180:
181:
182:
183:
184:
1856:
186:
- 18T
- 188:
- 189
190:
191:
192:
193:
194;
196:
196:
197
198;
199:
200:
201:
202:
203:
204:
205;
206:
207:
208:;
209:
210:
211:

INLINE(1) = CHARPT("%")
ENDIF
200 FORMAT(80A1)
DO=216I=1,3
KEY(I) = INLINE(I)
210 CONTINUE
DO 2201 =1, 11
AUTH(I) = INLINE(3+I)
220 CONTINUE '
DO 23061 =1, 58 _
TITL(I) = INLINE(14+I)
230 CONTINUE
DO2401=1, 2

YEAR(I) = INLINE(72+1)
240 CONTINUE
ACTN(1) = INLINE(75)
C
C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT

THE CHARACTER "%’

C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS -

FOR MULTIPLE
C SETS OF INPUT CASES.
p .
JF ((NOT.(CHAREQ(KEY(1),"%"))) .AND. .
X (BEFORE(KEY,3,LASTUK,3))) :
WRITE(8,250) KEY
250 . FORMAT(" *KEY ’,3A1,’ OUT OF SEQUENCE’) -
ELSE : '
CALL ARRCPY(KEY,LASTUK,3)
SEQ =0
ENDIF
IF (CHAREQ(KEY(1),’%")
SEQ =0
DO 2701I=1, 3
KEY(I) = CHARPT('Z")
270 CONTINUE
ENDIF
ENDDO
RETURN
209 CONTINUE
GO$U =0
DC260I=1, 3
KEY(I) = CHARPT('Z")
260 CONTINUE ' '
RETURN
END
C
o]
SUBROUTINE OUTPUT(KEY,AUTH, TITL, YEAR)
LOGICAL=*1 KEY(3), AUTH(11), TITL(58), YEAR(2)
C
WRITE(6,200) KEY, AUTH, TITL, YEAR
200 FORMAT(® ",3A1,11A1,568A1,2A1)
RETURN . '
END

45

212:
213:
214:
215:
216:
217:
218:
219:
220:

221:
222:

223:
224:

225
226:
227:

228:
229:
230"
231:
232:
233:
234:
235:
236:
237:
233:
239:
240:
241:
242:
243:
244:
245
246:
247;
- 248:
249:
250:
251:
252:
253:
254
255:
256:
257:
258
259:
- 260:
261:
262:

aan

SUBROUTINE PRTWDS

C

LOGICAL*1 WORD({500,12), REFKEY(1000,2)

INTEGER NUMWDS, NUMREF, PTR{500), NEXT(1000)

COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
C
C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED

LIST.

C WORD(LJ) IS A KEYWORD — J RANGING FROM 1 TO 12

C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS
AS A

C KEYWORD WORD(L,J),J=1,12

C REFKEY(NEXT(PTR(}),K),K=1,3 IS THE SECOND 3 LETTER KEY
THAT HAS

C AS A KEYWORD WORD(I,J),J=1,12

C REFKEY(NEXT(NEXT(PTR(I))),K),K==1,3 IS THE THIRD ... ETC.

C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR o '

C THE PARTICULAR KEYWORD

C
INTEGER I, J
LOGICAL#*1 FLAG

c
WRITE(6,200)

200 FORMAT(’,’ KEYWORD REFERENCE LIST")
DO 210 I = 1, NUMWDS
FLAG == 1
WRITE(6,220) (WORD(I,J),J=1,12)
220 FORMAT(’,12A1)
LAST = PTR(I)
DOWHILE (FLAG)
WRITE(6,230) (REFKEY(LAST,J),J=1,3)
230 FORMAT(’,;” ",3A1)
' LAST = NEXT(LAST)
IF (LAST EQ. -1)
FLAG =0
ENDIF
ENDDO
210 CONTINUE
RETURN
END
c
c
SUBROUTINE DICTUP(KEY,STR,STRLEN)
LOGICAL#*1 KEY(3), STR(120)
INTEGER STRLEN

