UMIACS-TR-88-46 June, 1988
CS-TR-2052

Analyzing Error-Prone System
Coupling and Cohesiont

Richard W. Selby

Department of Information and Computer Science
University of California
Irvine, CA 92717

Victor R. Basili

Institute for Advanced Computer Studies
Computer Science Department
University of Maryland
College Park, MD 20742

ABSTRACT

One central feature of the structure of a software system is the coupling among its com-
ponents (e.g., subsystems, modules) and the cohesion within them. The purpose of this study
is to quantify ratios of coupling and cohesion and use them to identify error—prone system
structure. We use measure of data interaction, called data bindings, as the basis for calculating
software coupling and cohesion. We selected a 140,000 source line system from a production
environment for empirical analysis. We collected software error data from high-level system
design through system test and from some field operation of the system. We describe the
methods used for gathering data during the ongoing project and characterize the software error
data collected. We apply a set of five tools to calculate the data bindings automatically and
use cluster analysis to determine a hierarchical description of each of the system’s 77 subsys-
tems. An analysis of variance model is ussed to characterize subsystem and individual routines
that had either many/few errors or high/low error correction effort.

T This work was supported in part by the IBM Shared University Research (S.U.R.) Program: Department of Computer Science,
University of Maryland; and University of Maryland Institute for Advanced Computer Studies.

Contents

Abstract i
List of Figures v
1 Introduction 1
2 Selected Software Project 1
3 Data Collection 2
3.1 Data Collection and Analysis Methodology 2
3.2 Metric Vector it e 4
3.3 Data CollectionForms 4
3.4 Effectiveness of Data Collection Process 6
3.5 Recommendations and Lessons Learned e e e 6
4 Characterization of Software Error Data 8
41 Terminology. 8
4.2 Software Errors from Inspections 10
4.3 Software Errors from Trouble Reports 12
5 Data Bindings Analysis 15
5.1 Clustering with Data Bindings 15
5.2 Data Bindings Analysis Software 16
6 Data Analysis 17
6.1 Terminologyo v v i vt ittt e 17
6.2 Data Analysis Method 19

i

6.2.2 Dependent Variables

6.3 Characterization of High-Error and Low-Error Subsystems
6.3.1 Subsystem Coupling/Strength Ratio
6.3.2 SubsystemSize
6.3.3 Interactions Across Subsystem Coupling/Strength Ratio and

Size . . . e e e e e e e e e

634 SummaryofResults

6.4 Characterization of High-Error and Low-Error Routines

6.4.1 Routine Coupling/Strength Ratio.
6.4.2 RoutineSize
6.4.3 Routine Location in Data Binding Tree
6.4.4 Interactions Across Routine Coupling/Strength Ratio, Size,

and Location in Data Binding Tree

6.4.5 SummaryofResults

6.5 Data Bindings for System Documentation and Evaluation

7 Interpretations and Conclusions

8 Acknowledgement

References

iii

35
38

39

List of Figures

1
2
3
4

© W I O

11

12
13

14

15

16

17

18

Data collection forms used in the development phases. 9
Distribution of inspectiontype. 11
Distribution of errors (inspections) by severity and inspection type. 11

Distribution of average error detection rates (#errors/inspection)
by severity and inspectiontype.. 12

Distribution of errors (inspections) by error class and inspection type. 12
Distribution of errors (inspections) by severity and error class. .. 13

Distribution of errors (TR’s) by reporter type and severity. 13

Distribution of errors (TR’s) by reporter type and error class. . . . 14
TR error correction effort (isolation effort plus fix effort) in hours

byerrorclass.. e 14
Distribution of errors (TR’s) by severity and error class. 15

Distribution of errors and error correction effort by subsystem cou-
pling/strengthratios. 23

Distribution of errors and error correction effort by subsystem size. 23

Relationship between errors per KLOC in the routines and subsys-
tem size. Legend: A = 1 observation, B = 2 observations, etc. . .. 24

Distribution of errors and error correction effort across subsystem
coupling/strength ratios and subsystem size. 25

Distribution of errors and error correction effort by routine cou-
pling/strengthratios. 27

Relationship between errors per KLOC in the routines and rou-
tine coupling/strength ratio. Legend: A = 1 observation, B = 2
observations, etc. e 28

Relationship between error correction effort per KLOC in the rou-
tines and routine coupling/strength ratio. Legend: A = 1 observa-
tion, B = 2 observations,etc. 29

Distribution of errors and error correction effort by routine size.. . 30

iv

19

20

21

22

Relationship between errors per KLOC in the routines and routine
size. Legend: A = 1 observation, B = 2 observations, etc. Note: 34
observations hidden behind Z’s.

