Technical Report TR-1764 June 1987
TAME-TR-1-1087

TAME:
INTEGRATING MEASUREMENT
INTO SOFTWARE ENVIRONMENTS

Victor R. Basili and H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park MD 20742
(301) 454-2002 or -8974

* Research for this study was supported in part by NASA grant NSG-5123 and ONR grant N00O14-85-K-0633 to the
University of Maryland. Computer time was provided in part through the facilities of the Computer Science Center of
the University of Maryland.

e
a3

TAME:
INTEGRATING MEASUREMENT INTO SW ENVIRONMENTS

Victor R. Basili and H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park MD 20742
(301) 454-2002 or —8974

Abstract

Based upon a dozen years of analyzing software engineering processes and products, we pro-
pose a set of software engineering process and measurement principles. These principles lead to
the view that an Integrated Software Engineering Environment (ISEE) should support multiple
process models across the full software life cycle, the technical and management aspects of soft-
ware engineering, and the planning, construction, and feedback and learning activities. These
activities need to be tailored to the specific project under development and they must be tract-
able for management control. The tailorability and tractability attributes require the support of
2 measurement process. The measurement process needs to be top-down, based upon operation-
ally defined goals.

The TAME project uses the goal/question/metric paradigm to support this type of meas-
urement paradigm. It provides for the establishment of project specific goals and corporate goals
for planning, provides for the tracing of these goals throughout the software life cycle via feed-
back and post mortem analysis, and offers a mechanism for long range improvement of all
aspects of software development.

The TAME system automates as much of this process as possible, by supporting goal
development into measurement via models and templates, providing evaluation and analysis of
the development and maintenance processes, and creating and using databases of historical data
and knowledge bases that incorporate experience from prior projects.

® Research for this study was supported in part by NASA grant NSG-5123 and ONR grant N00014-85-K-0633 to the University of

:""zl"d' Computer time was provided in part through the facilities of the Computer Science (antac o o . oo o VErsity o
an

TABLE OF CONTENTS:

1 IDErOQUCEION aeueeeereiuenisenaenensnensncaeessessesossasssnsssssasassssnsssssessbns 2
2 Software Process Principles .. 3
3 Software Measurement Principlesc.oeceueeeeveeeveseenesesssesnsnns 6
4 Software]‘Engineeri’ng Process ...cccvieceersneerreessneeseressassessesesseenns 10
5 Integrated Software Engineering Environmentsou.e...... 13

6 The TAME System: A Software Measurement Environment

... 18
6.1 ReQUITEMENtS ...couivvrurreererenrereriennsesssassnesessensssesesseseseessnnnnnn. 18
6.2 Architectural Designccciceveeeireeeseereeeseesresneeseessinsessnennnn 22
6.3 First TAME PrototyPeccceeeeeeveeeeeieseeseesesseessessssessessssnnns 24
7 Summary and Conclusionseeeeeeereverecncesnsmesesessesssssssenns 25
8 ACKNOWIEAZEMENLS ..cecrverrurerrrnrrseseenscsseensessessasssessosssssssessensenns 27

9 Referencescceuererennn. eeresessntisessintesaessnanssneserssesanesnsesannes 28

1. Introduction

The software engineering process needs to be tailorable and tractable. The tailorabil-
ity of a process is the characteristic that allows it to be altered or adapted to suit a set of spe-
cial needs or purposes [55]. The software process requires tailorability because the overall process
model, methods and tools need to be altered or adapted for the specific project environment and
the overall organization. The tractability of a process is the characteristic that allows it to be
easily planned, taught, managed, executed, or controlled [55]. The software process requires

tractability because it needs to be planned, the various planned steps in the process need to be
communicated to the entire project personnel, and the process needs to be managed, executed,

and controlled according to these plans.

The goal of a software engineering environment (SEE) should be to support a tailor-
able and tractable software engineering process by automating as much of it as possible.
Currently, SEEs are often designed based upon the experience of the building organization and
the state-of-the—art knowledge of what can be automated. The concentration is mostly on con-
structive tools, i.e. tools that help in the building of a software product, rather than analytic
tools, i.e. tools that help in the planning, understanding, learning and feedback process.

At the University of Maryland, we have been working on providing such planning, under-
standing, learning and feedback support for SEEs. The TAME (Tailoring A Measurement
Environment) project is based on the idea that the software engineering process needs to be
tailored and tracked for the project specific quality and productivity goals, the characteristics of
the project environment, and the overall organization. Therefore, management and engineering
need a mechanism to help them define their goals operationally, tailor them to the project needs,
and evaluate their success and failure in achieving these goals. The mechanism we use to achieve
this goal is measurement. The measurement process must be top-down, i:e. driven by opera-

_tionally defined goals, permit a bottom-up interpretation within the appropriate context, and
provide feedback for improving the processes and the products from the perspective of the
specific project and the overall organization. ,

It seems appropriate to define some of the important terms used in this paper in 2
intuitive form. The term engineering comprises both development and maintenance. A software
engineeringproject is embedded in some project environment (for example, personnel, type of
~ application) and within some organization (e.g. NASA, IBM). The software project is conducted
according to a software engineering process which is defined in terms of an overall process model
(e.g. waterfall model [28, 51], iterative enhancement model [24], spiral model [30]) and supple-
menting fechnigues (methods, tools). We distinguish between constructive and analytic methods
and tools. Whereas constructive methods and tools are concerned with building products, ana-
lytic methods and tools are concerned with analyzing the constructive process and the resulting
products. The project personnel is categorized as either engineers (e.g., designers, coders, tes-
ters) or managers. ’ :

In the first part of this paper we list empirically derived principles about the software
engineering process in general (section 2) and the measurement process in particular (section 3),
and derive an abstract software engineering model based upon these principles (section 4). In the
second part of this paper we describe characteristics of SEEs to properly support this particular
software engineering model (section 5) and introduce the TAME system, an automated measure-
ment and evaluation environment, designed to support the suggested approach to measurement
in an SEE {section 6). Finally we describe the first TAME prototype, which is the first of &
series of prototypes being built using an iterative enhancement model (section 7).

2. Software Process Principles

Based upon our experience in monitoring and evaluating the software engineering processes
and products in a variety of organizations over the past dozen years [4, 42], we have learned
several Jessons about the software engineering process that are phrased as principles for the
TAME project:

The first five principles deal with the tractability of software engineering processes
and products, i.e. how should we plan for quality software engineering, how should
we evaluate the actual quality of performed processes and created products, and
how can we learn from this evaluation process.

(P1) It is necessary to develop quality a priori. Quality cannot be tested into the
system or even inspected into the system. We must improve the construction pro-
cess and not rely on analysis techniques (e.g. quality assurance techniques) as a
substitute for construction techniques.

We need to spend more time developing better methods for constructing (e.g. specifying,
designing, coding) software. Even though some of the formalisms developed are still not easy
to use on the construction of large systems, several notable successes have begun to emerge,
even when the formalisms are partially or informally applied [27, 36).

Too often, methods that were meant for quality analysis, e.g. testing have become methods for
construction. This means that we debug code or design rather than use the test process as a
quality assurance method. Process models like the one underlying the Cleanroom approach [36]
are based upon the idea that testing can be used only as a quality assurance technique with a
great deal of improvement in the quality of the system. We have run replicated experiments
with this approach and found that it truly adds to the quality of the product [53].

(P2) In order to develop quality a priori, we need to formalize the planning of the
software engineering process.

Our frequent inability to develop quality a priori is due to a lack of planning the constructive
processes as well as analytic processes. Without such plans the trial and error approach can
hardly be avoided. Proper planning of software engineering processes requires knowledge con-
cerning the impact of techniques, given the characteristics of a particular project. We need to
provide better formalism for planning as well as more knowledge concerning the effectiveness
of techniques. The goal/question/metric paradigm [3, 19, 20, 25] is an attempt towards for-
malizing the planning of analytic processes.

(P3) Engineering methods are often heuristic and not formal. They require
interpretation and evaluation as to whether they are being performed appropri-
ately, if at all.