LOGICAL*1 WDLEFT, FLAG, OKLEN, NEXTWD(120), WORDEQ
INTEGER LPTR, NXTSTR, LEN, LAB, I, K

LOGICAL*1 WORD(500,12), REFKEY(1000,3)

INTEGER NUMWDS, NUMREF, PTR(500}, NEXT{1000)
COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT

48

263:
264:

265;
266:

267:
268:

269:

270:
271

272:
273:
274:
275:
276:
- 277
278:
279:
280:
281:
a82:
283:
284;
285:
286:
287:
288:
- 289:
2900:
201:
292:
293:
294;
- 205;
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
- 307:
308:
-209:
310
311:
312:
313:

C
C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A
LINKED LIST.
C WORD(LJ) IS A KEYWORD - J RANGING FROM 1 TO 12
C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS
AS A
C KEYWORD WORD(LJ),J=1,12 .
C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER KEY
THAT HAS
C AS A KEYWORD WORD(I,J),J—1,12
C REFKEY(NEXT(NEXT(PTR(1)),K),K=1,3 IS THE THIRD ... ETC.
C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR
C THE PARTICULAR KEYWORD
c
WDLEFT = 1
LPTR =1

DOWHILE (WDLEFT)
FLAG =1
OKLEN = 1
LEN = NXTSTR(STR, STRLEN,LPTR NEXTWD 120)
IF (LEN .EQ.0)
WDLEFT =0
ENDIF

IF (LEN .LE. 2)
OKLEN == 0
ENDIF

IF (OKLEN)
I=1
DOWHILE ((I .LE. NUMWDS).AND. FLAG)
IF (WORDEQ(NEXTWD,I))
LAB =1
FLAG == 0
ENDIF
I=1+1
ENDDO
IF (FLAG)
NUMWDS = NUMWDS -+ 1
NUMREF = NUMREF + 1
DO 300 K = 1, 12
WORD(NUMWDS,K) = NEXTWD(K)
300 CONTINUE
- PTR(NUMWDS) = NUMREF
DO310K =1, 3 , _
| REFKEY(NUMREF,K) = KEY(K)
310 CONTINUE
NEXT(NUMREF) = -1
ELSE
NUMREF == NUMREF + 1
DO 320K =1, 3
. REFKEY(NU.MREF K) = KEY(K)
320 CONTINUE

47

314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:

331:
332:

333
334

335:
336:
337:

33s:
' 339:
- 340:
341:
342
343
344
345:
346
347:
348:
349:
350:
351:
352:
353:
3564:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:

NEXT(NUMREF) = PTR(LAB)
PTR(LAB) = NUMREF
ENDIF
ENDIF
ENDDO
C .
RETURN
END
c
c
SUBROUTINE SRTWDS
o)
LOGICAL#*1 WORD(500,12), REFKEY(1000,3)
INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
c
C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A.

LINKED LIST. _
C WORD(LJ) IS A KEYWORD — J RANGING FROM 1 TO 12
C REFKEY(PTR(I},K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS
AS A
C KEYWORD WORD(LJ),J=1,12 .
C REFKEY(NEXT(PTR()),K),K==1,3 IS THE SECOND 3 LETTER KEY
THAT HAS -
C AS A KEYWORD WORD(L,J),J=1,12
C REFKEY(NEXT(NEXT(PTR())),X) K=1,3 IS THE THIRD ... ETC.
C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER
KEYS FOR '
C THE PARTICULAR KEYWORD
c
INTEGER 1. J, K, LAB, LOWERB, UPPERB
LOGICAL*1 WRDBEF, NEXTWD(12)

UPPERB = NUMWDS - 1
DO 400 I = 1, UPPERB
LOWERB =1+ 1
DO 410 J = LOWERB, NUMWDS
IF (WRDBEF(J,I))
DO 800 K =1, 12
NEXTWD(K) = WORD(LK)
300 CONTINUE
LAB = PTR(I)
DO3IOK =1, 12
WORD(LK) = WORD(J,K)
310 CONTINUE
PTR(I) = PTR(J)
DO32OK =1, 12
WORD(JK) = NEXTWD(K)
320 CONTINUE
PTR({J} == LAB
ENDIF
410 CONTINUE
400 CONTINUE
c
RETURN

48

365:

END

49

8. References

[Basili & Turner 76}
V. R. Basill and A. J. Turner, SIMPL-T: A Structured Progremming

Language, Paladin House Publishers, Geneva, IL, 1976.