Distribution of errors and error correction effort by routine location
in data bindingtree.

Relationship between error correction effort per KLOC in the rou-
tines and routine location in the data binding tree. Legend: A = 1
observation, B = 2 observations, etc. Note: 5 observations hidden

behind Z’s.

Distribution of errors and error correction effort across routine cou-
pling/strength ratios and routine tree location.

1 Introduction

Several researchers have proposed methods for relating the structure of a software
system to its quality (e.g., [BE82] [HK81] [Eme84]). One pivotal step in assess-
ing the structure of a software system is characterizing its coupling and cohesion.
Intuitively, the cohesion in a software system is the amount of interaction within
pieces (e.g., subsystems, modules) of a system. Correspondingly, coupling in a
software system is the amount of interaction across pieces of a system. Cohesion
may sometimes be referred to as “strength.” Various interpretations for coupling
and cohesion have been proposed [SMC74]. In this paper, we present an empirical
study that evaluates the effectiveness of cohesion and coupling in identifying error-
prone system structure. Our measurement of cohesion and coupling is based on
intra-system interaction in terms of software data bindings [BT75] [HB85]. Our
measurement of error-proneness is based on software error data collected from
high-level system design through system test; some error data from system oper-
ation are also included.

The research approach was based on the application of a data collection and
analysis methodology in a large, production software environment. The use of
the methodology incorporates definition of the required data, collection of the
data, and appropriate data analysis and interpretation. The research project was
conducted in three phases, and they roughly corresponded to the activities of data
definition, collection, and analysis and interpretation.

The paper is organized into several sections. Section 2 discusses the software .
project selected. Section 3 describes the data definition, collection, and analysis
methodology used. The software error data collected is characterized in Section 4.
The data bindings software analysis and supporting tools are described in Section
5. The data analysis appears in Section 6. Section 7 presents the interpretations
and conclusions.

2 Selected Software Project

The software project selected for study is the next release of an internal soft-
ware library tool. The previous system release contains approximately 100,000
source lines. The production of the next release requires the development or mod-
ification of approximately 40,000 source lines. Hence, the total size of the next
system release is approximately 140,000 source lines. The system is written in four

languages: a high-level programming language similar to PL /1, a language for op-
erating system executives, a user-interface specification language, and an assembly
language. The static source code metrics discussed later, including the data bind-
ings analysis, pertain to only the system portion written in the high-level source
language. This portion constitutes approximately 70% of the lines in the system
and the vast majority of the system logic and intra-system interactions. Project
duration, including system and field test, spanned approximately 16 months and
maximum staffing included 23 persons.

System Characterization There are 163 source code files in the system con-
taining a total of 451 source code routines. A routine is a main program, proce-
dure, or function. The number of routines per source code file varies from 1 to 21.
On the average, there are 2.8 routines per source code file. There are 77 executable
features in the system, referred to as subsystems in the paper. These subsystems
can be thought of as groups of routines collected together to form functional fea-
tures of the overall system. The number of source files linked together to form a
subsystem varies from 1 to 82. On the average, 26.3 source files are linked together
into a subsystem. The same source file is bound into 12.4 different subsystems on
the average. Subsystems averaged 19,000 source lines in size, including comments.

3 Data Collection

The following three subsections give an overview of the data definition, collection,
and analysis methodology, an explanation of the metric vector concept, and a
description of the underlying data collection forms. The fourth subsection sum-
marizes the effectiveness of the data collection process in gathering data during
the software project. The fifth subsection presents some lessons learned and rec-
ommendations based on the use of the data collection and analysis methodology.
Note that the data was collected and analyzed at the same time the project took
place. Animportant goal was to minimize the impact of the data collection process
on the developers.