Our experience in trying to characterize methods, so that they can be evaluated as to whether
they are being applied correctly, demonstrates the lack of precision in the specification of the
methods [12, 43]. In a study of the state of the practice in industry, we found that very few
organizations are using the methods and tools appropriately [57). This is largely due to the
heuristic nature of many of the methods, i.e. if one engineer *does it right" it is hard to
explain to another engineer exactly what he/she is doing. Other reasons for improper use of
methods and tocls are the lack of tra.mmg, or inappropriateness of the methods and tools for
the problem and experience of the engineer or programmer.

(P4) In order to improve software engineering in an organization, we need to for-
malize the evaluation and improvement of software engineering processes and pro-
ducts.

Based upon the poor performance in the use of methods and tools, there is a need to evaluate
not only the product but the processes used in software engineering. There needs to be a
mechanism for evaluating how well the process is being performed so that it can be improved.
An evaluation and improvement paradigm is presented in [3, 25]. In our study [57] we found
very few organizations running post mortem analyses that would allow them to learn how to
better construct software.

(P5) Software engineers and managers need feedback in real time and the organiza-
tion needs post mortem analysis in order to improve the process and product.

We found that many project managers keep track of some data during development and
maintenance but because this information is often manual and the data is inconsistent and
incomplete, it tends to be useless for real feedback and post mortem analysis [57].

The rest of these principles deal with the tailorability of the software engineering
processes and products. The first three principles stress the fact that all software
engineering environments are different, that there is a need for tailoring the specific
process model, methods and tools to the particular project environment, and that
this tailoring process needs to be formalized. The next principle emphasizes that this
need for tailoring does not exclude extensive reuse of experience. The final principle
deals with the requirements imposed by these kinds of tailored projects in terms of
management flexibility and automated support.

(P8) All project environments and products are different in some way. These differ-
ences must be taken into account in the software engineering processes and in the
quality goals set for the products. '

Almost every organization we looked at had a software engineering manual but the managers
of projects of that organization almost never used it. There explanation was that their project
did not match the “ideal* project description for which the guidebook was written [57).

(P7) There are many process models for software engineering. The process model
needs to be tailored to the organization and project needs and characteristics.

It was clear that each project needed to be able to tailor the process specified in the guide-
book, but here was no mechanism to help with this tailoring process. For example, for a pro-
ject in which the product is an application that the engineering group has built before, the
process and the various methods and tools may be quite different than for a project which
involves a new application for the organization [15].

(P8) We need to formalize the tailoring of processes towards the quality and produc-
tivity goals of the project and the characteristics of the project environment and
the organization.

Our only hope is to support the process by helping the engineers and managers establish goals
for projects, tailor the methods and tools for those goals, evaluate whether or not those goals
have been achieved, and learn from what they have done so the next project can be performed
better [19). '

(P9) This need for tailoring does not mean starting from scratch each time. We
need to reuse experience, but only after tailoring it to the project.

productivity drops significantly |1, 32]. Unfortunately, most of the reuse experience lies in the
people, rather than in the institution.

(P10) Because of this, management contro] is crucial and must be flexible. Manage-
ent must be supported in this process.

3. Software Measurement Principles

The need for tailorability and tractability as attributes of a software engineering process
designed to support these process principles is obvious. Tailorability is dependent upon our
understanding of the project goals, the characteristics of the project environment and the organi-
zation, and the effects of a set of candidate process models, methods and tools in similar project
environments for similar goals. For example, in order to tailor the design inspection process for a
particular project, we need to know the level of reliability required for the product, the distribu-
tion of errors likely to be made due to the experience of our developers, and the effects of dif-
ferent variations of the design inspection process on the critical error types. Tractability is
also dependent on our understanding of the project goals and the characteristics of the project
environment and the organization, but also on our ability to specify and perform those steps
that are important to the project goals. For example, in order to track the design inspection
process with respect to a desired level of reliability, we need to be able to specify, in an under-
standable way, each step in the design inspection process and its effect on the reliability of the
final product based upon such things as the experience of our developers and inspectors, and
evaluate its execution relative to that specification.

The ability to tailor and track the software engineering process requires a comprehensive
analytic approach to understanding. A top down measurement process, i.e. defining a
set of goals in an operational way that lead to metrics, supports such a comprehensive analytical
approach. For example, the proper evaluation of the effectiveness of the inspection process
Tequires measuring the expertise of inspectors on a relative scale, the number and types of
detected errors, and the relationship between faults found during inspection and reliability.

Again, based upon over a dozen years in measuring the software development process and
product in a variety of environments, we have recognized the following principles (including the
top-down orientation) for performing measurement: '

The first four principles deal with the purpose of the measurement process, i.e. why
should we measure, what should we measure, for whom should we measure.

(M1) Measurement is an ideal mechanism for characterizing, evaluating, predicting,
and motivating the various aspects of software engineering processes and pro-
ducts.

We need to characterize in order to distinguish the factors that differentiate the software
processes and products, and provide an historical database for future comparisons. We can-
not evaluate without comparing and we cannot compare unless we are sure we are comparing
similar things. Evaluation is especially important for tailoring (e.g. which tools work best in
what cases). Prediction and motivation are needed for planning.

(M2) Measurement must be taken on both the software processes and the various
software products. R :

There has been a fair amount of work on measuring the software product, even though most
of this work has focused on the final product and the code in particular [29, 38, 41 etc.]. Mon-
itoring the process and all types of products is important if we are to assess the quality of the
products delivered. But there has not been enough work done on measuring the other pro-
ducts of the software development, e.g. the requirements document, the design documents
[47], or the test plans and the relationship between these products. These products and their
relationship can be measured and the analysis can provide insight into the environment and

the project for evaluation and improvement [46).

However, it is very important that we assess the software processes used in developing these
products. This is important for planning , constructing, and learning if we believe there is a
relationship between the quality of the process and the quality of the product. We need to’
evaluate whether the process has been performed correctly in order to evaluate it. There is
evidence that this relationship exists and can be measured during development [5, 17, 53] as
well as during maintenance [48, 49). There is also evidence that these techniques are not being
performed correctly in many environment [57].

(M3) There are a variety of uses for measurement. The purpose of the measurement
should be clearly stated. We can use measurement to examine cost, effectiveness,
reliability, correctness, maintainability, efficiency, user friendliness, etc.

We have used measurement for many of these purposes [7, 9, 10, 11, 15, 16, 17, 19, 21, 23, 25,
80, 53]. However we have found that if the purposes for the measurement are not clearly arti-
culated, it is difficult to organize the appropriate data needed and interpret it appropriately
[57).

(M4) Measurement needs to be viewed from the appropriate perspective. The cor-
poration, the manager, the developer, the customer’s organization and the user,
all view the product and the process from a different perspective and thus may
want to know different things about the project and to different levels of detail.

Most measurement in industry is collected from the point of view of the individual project
manager [57]. Thus, for example, the corporation can’t make use of the data because there is
little commonality in the definitions and goals of different managers.

The rest of these principles deal with how the measurement process must be per-
formed. The first two discuss characteristics of metrics (i.e. what kinds of metrics,
how many are needed), while the rest deal with the characteristics of the measure-
ment process (i.e. what should the measurement process look like, how do we sup-
port planning, construction, and learning and feedback).

(M5) Subjective as well as objective metrics are required. We are not yet able to
objectively analyze all kinds of information but there is a great deal of knowledge
is needed and available that can be obtained by a careful characterization of sub-
Jective knowledge.

For example as stated earlier, if we are to evaluate the effectiveness of various processes, such
as design inspections, then we need to know how well the developers understood the technique
and the application/problem, and how well they applied the technique before the effectiveness
of the technique can be assessed. This type of measurement can only be performed by subjec-
tive measurement at present. Subjective evaluation can be categorized on a quantitative scale
to a reasonable degree of accuracy [5, 19]. We have applied such subjective characterization
schemes in several environments with satisfactory results (e.g. the Software Engineering
Laboratory [4, 42], IBM, AT&T, Burroughs [49]).