[Basill & Perricone 84]
V. R. Basllt and B. T. Perrlcone, Software Errors and Complexity: An Em-
pirlcal Investigatlon, Communications of the ACM 27, 1, pp. 42-52, Jan.
1984,

[Baslll. & Selby 84]
V. R. Basill and R. W. Selby, Jr., Data Collection and Analysis in Software
Research and Management, Proceedings of the American Statistical Associa-
tion and Biometric Society Joint Statistical Meetings, Phlladelphla, PA, Au-
gust 13-16, 1984, '

[Baslll & Welss 84]
V. R. Bastll and D. M. Welss, A Methodology for Collectlng Valld Software
Englneerlng Datax, Trans. Software Engr. SE-10, 6, pp. 728-738, Nov. 1984.

[Box, Hunter, & Hunter 78]
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Stalistics for Ezperimenters,
John Wiley & Sons, New York, 1978.

[Callllau & Rubin 79}
R. Callilau and F. Rubln, ACM Forum: On a Controlled Experiment in Pro-
gram Testing, Communications of the ACM 22, pp. 887-8, Dec. 1979.

[Church 84]
V. Church, Benchmark Statistles for the VAX 11/780 and the IBM 4341,
Computer Sclences Corporatlon, Sliver Spring, MD, Internal Memo, 1984.

[Cochran & Cox 50]
W. G. Cochran and G. M. Cox, E'xperzmental Designs, John Willey & Sons,
New York, 1950.

[Fagan 78] :
M. E. Fagan, Deslgn and Code Inspections to Reduce Errors in Program De-
velopment, IBM Sys. J. 15, 3, pp. 182-211, 19786.

[FFoster 80]

K. A. Foster, Error Sensitlve Test Cases, IEEE Trans. Software Engr. SE-6,
3, PD. 258-264, 1980,

50

[Gloss-Soler 79]
8. A. Gloss-Soler, The DACS Glossary: A Bibllography of Software Englineer-
Ing Terms, Data & Analysls Center for Software, Griffiss Air Force Base, NY
13441, Rep. GLOS-1, Oct. 1979,

[Goodenough & Gerhart 75]
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data Selec-
tlon, IEEE Trans. Software Engr., pp. 156-173, June 1975.

[Hetzel 78] : _
W. C. Hetzel, An Expermental Analysls of Program Verlficatlon Methods,
Ph.D. Thesis, Unlv. of North Carollna, Chapel Hill, 1678.

[Howden 78]
: W. E. Howden, Algebrale Program Testing, Acta Informatica 10, 1978.

[Howden 80}
' W. H. Howden, Functlonal Program Testing, IEEE Trans. Software Engr.
SE—B, pD- 162—169 Mar. 1980.

{I—Iowden 81]
W. E. Howden, A Survey of Dynamic Analysis Methods, PP. 209-231 In Tu-
torial: Software Testing & Validation Technigues, 2nd Ed., ed. BE. Miller and
W. E. Howden, 1981.

[Hwang 81]
8-8. V. Hwang, An Empirical Study In Functlonal Testing, Structural Test-
ing, and Code Readling/Inspection*, Dept. Com. Sci., Unlv. of Maryland,
College Park, Scholarly Paper 362, Dec. 1981.

[IEEE 83] _ :
IEEE, IEEE Standard Glossary of Software Engineering Terminology, Rep.
IEEE-STD-729-1983, IEEE, 342 E. 47th St, New York, 1983.

[Jensen & Wirth 74]
' K. Jensen and N. Wirth, PASCAL User Manual and Report 2nd Ed.,
Springer-Verlag, New York, 1974.