3.1 Data Collection and Analysis Methodology

The data collection and analysis methodology employs the goal-question-metric
paradigm [BW84] to result in a set of software product and process metrics, a

“metric vector” [BK83], sensitive to the cost and quality goals for the partic-

ular environment. There are several steps in the data collection and analysis

methodology spanning software metric definition, collection, analysis, and inter-
%:

pretation. The data collection and analysis methodology consists of seven steps

[BW84] [BS84] [Sel85] [Bas85

|
1. Define the goals of the hata. collection and analysis.

2. Refine the goals to determine a list of specific questions.

3. Establish appropriate nfetrics and data categories.

Plan the layout of the sjhudy and thg statistical analysis methods.
Design and test the da.tP. collection scheme.

Perform the investiga.tic%n concurrently with data collection and validation.

S

Analyze and interpret t#xe data in terms of the goal-question framework.

The first three steps in the‘methodology, referred to as the goal-question-metric
'paradigm, express the purpose of an analysis, define the data that needs to be col-
lected, and provide a context|in which to interpret the data. The formulation of
a set of goals constitutes the first step in a management or research process. The
goals outline the purpose of the study in terms of software cost and quality as-
pects. Refinement of the goals occurs until they are manifested in a set of specific .
questions. The questions define the goals and provide the basis for pursuing the
goals. The information requir‘red to answer the questions determines the develop-
ment process and product metrics needed. The organization of the defined metrics
results in a set of software m trics, referred to as a “metric vector.”

The following four steps involve analysis planning and data collection, vali-
dation, analysis, and interprg‘tation. Before collecting the data, the researchers
outline the data analysis techniques. The appropriate analysis methods may re-
quire an alternate layout of the investigation or additional pieces of data to be
collected. The investigators tﬁen design and test the data collection method; they
determine the information tl#a.t can be automatically monitored and customize
the data collection scheme to the particular environment. The data collection
plan usually includes a mixture of collection forms, automated measurement, and
personnel interviews. The investigators then perform the data collection accom-
panied by suitable data validity checks. After preliminary analysis to screen the

data, they apply the appropriate statistical and analytical methods. They orga-
nize the statistical results and interpret them with respect to the goal-question
framework. The analysis of the collected data can sometimes lead to the expan-
sion of the original sets of questions, possibly resulting in more goal areas. Once
all seven methodology steps have been completed, researchers can apply another
iteration of the methodology with a new set of goals.

3.2 Metric Vector

The set of metrics defined was described in terms of a “metric vector,” consisting
of seven dimensions: { effort, non-error changes, errors, size, data use, execution,
environment } [BK83]. These seven dimensions are defined as follows: (1) effort
~ the time expended in producing the software product; (2) changes — the modifi-
cations made to the product; (3) errors — the mistakes made during development
or maintenance that require correction; (4) size - the various aspects of the prod-
uct bulk and complexity; (5) data use — the various aspects of the program’s use
of data; (6) execution — information about the execution of the program; and
(7) environment - a quantitative description of the development and maintenance
environment. Each of these dimensions has a variety of metrics associated with
it. These metrics depend upon the specific goals and questions articulated for
the project. Both a metric vector containing all metrics defined and a vector
containing a minimal number of metrics to collect were outlined for this study.

The metric data was collected in two ways:

o data collection forms, which are discussed in the next section, and

¢ automated data bindings analysis, which is discussed in Section 5.

3.3 Data Collection Forms

The metrics defined were categorized according to their natural collection source.
The approach to data collection spanned two steps.

1. We obtained a consensus from project management and development process
coordinators on what metrics were already collected, what new metrics could
be collected, and how they should be collected.

2. We worked within e:dsting, established procedures using existing forms, as
far as possible, to collect the new data.

The collection of the metrics was based on a variety of sources, including the
existing set of data collection forms:

¢ inspection forms;
e error summary worksheets (ESW);
¢ system trouble reports (STR); and

e trouble reports (TR).

The collection of the data was conducted so as to affect minimal interference on
the project personnel.

Inspections Two kinds of formal inspections are held during development: de-
sign inspections and engineering inspections [Fag76] [Fag86]. Design inspections
are held during the high-level and low-level design phases. Engineering inspections
are code inspections that are held after the completion of unit testing. Inspection
forms represent all data recorded during formal inspections and during rework
activity following the inspections. '

Error Summary Worksheets The Error Summary Worksheet (ESW) form
was introduced for the purpose of recording error and change data during the cod-
ing, unit testing, and primitive/transaction testing phases (primitive/transaction
testing is similar to integration testing).