{M8) Metrics in isolation are useless. For both definition and interpretation pur-
poses, a set of metrics need to be defined that frame the purpose for the measure-
ment process. We call this set a metric vector. o

We have been able to show that a set of metrics can be used to provide insight into the
characteristics of the product and the process [24]. Different vectors may be associated with
the various levels of the product hierarchy, e.g. the full product, the various subsystems, the
modules, etc. In each case, metrics such as source lines of code, inter-data complexity, intra~
data complexity, etc can be associated with a particular part of the system. For example, a
metric like lines of source code only provides a very small insight into the size of a product.
We need other metrics like number of executable statements and number of lines of comments
to help understand the concept of size.

" (M7) The development and maintenance environments must be prepared for meas-
urement and evaluation. There is a Planning phase necessary for this activity and
the activity must be carefully embedded in the process. This planning phase must
take into account the experimental design appropriate for the situation.

It is pecessary to decide what we want to measure, how we are going to measure it and how
Wwe are going to interpret the results. Part of the planning process deals with choosing the
appropriate set of metrics, not too many or too few, evaluating the cost of collection and
analysis, and determining bow it will be used. Often data is collected but not used because it
it was not appropriately planned for [57]). Part of the problem is in laying out the experimen- ‘
tal scheme appropriate for the kinds of assessment required. We have identified four such
experimental layouts for varying degrees of cost vs. certitude in the experimental results [20].

{M8) We cannot just use other peoples models and metrics as defined. They must be
tailored for the environment in which they are applied and checked for validity in
that environment.

We have tried to apply a variety of existing models, for such things as resource allocation [31,
44, 45, 54] in different environments and found that they did not work as well as they did in
the environment for which they were developed, if at all [2, 6, 8, 14]. This is because there are
some many factors involved in software development and each environment is different. We
have tried to apply various metrics [38, 41, etc] in various environment and have found very
mixed results [9, 23].

{M9) In order to define a set of operational goals, specify the appropriate metrics,
permit valid contextual interpretation and evaluation, and provide feedback for
tailorability and tractability. The measurement process must be top-down rather
than bottom up. We use the goal/question/metric paradigm for this purpose.

The problem is that measurement must be associated with the specific environment and taken

for a specific set of purposes. The question of what to measure depends upon what it is you

want to know. Therefore it is important that the metrics represent answers to specific ques-

tions and goals set for the software development process and product. One reason why metrics

are collected but not used [57) is because the measurement process was not organized correctly

and the metrics were difficult to interpret because they were not defined based upon a set of

operational goals. To aid in this process, we developed the goal/question metric paradigm [25).

It supports the development of goals which can be refined into questions which motivate the -
metrics, as well as providing a context for interpretation and analysis of the metrics [3].

(M10) There is a subset of measures that provides the needed information for
definition and interpretation purposes. We call this a characteristic set of metrics
for the local environment.

We have been able to show that a limited set of metrics can be used to provide insight into

the characteristics of the product and the process [22]. This characteristic metric set can

define the minimum hecessary information for characterization, evaluation, prediction and
. motivation.

{M11) Data can be collected via forms, interviews, and automatically via analygers
of the various products. Data collected via forms and interviews requires valida-

We have used all of the mechanisms for data collection in the SEL [4, 42]. We have found
that there is a need to validate the data collected via forms, such as error and change data,
[25]. The validation Process requires a data analyst with an understanding of the data but
could be simplified by automated support.

the differences represented by new developments 15].

{M13) Metrics must be associated with interpretations, but these interpretations
rhust be given in context.

This database can be supplied with interpretations for various values of sets of metrics and
used to assess process and product characteristics. The database provides a standard value
range for various metrics. When these values deviate from the norm there is a sign that there
is something different about this project. The interpretations associated with the project can
provide insights to management as to what is different, i.e. whether the project is in better or
worse shape than the normal project. This technique was used in the SEL to provide NASA

cumstances), it is believed that since the'know!edge base can track more data and more pro-
Jjects than any Inanager, a system can be built that does better than most managers.

4. Software Engineering Process

The software process principles as well as the measurement principles (2iming at supporting
the process attributes tailorability and tractability) suggest that sound software engineering (at a

very abstract level) needs to be concerned with planning, construction, and learning &
feedback.

® Planning the software engineering process is aimed at providing a basis for developing quality
a priori {principle P1). It includes choosing the appropriate overall process model as well as the
specific methods and tools (principles P6 and P7). 1t involves tailoring each of them for the
Pproject specific goals and the characteristics of the project environment and the organization.
The constructive and the analytic process models, methods and tools need to be planned. The
effectiveness of this planning process depends on the precision in the specification of engineer-
ing processes and methods (formal is better than heuristic: principle P3) and the experience
concerning their effect (only to be reused after tailoring: principle P9). This kind of experience
can be gained via measurement and made accessible through historical databases (principle
M12) or even expert systems (principle M14). The entire planning process (principle P2), the
tailoring process (principle P8), as well as the measurement process need to be formalized.
The formalization of measurement needs to include deriving the appropriate metrics (principle
M10) for defined evaluation goals (principle M9), experimental design (principle M7) and data
collection and validation (principle M11).

The goal/question/metric paradigm was developed as a mechanism for formalizing this
kind of measurement [3, 19, 20, 25]. It represents a systematic approach for determining the
goal of measurement (tailored to the specific needs of an organization), defining that goal in a
tractable way into a set of quantitative questions that in turn define a specific set of metrics
and data for collection. Furthermore, the tractability of this process allows the interpretation
of the collected data and computed metrics in the appropriate context of questions and the ori-
ginal goal.

The process of defining goals and refining them into quantifiable questions is complex and
requires experience. In order to support this process, a set of templates for defining goals as
well as deriving questions was developed. These templates reflect our experience from having
applied the goal/question/metric paradigm in a variety of environments (NASA, IBM, ATE&T,
Burroughs). Different templates exist for defining (1) measurement goals, (2) process related
questions and (3) product related questions. Goals are defined in terms of purpose, perspective
and environment. Process related questions are formulated for identifying the quality of use,
the domain of use, the cost of use, the effect of use and the feedback from use of a particular
process. Product related questions are formulated for defining a product in terms of physical
attributes, cost, changes and context, and evaluating it. i

(1) Goal Definition Template (principles M1, M2, M3, and M4):

- Purpose:
To (characterize, evaluate, predict, motivate) the (process, product, model, metric) in
order to (understand, assess, manage, engineer, learn, improve) it. E.g. To evaluate the
system testing methodology in order to improve it.

-10 -

~ Perspective:
Examine the (cost, effectiveness, correctness, errors, changes, product metrics, reliability,
etc.) from the point of view of the (developer, manager, customer, corporate perspective,
etc) E.g. Examine the effectiveness from the developer’s point of view.

- Environment:

T
tors, methods, tools, constraints, etc. E.g. The product is an operating system that must
fit on a PC, etc. .

(2) Question Definition Templates:

= Process Questions:
For each process under study, there are severa] subgoals that need to be addressed. These
include the quality of use (a quantitative characterization of the process and an assess-
ment of how well it is performed), the domain of use (2 quantitative characterization of
the object to which the process is applied and an evaluation of the knowledge of the per-

formers of the Process concerning this object), cost of use (2 quantitative characterization
of the cost of performing each of the subactivities of the process) effect of use (2 quantita-

Other subgoals involve the interaction of this Process with the other processes and the
schedule (from the viewpoint of validation of the process model).

terms of physical attributes such as sjze or complexity, cost, changes and defects, and con-
text such as customer community or operational profile) and the evaluation and improve-
ment of the product with respect to a particular quality such as reliability or user satis-
faction. Because the evaluation and improvement of a product is relative to particular
quality aspects, its physical characteristics need to be analyzed relative to these quality

These templates acknowledge the need for generally more than one metric (principle MS), for
objective and subjective metrics (principle MS5), and for associating interpretations with
metrics (principle M13). The actual goal/question /metric models generated from these tem-
Plates will be different from project to Project and organization to organization. This reflects
their being tailored for the different needs jn different projects and organizations. It also ack-
nowledges the need for different interpretation contexts in different environments (principle

-11-

/4

e Construction of the required products follows the guidelines defined as part of the planning
activity in order to achieve quality a priori (principle P1); the existence of construction guide-
lines helps in assuring that methods are being used as intended (principle P3). It should be
noted that the construction activity includes constructing the traditional project documents
(e.g. requirements, design, code) as well as all other kinds of analytic information prescribed
by the planning process (e.g., test results, scheduling data, effort data). The construction of
analytic information is supported by data collection, data validation, and the computation of
metrics as prescribed during the planning phase (principle M11).