[Johnson, Draper & Soloway 83]

' - W. L. Johnson, 8. Draper, and E. Soloway, An Effective Bug Classification
Scheme Must Take the Programmer lnto Account, Proc Workshop- High-
Level Debugging, Palo Alto, CA, 1983. :

51

[Linger, Ml

s & Witt 79]
R. C. Linger, H. D. Mllls, and B. I. Witt, Structured Programming: Theory
and Practice, Addison-Wesley, Reading, MA, 1979.

[McMullln & Gannon 80]

[Mills 72]

[Mills 75)

[Myers 78]

[Myers 79]

" [Naur 89]

[Ostrand &

[Selby 83]

[Selby 84]

P. R. McMullin and J. D. (Gannon, Evaluating a Data Abstractlon Testing
System Based on Formal Specifications, Dept. Com. Scl., Univ. of Maryland,
College Park, Tech. Rep. TR-993, Dec. 1980.

H. D. Millls, Mathematical Foundations for Structural Programming, IBM
Report FSL 72-6021, 1872.

H. D. Mllls, How to Wrlte Correct Programs and Know It, Int. Conf. on Re-
liable Software, Los Angeles, pp. 363-370, 1875,

G. J. Myers, A Controlled Experiment in Program Testlng and Code
Walkthroughs/Inspectlons, Communications of the ACM, pp. 760-788, Sept.
1978, : .

G. J. Myers, The Art of Software Testing, John Wlley & Sons, New York,
1979.

P. Naur, Programmling by Action Clusters, BIT 9, 3, pp. 250-258, 1969.

Weyuker 83]

T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Er-
ror Data In an Industrial Environment, Dept. Com. Sel., Courant Inst. Math,
Scl., New York Unlv., NY, Tech. Rep. 47, August 1882 (Revised May 1983).

R. W. Selby, Jr., An Empirical Study Comparing Software Testing Tech-
niques, Sixth Minnowbrook Workshop on Software Performance Fuvaluation,
Blue Mountaln Lake, NY, July 19-22, 1983,

R. W. Selby, Jr., Evaluating Software Testing Strategles, Proc. of the Ninth
Annual Software Engincering Workshop, NASA./GSFC, Greenbelt, MD, Nov.

. 1984.

52

[Selby, Baslll & Baker 85]
R. W. Selby, Jr., V. R. Baslll, and F. T. Baker, CLEANROOM Software De-
velopment: An Empirical Evaluation, Dept. Com. Sel., Unlv. Maryland, Col-
lege Park, Tech. Rep. TR-1415, February 1985. (submitted to the IEEE
Trans. Software Engr.)

[Stuckl 77}
L. G. Stuckl, New Directlons In Automated Tools for Improving Software
Quallty, In Current Trends in Programming Methodology, ed. R. T. Yeh,
Prentlice Hall, Englewood Cliffs, NJ, 1977.

[Valdes & Goel 83]
- P. M. Valdes and A. L. Goel, An Error-Specific Approach to Testing, Proc.
FEight Ann, Softwa're Engr, Workshop, NASA/GSFC, Greenbelt, MD, Nov.
1983.

 {Welss & Baslll 85]

. . D. M. Welss and V. R. Basill, Evaluating Software Development by Analysils
of Changes: Some Data from the Software Englneerlng Laboratory, IEE'E
Trans Software Engr SE-11, 2, pD. 157-168, February 1985.

53

Flgure 1. Capabllitles of the testing mevhods.
code readlng functional structural
testing testing
view program .
specliication - X - X X
view source
code X X
execute:
program ' X X

Flgure 2. Structure of goals/subgoals/questions for testing experiment.

I. Fault detectlon effectiveness

A. For programmers doing unlt testing, which of the testing techniques
(code reading, functional testing, or structural testing) detects the
most faults 1n programs?

1. Which of the technlques detects the greatest percentage of faults In
the programs (the programs each contaln a different number of
faults)?

2. Which of the technlques exposes the greatest number (or percentage)
of program faults (fauits that are observable but not necessarily
reported)?