® Learning and feedback is based upon a paradigm for evaluation and improvement (princi-
ple P4). The learning requires monitoring (measuring) the engineering and management
processes as well as products (data), comparing the actual results (data) with the desired
results, interpreting the results according to the context (principle M9) defined as part of the
planning activity, and feeding the lessons learned back into the ongoing project (which might
result in iterating the project plans) or into the planning phase of future projects. Feedback
(principle P5) is important to engineers and managers. An effective feedback mechanism is
especially crucial for supporting the complex management decision process (principle P10).
The effectiveness of the feedback mechanism depends heavily on whether the appropriate
interpretation context was provided for during the planning phase (principle M9) as well as
amount, quality and accessibility of a body of experience (principles M12 and M14).

The presented abstract engineering process model built upon the principles in section 2 and

. 3 can be viewed as an improvement paradigm for software engineering allowing for the develop-

ment of quality software as well as the evolutionary learning and accumulation of experience [3].
The need for integrating the building aspect and the measurement aspect is reflected in our soft-
ware engineering process model. o

At the University of Maryland we have been working to incorporate these principles into
our work. We have developed an evaluation and improvement paradigm for the software
development process and product, continued to formalize the goal/question metric paradigm to
aid in developing an operational set of project and corporate goals for software development and
provide a mechanism for evaluation and feedback, created an historical database for at least one
environment (the Software Engineering Laboratory), experimented with expert system technol-
ogy to help in the formalizing of expert knowledge, begun formalizing a mechanism for tailoring
the process under controlled conditions, developed classification schemes for experimental
analysis, developed meta-models that can be tailored for specific environments, and recently to
provide automated support for all these measurement and evaluation activities via the meas-
urement and evaluation system TAME (Tailoring A Measurement Environment).
The TAME system development is part of the TAME project and is aiming at the integration of
all the measurement principles presented in the previous section into SEEs.

-12 -

5. Integrated Software Engineering Environments

The goal of an Integrated SEE (ISEE.) should be to support the planning, construction,
and learning and feedback activities of & tailorable and tractable software engineering process.
This includes support for goal-oriented measurement as a means for achieving tailorability and
tractability.

SEEs cover a wide range of capabilities. We will characterize three classes of SEEs. At the
minimal level an SEE can be a set of tools to support product development. A more sophisti-
cated SEE would consist of an integrated set of tools that support one or more specific pro-
cess models. The most sophisticated SEE would support all the activities required to tailor any
process model, method, and tool to a specific set of project needs. The varying levels of
sophistication require different degrees of support built into the SEE.

A high-level model of an ISEE is presented in figure 1. The original version of this model
was developed during a panel session of the Workshop on *Requirements for Software Engineer-
ing Environments®, held at the University of Maryland in May 1986 [58]. The objective of an
ISEE is to support a software project producing engineering output objects (e.g. requirements
document, design document, source code) and consuming engineering input objects (e.g. an infor-
mal requirements statement, quality requirements). The software project is conducted according
to a particular software process model. The following components of an ISEE have been
identified as crucial: (1) people, (2) methods and tools, and (3) a data repository (e.g. product
library, measurement library).

People need to plan for a software engineering project by choosing a process model, &
method or a set of methods for a particular set of input objects and a particular project goal set,
based upon information about which ones work best in this particular environment. This infor-
mation typically comes from the experience of the individual managers and engineers or some set
of software engineering standards or process model set up by the organization. However in a
more sophisticated environment it can come from a knowledge base of information, based upon
the organization's experience in developing software. This implies some form of data reposi-
tory of information ranging from a data base on the effectiveness of individual techniques, to a
knowledge base dealing with the interconnectivity, tailorability and performance of different
methods and tools in various organizational environments based upon specific project goals.
Some of this experience can be incorporated in the methods and tools themselves. The con-
struction of the output objects is supported by the prescribed set of construction orjented
methods and tools Pieces from the product library might get reused for construction and
output objects might be entered into the product library for reuse in future projects. The
construction process as well as the produced output objects need to be monitored by analytical
methods and tools All the measurement data taken and metrjcs computed are stored in the
measurement database in order to increase the amount of information reflecting the
orgazization’s experience Data are interpreted based upon the information characterizing the
particular project environment and interpretations of similar situations in similar projects. The
ar.outt of information representing historical knowledge is crucial for an effective interpretation
A: I feedback mechanism. Feedback can result in learning by the project personnel and in chang-
ivg; the process model, methods and tools. :

“~

“~

® We will use the term ISEE whenever sppropriste; otherwise we use the term SEE.

- 18 -

A 4

oftware Engineering Praject
. Output
Software Process M odel Objects

Input
Objects ‘ﬂ

ooooo

Data Repositbry

—.

Figure 1: Model of an ISEE

All the information produced and consumed in an ISEE can be categorized according to
three different schemes (see figure 2). According to the organizational scheme we might be
interested in the effect on one particular project or across multiple projects within the organi-
zation. According to the integrational scheme we can support assessment, evaluation and

overall process model. According to the analytical scheme we can provide support for assess-
ment according to three categories, which we will refer to as measurement, feedback and plan-

- 14 -

generated based upon feedback from prior projects via measurement.

EXAMPLES

ORGANIZATIONAL

FOR ONE PROJEQT FOR AN ORGANIZATIO

Categorization Scheme

]]]

[] 1]]

1 [} [}

]])

] []]

. 1 ' !
INTEGRATIONAL | LOCAL | INTEGRATED | LOCAL | INTEGRATED |
Categorization Scheme ! ! ! ! ,'
1 [} 1 1 1

]]] I]

) t]] []

] t]] 1

(]]]]]

ANALYTICAL |1 | 1 | I 1\l 1 | L1\ |
IMIFIPIMIFIPIMI FI P MIFIPI

Categorization Scheme

Figure 2: Categorization Schemes for Software Engineering Information

Four examples of possible combinations of the three information dimensions are given. At
the simplest level, we may want to characterize the effect of a particular method (local) in the
context of a given project using measurement. Specifically we may want to measure the number
of failures discovered during system test or the complexity of the source code. At another level
we may be interested in planning for the use of an sntegrated set of methods and tools to support
the goals of a given project. Here we are interested in laying out project goals, refining the
methods and tools based upon those project goals, measuring the effectiveness of the methods
and tools toward achieving those project goals, and providing high level assessment back to the
project manager on how well the particular instantiation of those methods and tools are working
and how they should be modified during project development. Another example might be to
understand the effectiveness of an individual method (local) across an organization based upon
Jeedback from multiple projects within the organization. This might be to assess the effect of a
system test tool used in different projects to evaluate it overall and possibly learn how to modify
end refine it for specific applications. At the most sophisticated level, we want to plan for the
tailoring of a process model and an infegrated set of methods and tools for a class of projects
within the organization. This might be used to determine if there is a specific configuration of a
set of methods, tools and people for a class of projects, e.g. compiler develerment, common to
the organization. This would permit the organization to learn how to provide the appropriate
ISEE for any comgiler development. The learning process takes place by spe:ifying the charae-
teristics of the project class, defining the relevant set of goals, specifying and applying the candi-

date methods and tools, measuring the effectiveness of the methods and tools based on those

- 15 -

goals band interpreting within the context of the project goals, and providing feedback for the
refinement and improvement of the environment,. -)

Based on the different levels of support for construction oriented activities (isolated,
integrated, tailorable) as well as the different ways for providing the needed information (meas-
urement, feedback, planning), we classify SEEs by the degree to which they provide constructive
and analytical support (see figure 3).

Constructive
SEE Components

SET OF
TAILORABLE
CONSTRUCTIVE
TOOLS

INTEGRATED
CONSTRUCTIVE

SET OF
ISOLATED

CONSTRUCTIVE
TooLS ' Analytic
NO MEASUREMENTFEEDBACK ! PLANNING | ¢
ANALYTIC TOOLS TOOLS TOOLS SEE Componen
TOOLS |

Figure 3: Classification of SEEs

There is the environment type I consisting of a set of tools supporting construction. These
SEEs do not allow for controlling the construction process nor do they allow for learning and

- 16 -

is crucial to make an organization learn.

It is obvious that most commercially available SEEs are of class I. Some research projects
include measurement and feedback mechanisms [35, 43, 52]; based on our information it is hard
to decide whether they fall into class Il or IIl. We know of no research projects addressing the
planning issue. :

With the TAME system development we attempt to contribute to the needed changes
towards ISEEs of type IV. We provide automated support for measurement, feedback and plan-
ning.

-17 -

8. The TAME System: A Software Measurement Environment

The TAME (Tailoring A Measurement Environment) system automates as much of the
measurement process as possible, by supporting goal development into measurement via models
and templates, providing evaluation and analysis of the development and maintenance processes,
and creating and using historical data and knowledge bases that incorporate experience from
prior projects. TAME will automate these measurement aspects within the framework of the
analytical dimension of the ISEE model presented in the previous section. In this section we
present the requirements for TAME, its architecture, and the scope of the first prototype. We
have planned & series of prototypes being built using the iterative enhancement model. This
approach is necessary because more research is needed in many areas (e.g., measurement,
artificial intelligence, databases and systems) before the idealized TAME system can be built
which will fulfill the entire set of requirements. As research results become available we will
enhance our prototypes.

8.1. Requirements

The requirements for the TAME system can be derived from sections 4 and 5 in a natural
way. These requirements can be divided into direct requirements (defined by and of obvious
interest to the TAME user) and indirect requirements (defined by the TAME design team and
required to support the direct requirements properly):

The first seven (direct) requirements include support for the planning activity by
automating the goal/question/metric paradigm, for the construction activity by
automating data collection, data validation and evaluation, and the learning and
feedback process by automating interpretation and organizational learning. In addi-
tion, the user requirements concerning the TAME interface and the ability to pro-
duce appropriate reports are addressed. :

(R1) A mechanism for defining measurement and evaluation goals in an operational
and quantifiable way

We use the goal/question/metric paradigm and its templates for defining goals operationally
and refining them into quantifiable questions and metrics. The selection of the appropriate
goal/question/metric model and its tailoring need to be supported. The user will either select
an already existing model without any changes or generate a new one. A new model can be
- generated from scratch or by reusing pieces of existing models. The degree to which the selec-
tion, generation and reuse tasks can be supported automatically depends largely on the degree
to which the goal/question/metric paradigm and its templates can be formalized. The user
needs to be supported in defining his/ber specific goal according to the goal definition tem-
plate. Based on this goal definition, the TAME system will search for a model in the data
repository. If no appropriate model exists, the user will be guided in developing one. Based on
the tractability of goals into subgoals and questions the TAME system will identify reusable
pieces of existing models and compose as much of an initial model as possible. This initial
model] will be completed with user interaction. For example, if a user wants to develop a model
for assessing a system test method used in a particular environment, the system might com-
pose an initial model by reusing pieces from a model assessing a code reading method in the
same environment, and from a mode) for assessing the same system test method in a different .
environment. A complete goal/question/metric model includes rules for interpretation of

- 18 -

metrics and guidelines for collecting the prescribed data. As much of this information as possi-
ble will be generated by the TAME system automatically.

(R2) The automatic and manual collection of data and fhe validation of manually
collected data ' D3

The collection of all product related data (e-g- lines of code, complexity) and certain process
related data (e.g. number of compiler runs, number of test runs) will be completely automated.
Automation requires an interface with construction oriented SEEs. The collection of many
. process related data (e.g. effort, changes) and subjective data (e.g. experience of personnel,
characteristics of methods used) cannot be automated. The schedule according to which meas-
urement tools are run needs to be defined as part of the planning activity. It is possible to col-
lect data whenever they are needed, periodically (e.g. always at a particular time of the day),
or whenever changes of products occurred (e.g. whenever a new product version is entered into
the product library all the related metrics are recomputed). All manually collected data need
to be validated.' Validating whether data are within their defined range, whether all the
prescribed data are collected, and whether certain integrity rules among data are not violated
will be nutomated. Some of the measurement tools will be developed as part of the TAME
system development project, others will be imported. The need for importing measurement
tools will require an effective interconnection mechanism (probably an interconnection lan-
guage) for integrating tools developed in different languages. It can be expected that the
TAME system will be applied to software projects using different implementation languages.
Using TAME across different language environments would require the replicated implemen-
tation of all these language dependent product measurement tools. A language independent
product langunage needs to be defined in order to avoid this form of replication. Such a concept
would allow us to develop one translator for each language allowing for the translation of pro-
ducts written in this language into the language independent representation, and one measure-
ment tool for each metric. For n metrics and m languages, we would need to implement nxm
measurement tools without the concept of an intermediate language, but only n+m tools using
this concept. '

{(R3) A mechanism for controlling measurement and evaluation

In our case 2 goal/question/metric model specified the execution of a particular measurement
and evaluation session control-wise. Executing a goal/question/metric model includes trigger-
ing the execution of measurement tools for data collection, the computation of all metrics and
distributions prescribed, and the application of statistical procedures. If certain metrics or dis-
tributions cannot be computed due to the lack of data or measurement tools, the user needs to
be informed.

{R4) A mechanism for interpreting analysis results in a context snd providing feed-
back for the improvement of the process model, methods and tools

We use 2 goal/question/metric model to define the rules and context for interpretation of data
and feedback for the purpose of refining and improving process models, methods and tools.
The degree to which interpretation can be supported depends on our understanding of the soft-
ware process and product and the degree to which we express this understanding as formal
rules. Today, interpretation rules exist only for some of the aspects of interest and are only
valid within a particular project environment or organization. However, interpretation guided
by goal/question/metric models will enable an evolutionary learning process resulting in better
rules for interpretation in the future. The interpretation process can be much more effective

~-10 -

pfovided historical data are available allowing for the generation of historical baselines. In .this
case we can at least identify whether observations made during the current project deviate
from past experience or not. .

(R5) A mechanism for learning in an organization

The learning process is supported by applying measurement and evaluation to project classes
of interest. For each of those classes, a historical database needs to be established concerning
the effectiveness of the candidate process models, methods and tools. Feedback from ongoing

.~ projects of the same class, the corresponding process models, methods and tools can be refined
and improved.

(R8) A homogeneous user interface

We distinguish between the physical and logical user interface. The physical user interface
provides 2 menu or command driven interface between the user and the TAME system.
Graphics and window mechanisms will be incorporated whenever useful and possible. The log-
ical user interface is the user’s view of measurement and evaluation. Users will not be allowed
to directly access data or run measurement tools. The only way of working with the TAME
system is via a goal/question/metric model. TAME will enforce this top-down approach to
measurement via its logical user interface. The acceptance of this kind of user interface will
depend on the effectiveness and ease to which this logical user interface can be used (= ease to
which goal/question/metric models can be generated). Homogeneity is important for both the
physical and logical user interface.

{R7) An effective mechanism for producing a variety of reports

The documentation of measurement, evaluation, and interpretation results in form of hard
copies needs to be supported. Reports need to be generated for different purposes. Project
managers will be interested in periodical reports reflecting the current status of their project.
High level managers will be interested in reports indicating quality and productivity trends of
the organization. The specific interest of each person needs to be defined by one or more
goal/question/metric models based on which reports can be generated automatically. A laser
printer and multi—color plotter would allow the appropriate documentation of tables, histo-
grams and other kinds of textual and graphical representations.