B. Is the number of faults observed dependent on software type?

C. Is the number of faults observed dependent on the expertlse level of the
person testing?

II. Fault detectlion cost
A. For programmers dolng unlt testing, which of the testlng technlques

" (code reading, functional testing, or structural testing) detects the
faults at the highest rate (#faults/effort)?

B. Is the fault detectlon rate dependent on software type?

C. Is the fault detection rate dependent on the expertise level of the person
testing?

1. Classes of faults observed

A, For programmers doing unit testing, do the methods tend to capture
different classes of faults? : :

B. What classes of faults are observable but go unreported?

Flgure 3. Expertise levels of subjlects. o

| Phase -
Level of 1 2 | 3 total
Expertise (Univ. Md) (Unlv. Md) (INASA/CSC)
Advanced 0 : 0 : 8 8
Intermediate 9 4 ' 11 24
Junior 20 g9 13 42
total _ 29 13 32 74

| Figure 4. The programs tested. '

source | executable | cyclomatle #routlnes | Ffaults
program lines statments complexity
P, — text 169 55 18 3 9
formatter
P, — mathematical 145 95 32 8 6
" plotting :
P ¢ — numerle data 147 48 18 9 7
abstraction .
P4 — database 365 - 144 57 7 12
malintalner :

Flgure 5. Programs tested In each phase of the analysis.
Program Phase ‘

_ 1 2 3
(Unlv. Md) | (Unlv. Md) | (NASA/CSC)

P, — text formatter X X X

P , — mathematlcal plotting X X

P ¢ — numerle data abstractlon X X

P, — database malntalner X X

Omlsslon’ Commisslon | Total |

Initlalization 0 2 . 2

Computation 4 I I 8

Control 2 5 7

Interface 2 11 13

Data 2 1 3

Cosmetle 0 1 ' 1

Total - 10 _ 24 34
" Flgure 7. Fault classification and manifestation. . e
FaultProgram Omlsslon/ Class Descrlptlan o

_ Commlssion

a Pi omission control- a blank is printed before the first word

on the first llne unless the first word is
30 characters long; In the latter case, a
“blank lne 1s printed bhefore the first

word

b P1 commission Inltlalizatlonthe character & (not $) is the new-llne
character ' _

c P1 commission Inltiallzationthe Ilne slze 1s 31 characters (not 30);

thils fault causes the references to the
number 30 In the other faults to be ac-
tually the number 31

d P1 commlission Interface slnce the program pads an empty input
buffer with the character "z,” 1t lgnores

a valid input llne that has a "z" as a
first character

e P1 omlssion control successive break characters are not con—‘
densed in the output

P1i

commlssion

cosmetlc

spelling mlstake In the error message
"*#x word to long ETT

P1

commlssion computatlonafter detecting a word In the Ilnput

longer than 30 characters, the message
"xx*x Wword to long #*x" Is printed once

for every character over 30, and the pro-

cessing of the text does not terminate

P1

omission.

Anterface

after deteecting a word in the Input
longer than 30 characters, the program
prints whatever 1s residing in Its output
buffer

P1

commission

control

after detecting an lnput llne without an
end-of-text character, the program er-
roneously Increments Iits buffer polnter
and replaces the first character of the
next Input line with a " z"

- P3

commission

Interface

routine FIRST returns zero (0) when the
l1st has one element

P3

commlission

interface

routlne ISEMPTY returns true (1) when
the llst has one element

P3

commission

- Interface

routine DELETEFIRST can not delete
the first list element when the list has
only one element

- P3

commisslon

interface

routine LISTLENGTH returns one less
than than the actual length of the list

P3

commisslon

Interface

routlne ADDFIRST can add more than
the speclfled flve elements to the st

P3

commlisslon

Interface

routine ADDLAST can add more than
the specifled flve elements to the list

P3

oml_sslon computationroutine REVERSE does not reverse the

list properly when the list has more than
one element

P“—.l_

_commisslon computationwords greater than or equal to three

characters (not strictly greater than) are
treated as cross reference keywords

P4

commlission

interface.

since the program uses the key "ZZ7Z” as
an end-of-lnput sentinel, 1t does not pro-
cess a valld record wlth key "ZZZ” and
ignores any following records