The remaining five (indirect) requirements deal with the data repository issue,
organizational issues such as mechanisms for security, access control and
configuration management control, and system requirements for interfacing TAME
with construction oriented SEEs and executing TAME on a distributed architecture.
All these issues will are important in order to support all the direct requirements.
Indirect TAME requirements are: \

(R8) The effective storage and retrieval of all relevant information in a data reposi-
tory '

All data and knowledge required to support tailorability and tractability needs to be stored in
a data repository. Such a data repository needs to be able to store goal/question/metric
models, engineering products (product library in the SEE model) and all kinds of measurement
data (measurement library in the SEE model). It needs to store data derived from the current
project as well as historical data from prior projects. The effectiveness of such a data reposi-
tory will be improved for the purpose of learning and feedback if, in addition to measurement
data, interpretations from various evaluation sessions are stored and when interpretation rules

-~20 -

will become integral part of such a repository. The data repository should be implemented as
an abstract data type, accessible through a set of functions and hiding the actual implementa-
tion. This latter requirement is especially important due to the fact that current database
technology is not suited to properly support software engineering concepts [26]. The implemen-
tation of the data repository as an abstract data type allows us to use currently available
database technology and substitute it later as more appropriate technology becomes available.
‘The ideal database would be self-adapting to the changing needs of a project environment or
an organization. This would require a specification language for software processes and pro-
ducts and the ability to generate database schemata from specifications written in such a lan-
guage [40)].

(R9) Mechanisms allowing for the implementation of a variety of access control and
security strategies

TAME needs to control the access of users to the TAME system itself, to various system func-
tions and the database. These are typical functions of a security control system. The actually
enforced security strategies depend on the project organization. It is part of planning a pro-
Ject to decide who needs to have access to what function and what piece of information. In
addition to these security functions, more sophisticated data access control functions need to
be performed. The data access system is expected to “recommend® to a user who is develop-
ing a goal/question/metric model the kinds of data that might be helpful in answering a par-
ticular question and support the process of choosing among similar data based on availability
or other criteria.

(R10) Mechanisms allowing for the implementation of a variety of configuration
management and control strategies

In the context of the TAME system we need to manage and control three-dimensional
configurations. There is first the traditional product dimension making sure that the various
product and document versions are consistent. In addition, each product version needs to be
consistent with the related measurement data and the goal/question/metric model according
to which those measurements were taken. TAME needs to make sure that a user always knows
whether data in the repository are consistent with the current product version and were col-
lected and interpretated according to a particular model. The actual configuration manage-
ment and control strategies will result from the project planning phase.

{R11) An interface to construction oriented SEEs

On one hand, it might be necessary to collect data (e.g. the number of activations of a com-
piler, the number of test runs) from the actual development or maintenance process or have
access to the products. On the other hand, our mid-term goal asks for interfacing TAME
with SEEs for the purpose of on-line feedback into ongoing development or maintenance
activities. Models for appropriate interaction between constructive and analytic processes
need to be specified. Interfacing with construction oriented SEEs poses the problem of inter-
connecting systems implemented in different languages and running on different machines
{with probably different operating systems). in an efficient way.

(R12) A structure suitable for distribution

TAME will ultimately run on a distributed system consisting of at least one main-frame com-
puter and a number of workstations. The main-frames are required to host the data reposi-
tories which can be assumed to be very large. The rest of TAME might be replicated on 2

-21 -

number of workstations.

8.2. Architectural Design

The TAME architecture in

tem and their interrelationships.
tectural components are tools and

According to the SEE mode
a data repository. '

gure 4 describes the individual components of the TAME sys-

1 presented in section 5, the archi-

Ll

ser Interface Manage USER
Ao Corteat P80 T
INTERFACE
LEVEL
e —
' E'VALUATIONH
! LEVEL
MEASUREMENT
LEVEL
_——— uﬁ %/{’{é@%/{g&ﬂw ”
18
REPOSITORY
LEVEL

Figure 4: Architectural Design of the TAME System

We group the TAME components into four logical levels, the user interface, evaluation,
measurement and data repository level. Each of these four TAME levels consists of one or more
architectural components:

¢ The User Interface Level consists of the User Interface Management Tool, one of the
Access Control Tools, the Data Entry and Validation Tool, the GQM Model Selection Tool, the
GQM Generation and Analysis Tool, the Report Generating Tool, the Measurement Scheduling
. Tool, and the SEE Interface Tool. :

¢ The Evaluation Level consists of the GQM Evaluation Tool.

¢ The Measurement Level consists of a set of Measurement Tools and one of the Access Con-
trol Tools.

o The Data Repository Level consists of one of the Access Control Tools, the Configuration
Management and Control Tool, and the Data Repositqry.

In the following we discuss the relationship between the TAME requirements and the archi-
tectural components as well as the interrelationship between these components. '

"The User Interface Level The User Interface Tool implements the physical user interface.
The SEE Interface Tool takes care of the interaction between TAME and construction oriented
SEEs. The inputing of non-automatically collected data and their validation is implemented by
the Data Entry and Validation Tool. The logical user interface is implemented by the GQM
Model Selection Tool; this tool guarantees that no access to the evaluation, measurement or data
repository level is possible without using a goal/question/metric model. In addition, the user
interface level contains the GQM Model Generation and Analysis Tool for generating
- goal/question/metric models and the Report Generator Tool for producing all kinds of reports.
Finally, the Measurement Scheduling Tool triggers data collection via measurement tools accord-
ing to planned schedules.

The Evalnation Level This subsystem performs the evaluation according to a particular
goal/question/metric model. In addition, the GQM Evaluation Tool needs to know the specific
authorizations of the user in order to know which evaluation functions can be performed by this
particular user. The GQM Evaluation Tool also provides analysis functions, for example, telling
the user whether certain measures can be computed based upon the data currently available in
the data repository. This analysis feature of the subsystem is used during the creation phase of
goals, questions, and measures, as well as during the actual evaluation phase according to previ-
ously established goals, questions, and metrics.

The Measurement Jevel The Measurement Level consists of tools for computing metrics.

The Data Repository Level The Data Repository Level provides the infrastructure for vari-
ous types of evaluation. This level allows storing and retrieving all kinds of software related
data. In addition, the Configuration Management and Control Tool is viewed as part of or inter-
face to the data repository level. Data can only be entered into or retrieved from the data reposi-
tory under configuration and management control.

Orthogopal Access Control Compenent The Access Control Component is orthogonal to the
four level structure of TAME. It consists of a number of tools distributed across the logical
architectural levels and are therefore discussed separately.

The TAME Access Control Component consists of three tools. One tool validates access to the
TAME system itself and to various functions at the user interface level based upon the rights
assigned to a particular user. The two other data access control tools control access to various

- 28 -

measurement tools and access to the database.

First TAME Prototype

The first of a series of prototypes has been developed for supporting measurement in Ada
projects [18]. This first prototype implements all four logical levels of the architecture. However,
the automated support for some of the activities falls short of the requirements stated in section
6.1 because the state—of-the-art did not provide for their implementation. The choice of Ada
does not effect the TAME prototype except for the measurement tools which need to be run on
Ada source code.

The first prototype enables the user to generate goal/question/metric models using a struc-
tured editor. Existing models can be selected by using a unique model name. No support for
selecting models based on goal definitions or for reusing existing models for the purpose of gen-
erating new models is offered. Evaluation sessions can be run according to existing
goal/question/metric models. However, no support for interpretation is provided. Metric values
are presented to the user according to the underlying model for his/her interpretation. Results
can be documented on a line printer. The initial set of measurement tools consists of three tools
for computing product measures from Ada source code: a static source code analyzer computing
all basic source code counts including lines of code, frequency of use of particular language fea-
tures, cyclomatic complexity metrics and software science metrics, a data bindings analyzer, and
a structural coverage analyzer [56]. Similar tools for conventional languages such as Fortran are
exist too [33]. A general schema for a software engineering data repository has been developed
and implemented [40]. The current implementation is based upon the relational database system
from ORACLE Corporation.

The first prototype is running on a SUN-3 under UNIX. It is implemented in Ada (as far as
the language dependent measurement tools are concerned) and C.

More research is needed before the idealized TAME system can be built. Major areas of
research include measurement, databases, artificial intelligence, and systems. Specific high-
priority topics are a formal language for specifying goal/question/metric models, the definition of
more and better models, mechanisms for better tailoring and reusing project knowledge, mechan-
isms for better interpreting metrics in the context of questions and goals, component intercon-
nection languages, 2 language independent representation of software, better mechanisms for
data access. control and configuration management control, software engineering database
definitions, and distributed system archltecture As results become available we will integrate it
into an enhanced prototype.

— 24 -

7. Summary and Conclusions

Based upon a dozen years of analyzing software engineering processes and products, we
have proposed a set of software engineering process and measurement principles. These princi-
ples have led us to recognize the need for the software engineering process to support multiple
process models across the full software life cycle. Such an environment must support not only
the engineer but the manager. It must combine the technical and managerial aspects of software
engineering. The full software process life cycle consists of three stages: planning, construction,
and feedback and learning.” The planning phase consists of the establishing of goals specific to
the project as well as the organization, and the selection of the process model, methods and tools
appropriate to those goals. The construction process consists of the the development or mainte-
pance of the product and the analysis of the process and product relative to the goals set. The
feedback and learning process consists of project tracking via 8 mechanism that provides infor-

mation for improving the current project as well as future projects.

_Based upon this definition, the software engineering process need to be tailorable and tract-
able. We need the ability to tailor the process, methods and tools to specific project needs in a
way that permits maximum reuse of prior knowledge. We need to control the process and pro-
duct because of the flexibility required in performing such a focused development. We also need
as much automated support as possible. Thus an Integrated Software Engineering Environment
needs to address all of these issues.

We have argued that the tailorability and tractability attributes of the software planning,
construction and feedback and learning processes require the support of a measurement process.
The measurement process needs to be top—down, based upon operationally defined goals.

The TAME project uses the goal/question/metric paradigm to support this type of meas-
urement paradigm. It provides for the establishment of project specific goals and corporate goals
for planning, provides for the tracing of these goals throughout the software life cycle via feed-
back and post mortem analysis, and offers a mechanism for long range improvement of all
aspects of software development.

The TAME system automates as much of this process as possible, by supporting goal
development into measurement vis models and templates, providing evaluation and analysis of
the development and maintenance processes, and creating and using databases of bistorical data
and knowledge bases that incorporate experience from priot projects.

The short range (1-3 years) goal for tbe TAME system is to build the evaluation enviroo-
ment. The mid-range goal (3-5 years) is to integrate the s)stem into ote of more existing of
future development or maintenance environments The locg rarge goal (5-8 years) s to taidor
those environments for specific orgazizations sod projects

The TAME system is an ambitious project. It is assumed 1t will evolve over Lime ard tiat
we will learn a great deal from formalizing the various aspects of the TAME project as well aa
integrating the various paradigms. Research is needed in many areas before the sdealised TAME
system can be built. Major areas of study include, measurement, data bases, artifcial 1ztells
gence, and systems. Specific activities peeded to support TAME include more formalizatron of
the goal/question/metric paradigm, the defnition of better models for such attributes of quality
end productivity, mechanism for better formalizing the reuse and tailoring of project knowledge,
the interpretation of measures with respect to goals, interconnection larguages, language
::indcpendcnt representation of software, access control in general and security in pgt:fuhr, soft~
ware engineering database definition, configuration management and control, and distributed sys-
tem architecture. We are interested in the role of further researching the ideas and principles of

- 25 -

the TAME project. We will build & series of evolving prototypes of the system in order to learn
and test out ideas.)

TAME system. The support has come in two ways: financial and effort. To be a collaborator in
the TAME project, companies support the development of some specific tool or subsystem. The

- 20 -

-

8. Acknowledgements

We want to acknowledge the many contributions to the TAME project and, thereby
indirectly to this paper, by Michae] Daskalanto,nakis, Alexis Delis, Dennis Doubleday, Leo Mark,
Karl Reed, P. Dave Stotts, A. Joe Turner, Shouli Wang, Linda Wu, and Shj Xiao-Hong.

—-27.

0.

I
I

3]

I
18]
I6]
7

18]
19]
[10)
1)

2]
[13]

[14]
113)

References

W. Agresti, “SEL Ada Experiment: Status and Design Experience,* Proceedings of the
Eleventh Annual Software Engineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, December 1986. :

J. Bailey, V. R. Basili, *A Meta-Model for Software Development Resource Expenditures,*
Proc. of the Fifth International Conference on Software Engineering, San Diego, USA,
March 1981, pp. 107-116. :

V. R. Basili, *Quantitative Evaluation of Software Engineering Methodology,® Proc. of the
First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also avail-
able as Technical Report, TR-1519, Dept. of Computer Science, University of Maryland,
College Park, July 1985). ‘

V. R. Basili, *Can We Measure Software Technology: Lessons Learned from 8 Years of
Trying,* Proceedings of the Tenth Annual Software Engineering Workshop, NASA God-
dard Space Flight Center, December 1985. ‘

V. R. Basili, “Evaluating Software Characteristics: Assessment of Software Measures in the
Software Engineering Laboratory,* Proceedings of the Sixth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, 1981.

V. R. Basili, J. Beane, *Can the Parr Curve help with the Manpower Distribution and
Resource Estimation Problems,* Journal of Systems and Software, vol. 2, no. 1, 1981, pp.
47 - 57.

V. R. Basil, E. E. Katz, N. M. Panlilio-Yap, C. Loggia Ramsey, S. Chang, *Characteriza-
tion of an Ada Software Development," IEEE Computer Magazine, September 1985, pp.
53-65. :

V. R. Basili, K. Freburger, "Programming Measurement and Estimation in the Software
Engineering Laboratory,* Journal of Systems and Software, vol. 2, no. 1, 1981, pp. 47-57.

V. R. Basili, D. H. Hutchens, *An Empirical Study of a Syntactic Measure Family,* IEEE
Transactions on Software Engineering, vol. SE-9, no. 11, November 1983, pp. 664-672.

V. R. Basili, D. H. Hutchens, "System Structure Analysis: 'Clustering with Data Bindings,*
1EEE Transactions on Software Engineering, August 1985, pp. 749-757.

V. R. Basili, E. E. Katz, *Measures of Interest in an Ada Development,* Proc. of the IEEE
Computer Society Workshop on Software Engineering Technology Transfer, April 1983, pp.
22-29.

V. R. Basili, E. E. Katz, "Examining the Modularity of Ada Programs,* Proc. of the Joint
Ada Conference, Arlington, Virginia, March 16-19, 1987. :

V. R. Basili, C. Loggia-Ramsey, *YARROWSMITH-P: A Prototype Expert System for Soft-
ware Engineering Management, Proc. of the IEEE Symposium on Expert Systems in
Government, October 23-25, 1985, pp. 252-264.

V. R. Basili, N. M. Panlilio-Yap, *Finding Relationships Between Effort and Other Vari-
ables in the SEL,* IEEE COMPSAGC, October 1985.

V. R. Basili, B. Perricone, *Software Errors and Complexity: An Empirical Investigation,*
ACM Communications, vol. 27, no. 1, January 1984, pp. 45-52. :

18]

[17]

1§

9]
120]
[21]
[22]
[23]
24
125)
l26]
27]

I2s]
[29]
[30]

181

V. R. Basili, J. Ramsey, *Structural Coverage of Functional Testing,* Proceedings of the
Eighth International Conference on Software Engineering, London, UK, August 1985.

V. R. Basili, R. Reiter, Jr., *A Controlled Experiment Quantitatively Comparing Software
Development Approaches,* IEEE Transactions on Software Engineering, vol. SE-7, no. 5,
May 1981, pp. 299-320.