P4

commlission

control

update actlon add with the error condi-
tion "key already 1n the master file” re-
places the existing record; the update

record 1s not 1gnored

P4

commlission control . wpdate actlon replace with the error con-
dition "key not found in the master flle”
adds the record; the update record Is not
lgnored

P4

omlission data the number of references and number of
words In the dictlonary are not checked
for overflow

P4

omission computatlontwo or more update transactions for the
same master record glve incorrect results

P4

commlsslon Interface keywords longer than 12 characters are
truncated and not distingulshed

P4

commlission. - control an update record with column 80 nelther
an add action "A" nor replace actlon
"R” acts llke an add transaction

P4

commission Interface keyword lndices appear In reverse alpha-
betical order

P4

omission Interface no check is made for unigue kKeys in the
master flle

P4

commission Interface punctuation 1s made a part of the key-
word

P4

omlsslon data words appearing twlce In a title get two
eross reference entriles

P2

commission computatlonthe X and v axes are mislabeled

P2

omlisslon computationpolnts with negatlve y-values are not
processed and do not appear on the
graph

P2

commlsslon control the orlgln (0,0) appears on the graph re-
' gardless of whether 1t Is an input point

P2

" commilssion data no polints can appear on the vertical axis

P2

commission computationthe wvertlcal and horizontal scaling for

the pixels are ecalculated I1ncorrectly,
causing some polnts not to appear in the
proper plxel

P2

omlssion computationwhen more than one polnt would appear
In a glven pixel, only an asterlsk (%) ap-
pears, not an appropriate Integer

Figure 8. Fractional Factorial Deslgn.

Code- Functional Structural
Reading Testing Testlng___
P1P3P4 P1P3P4 P1P3P4
Advanced S, —X— X— —X
‘Subjects -,
Sg X—— —X — X
Sy — XKoo — —X
Inter- S 10 — —X— X—
medlate - .
Sublects e . e _
: S X— — —X—
_ S ap —X - X—— —X
.| Junlor ' Ser | X— —X —_
. | SubJects - . . |
S g2 —X — X—

Flgure 9. Overall summary of detection effectlveness data.
Note: some data pertaln to only on-line technlques (x), and

some data were collected only In certaln phases.

SD Min.

Phase | #Subl. | Measure Mean Max.
1 29 # Faults detected 3.94 1.82 0.00 7.00
1 29 % Faults detected 54.78 | 26.11 0.00 | 100.00
1 29(%) # Faults observable 5.38 1.51 3.00 8.00
1 29(*) % Faults observable 74.59 | 20.54 | 33.33 | 100.00
1 29(x) | % Detected/observable | 70.99 | 24.01 | 0.00 | 100.00
2 13 # Faults detected | 3.28 | 1.96 | 0.00 | 7.00
2 13. Zo Faults detected 39.53 | 27.25 0.00 | 100.00
3 | 32 4 Faults detected 427 | 1.86 | 0.00 | 8.00
3 32 % Faults detected 49.82 | 27.44 0.00 | 100.00
3 32 % Faults felt found 75.10 | 24.07 0.00 | 100.00 |
3_ 32(*) # Faults observable - 5.61 1.52 3.00 9.00
3 32(%) % Faults observable 82.11 | 18.36 | 25.00 | 100.00
3 32(x) | % Detected/observable | 69.67 | 27.14 | 0.00 | 100.00
.3 32!*! Max. 95 stmt. covered 97.02 .7.'83' 46,00 100.00
Ave 74 | # Faults detected 3.97 1.88 | 0.00 8.00
Ave 74 9% Faults detected 49.96 27.29 0.00 100.00
Ave 81(*) # Faults observable 5.5 1.5 3.00 9.00
Ave B1(*) % Faults observable 88.0 20.3 25.0 100.0
Ave 81(x) | % Detected/observable | 70.3 | 25.8 0.0 | 100.0

Key: code

Figure 10, Distribution of the number of faults detected broken down by phase.

readers (C)}, functional testers (F), and structural testers (S).