V. R. Basili, H. D. Rombach, *TAME: Tailoring an Ada Measurement Environment,*
Proceedings of the Joint Ada Conference, Arlington, VA, March 16-19, 1987, pp. 318-325.

V. R. Basili, H. D. Rombach, *Tailoring the Software Process to Project Goals and
Environments,* Proceedings of the Ninth International Conference on Software Engineer-v
ing, Monterey, California, March 30 - April 2, 1987, pp. 345 - 357.

V. R. Basili, R. W. Selby, Jr., *Data Collection and Analysis in Software Research and
Management,® Proc. of the American Statistical Association and Biomeasure Society Joint
Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

V. R. Basili, R. W. Selby, Jr., *Comparing the Effectiveness of Software Testing Stra-

tegies,” Technical Report TR~1501, Dept. of Computer Science, University of Maryland,
College Park, May 1985.

V. R. Basili, R. W. Selby, Jr., "Calculation and Use of an Environment’s Characteristic
Software Metric Set,* Proceedings of the Eighth International Conference on Software
Engineering, London, UK, August 1985.

V. R. Basili, R. W. Selby, and T.-Y. Phillips, *Metric Analysis and Data Validation Across
Fortran Projects,* IEEE Transactions on Software Engineering, vol. SE-9, no. 6,
November 1983, pp. 652-663. '

V. R. Basili, A. J. Turner, "Iterative Enhancement: A Practical Technique for Software
Development,* IEEE Transactions on Software Engineering, vol. SE-1, no. 4, December
1975.

V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering
Data,* IEEE Transactions on Software Engineering, vol. SE-10, no.3, November 1984, pp.
728-738.

P. A. Bernstein, *Database System Support for Software Engineering," Proceedings of the
Ninth International Conference on Software Engineering, Monterey, CA, March 30 - April
2, 1987, pp. 166-178.

D. Bjorner, *On the Use of Formal methods in Software Development, * Proceedings of the
Ninth International Conference on Software Engineering, Monterey, California, March 30 -
April 2, 1987, pp. 17-29. ‘

B. W. Boehm, *Software Engineering,* IEEE Transactions on Computers, vol. C-25, no.
12, December 1976, pp. 1226-1241.

B. W. Boehm, "Software Engineering Economics,* Prentice-Hall, Englewood Cliffs, NJ,
1981. ‘

B. W. Boehm, *A Spiral Model of Software Development and Enhancement,* ACM Soft-
ware Engineering Notes, vol. 11, no. 4, August 1986, pp. 22-42.

B. W. Boehm, J. R. Brown, and M. Lipow, *Quantitative Evaluation of Software Quality,*
Proceedings of the Second International Conference on Software Engineering, 1976, pp.
592-605.

fs2]
f33]
4]

[35)

[35]
37]

[38]
39]

J40]
[41]
4]

[43]

[44]

[45]
148)
147]
[48]

[49)

C. Brophy, W. Agresti, and V. R. Basili, *Lessons Learned in Use of Ada Oriented Design
Methods,* Proc. of the Joint Ada Conference, Arlington, Virginia, March 16-19, 1987.

W. J. Decker, W. A. Taylor, *Fortran Static Source Code Analyzer' Program (SAP)«
Technical Report SEL-82-002, NASA Goddard Space Flight Center, August 1982.

C. W. Doerflinger, V. R. Basili, *Monitoring Software Development Through Dynamic
Variables,* IEEE Transactions on Software Engineering, vol. SE-11, no. 9, September
1985, pp. 978-985.

M. Dowson, *ISTAR - An Integrated Project Support Environment,” Proceedings of the
Second ACM Software Engineering Symposium on Practical Development Support Environ-
ments, ACM Sigplan Notices, vol. 2, no. 1, January 1987. '

M. Dyer, *Cleanroom Software Development Method,* IBM Federal Systems Division,
Bethesda, Maryland, October 14, 1982. :

J. Gannon, E. E. Katz, and V. R. Basili, *Measures for Ada Packages: An Initial Study,*
Communications of the ACM, vol. 29, no. 7, July 1986, pp. 616-623.

M. H. Halstead, *Elements of Software Science,* Elsevier Ndrth-Holland, New York, 1977.

E. E. Katz, H. D. Rombach, and V. R. Basili, *Structure and Maintainability of Ada Pro-
grams: Can We Measure the Differences?,* Proc. of the Ninth Minnowbrook Workshop on
Software Performance Evaluation, Blue Mountain Lake, New York, August 5-8, 1986.

L. Mark, H. D. Rombach, "A Meta Information Base for Software Engineering,* submitted
to IEEE Transactions on Software Engineering. '

T. J. McCzabe, *A Complexity Measure,* IEEE Transactions on Software Engineering,
December 1976, pp. 308-320.

F. E. McGarry, "Recent SEL Studies,"‘ Proceedings of the Tenth Annual Software
Engineering Workshop, NASA Goddard Space Flight Center, December 1985.

L. Osterweil, *Software Processes are Software Too,* Proceedings of the Ninth Interna-
tional Conference on Software Engineering, Monterey, CA, March 30 - April 2, 1987, pp.
2-13.

F. N. Parr, *An Alternative to the Rayleigh Curve Model for Software Development
Effort,” IEEE Transactions on Software Engineering, vol. SE-6, no. 3, March 1980.

L. Putnam, *A General Empirical Solution to the Macro Software Sizing and Estimating
Problem,* IEEE Transactions on Software Engineering, vol. SE-4, no. 4, April 1978, pp.
345-361.

C. Loggia-Ramsey, V. R. Basili, *An Evaluation of Expert Systems for Software Engineer-
ing Management,* Technical Report TR-1708, Department of Computer Science, Univer-
sity of Maryland, College Park, MD, September 1986.

H. D. Rombach, *Software Design Metrics for Maintenance,* Proceedings of the Ninth
Annual Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt,
MD, November 1984.

H. D. Rombach, *A Controlled Experiment on the Impact of Software Structure on Main-
tainability,* IEEE Transactions on Software Engineering, vol. SE-13, no. 3, March 1987,
Pp. 344-354.

H. D. Rombach, V. R. Basili, *A Quantitative Assessment of Software Maintenance: An
Industrial Case Study,* Conference on Software Maintenance, Austin, texas, September

— 80~

[50]

I51)
[52]

[53]

[54]

{55]
[56]

[57]

[58]

1987.

H. D. Rombach, V. R. Basili, and R. W. Selby, Jr., *The Role of Code Readmg in the Soft-
ware Life Cycle,* Proc. of the Ninth Minnowbrook Workshop on Software Performance
Evaluation, Blue Mountain Lake, New York, August 5-8, 1986.

W. W. Royce, *Managing the Development of Large Software Systems: Concepts and Tech-
niques,* Proceedings of the WESCON, August 1970.

R. W. Selby, Jr., *Incorporating Metrics into a Software Environment,* Proceedings of the
Joint Ada Conference, Arlington, VA, March 16-19, 1987, pp. 326-333.

R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation,* Technical Report TR-1415, Dept. of Computer Science, University
of Maryland, College Park, February 1985 [is accepted for publication in IEEE Transac-
tions on Software Engineering).

C. E. Walston, C. P. Felix, A Method of Programming Measurement and Estimation,”
IBM Systems Journal, vol. 16, no. 1, 1977, pp. 54-73.

Webster’s New Collegiate Dictionary, G + C Merriam Company, 1981.

L. Wy, V. R. Basili, and K. Reed, *A Structure Coverage Tool for Ada Software Systems,*
Proc. of the Joint Ada Conference, Arlington, Virginia, March 16-19, 1987.

M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. R. Basili, "Software Engineering

Practices in the U.S. and Japan,* IEEE Computer Magazine, June 1984, pp. 57-66.

M. V. Zelkowitz (ed.), Proceedings of the University of Maryland Workshop on 'Require-
ments for a Software Engineering Environment’, Greenbelt, MD, May 1986, Technical
Report TR-1733, Dept. of Computer Science, University of Maryland, College Park,
December 1986.

-~ 81 -