Phase 3:

" Phase 1:

wnwwm

O
NN EEEDODODDODODD

N NEREEREREEODDODDOO

96 observations

NOEEERODOD

S

Nk EEREREREDODDUD
S.S mNnNnnunnkkx C.C ISR
mnunwmn®nnLO

| w w S.S By

wn L

W REODUOVDOU

87 observations

NN EREERDD

NNEERERDOD

mww S.S EBEERRMERDD C.
SSSSSFFFFFFCCGCCCOCCC
nwmwnmnm S_S B R F.C VO

| w®n 0O

n

1
i

..A

4

+

Phase 2:

[+
[=]
2
- N
o
=
[)
QD o
W
2
o O 1
o
WD -
N fu e O A
0o OO O A

B B O A
nmwnnERQ

nLLVLU

0RO

| Flgure 11. Overall SUmmary for number of faults detected.

Phase
1 2 3
Effect Level Mean(SD Mean(SD) | Mean(SD)
Technlque Reading 4.10 {1.93) | 3.00 (2.20) | 5.09 (1.92)
Functlonal | 4.45 (1.70) | 3.77 (1.83) | 4.47 (1.34)

Structural 3.28 51.572 3.08 5-1.89! 3.25!1.80!

Program Formatter 4.07 (1.82) | 3.23 (2.20) | 4.19 (1.73)

Plotter 3.48 (1.45) | 3.31 (1.97) . ()
Data type | 4.28 (2.25) . {.) 5.22 (1.75)
| Database - () 3.31 (1.84) | 3.41 (1.66)
Expertise Junior 3.88 (1.89) | 3.04 (2.07) | 3.90 (1.83)
Intermed. | 4.07 (1.89) | 3.83 (1.84) | 4.18 (1.99)
Advanced . () . (4) 5.00 (1.53)

Flgure 12. Overall summary of fault detectlon cost data. Note:
some data pertaln to only on-line techniques (%), and some
__data were collected only in certaln phases. .
‘Phase | #Sub). | Measure Mean SD | Min. | Max.
1 29 # Faults / hour 1.83 1.28 | 0.00 7.00
1 29 Detectlon time (hrs) 3.33 | 209 | 075 10.00
2 13 # Faults / hour 0.99 0.81 | 0.00 3.00
2 13 Detectlon time (hrs) 470 | 3.02 | 1.00 14.00
3 32 4 Faults / hour 2.33 | 2.28 | 0.00 | 14.00
3 32 Detectlon time (hrs) 2,75 | 1.57 | 0.50 7.25
3 32(x) Cpu-time (sec) 45.2 56.1 3.0 283.0
3 32(x) Cpu-time (see; norm.) | 38.5 51.7 2.9 314.4
3 | 32(x) | Conneet time (min) '85.83 | 50.21 | 3.50 | 214.00
3 32(x rogram runs 5.45 5.00. | 1.00 24.00
Ave 74 # Faults / hour 1.82 | 1.80 0.00 14.00
Ave 74 Detectlon tlme (hrs) 3.32 2.19 | 0.50 14.00

Figure 13. Distribution of the fault detection rate (#faults detected per hour) broken down

by phase. Key: code readers (C), functional testers (F), and structural testers (S).

S
s
5 Phase 1: "Phase 3:
88 ' 87 observations : . 96 observations
sSs S :
SS s
Ss 88 -
S5 8Ss
85 SF
FS8S8 SF
F¥'s SFS
FFS SFS
FFSS FFS 8§
FFSS FFS S
FEFS SFFF S
CFFF SFCF F
CFFF SFCFF S
CCFF S SSFCFSF S
FCCCF P SFCCOCSFS S
COCCCF F § FFECCCFFEF S
CCOOCCFSSE SCFRCCCFCC S C
SCOCCCCFFCC CCC ¢ COOCCCFCCOCF CFC € € CC C
. R - L — 1 I I ') { + Jl
0 10 15 0 5 10 15
S - Phase 2:
P " 39 observations
F .
SF
SF S
FF S
CC s
CC s
SOCSFF
| Fccscrs s
OCCSCFF P
et -+ + +
0 10 15