System Trouble Reports System Trouble Report forms (STR’s) are used dur-
ing system testing. The collection form is the same as the TR form.

Trouble Reports These are problems reported against working, released code.
They are typically user-reported. Trouble report forms are also used to report
errors found by developers during field testing. Since the fixes are sometimes
implemented in the current development release, they reflect change activity.

Surveys and Interviews The collection and validation of certain data items
are supported by the use of developer surveys. A researcher interviewed developers
~ to acquire the survey information.

3.4 Effectiveness of Data Collection Process

Several retrospective observations help assess the effectiveness of the data collec-
tion process.

1. The number of data collections forms submitted by the project personnel
was reasonable, based on experience with other projects.

2. Sixty-one (9%) of the 665 data collection forms submitted had some form of
incomplete data.

3. Project personnel were interviewed in order to document their reactions to
the data collection methodology.

4. The interviews with project personnel confirmed that the errors that oc-
curred were getting reported on data collection forms.

5. Clarifications and suggestions were made to project personnel during the
development process regarding the data collection effort.

6. The project personnel seemed to experience a learning effect that over time -
would continue to increase data accuracy and to decrease collection cost.

3.5 Recommendations and Lessons Learned
Several recommendations and lessons learned resulted from the application of the
data collection and analysis methodology in the production environment. They

include comments from interviews of the development personnel and observations
from the authors.

Benefits Project personnel responsible for data collection coordination felt that:

1. The data collection “benefits everybody.”

. You have better control over what will/may effect your current system and

also what is “waiting in the wings” for future releases.

. The data collection can be used “to assess the defect removal and show

quality certification.”

. Without the data collection, the managers have nothing tangible.

The software project manger identified several benefits from the data collection
process and coupling/strength analysis:

1.

Ll S

The emphasis on a data collection process;
The empirical results from the analysis;
The intermediate presentation of results prior to project completion;

The improvement in the development project as a result of the data collection
process; and

The identification of valuable metrics and analysis methods.

He also felt that:

6.

A data collection process needs to be a “grass roots effort,” including an
in-house coordinator to catalyze the process and a sincere interest on the
part of the development personnel in the accuracy of the data.

The quantification of information greatly facilitates the planning and schedul-
ing of future activities, phases, and projects.

- Developers need to be able to assess quality without unnecessarily impacting

the project.

General Recommendations The application of the methodology resulted in
the following set of general recommendations for data collection and analysis.

1.

Having software project members motivated by the purposes of the data
collection process is a key component of its success.

2. The data collected on paper forms should be put on-line for access and
analysis purposes.

3. Fewer, more general data collection forms with clearly indicated required /optional

sections advance the simplicity of the collection and help reduce the paper
flow. ‘

4. The appropriate granularity of the data collection (e.g., what data to collect
at the level of routines, subsystems, or projects) is driven by the goals of the
study and the intended analysis methods.

5. The people participating in the data collection effort should be briefed on
the results of the work.

4 Characterization of Software Error Data

The following subsections characterize the software error data collected from the
trouble reports (TR’s) and software inspections. First, however, some terminology
is clarified.

4.1 Terminology

Figure 1 summarizes the data collections forms used in the various development .
phases. See Section 3.3 for an explanation of each of the data collection forms.
The forms record a variety of different types of software error data.

Standardization efforts (e.g., [IEE83] [Glo79]) have attempted to distinguish
among the terms error, fault, and failure. The proposed definitions are intended to
differentiate among the three entities by the following explanation. A “fault” is a
specific manifestation in a software document (e.g., design document, source code)
of a programmer “error.” Due to a misconception or document discrepancy, a
programmer commits an “error” that can result in several “faults” in the program.
When input data exercises a “fault” in an executable software document (e.g.,
source code), a “failure” may be observed by a user in the output from the program.
Theoretically, there can be a many-to-many mapping from “errors” to “faults” and
a many-to-many mapping from “faults” to “failures.”

Figure 1 indicates that design and engineering inspections report faults, while
error summary worksheets, system trouble reports, and trouble reports record

8

Figure 1: Data collection forms used in the development phases.

Development phase Data collection form Data recorded
Faults | Failures

High-level design Design inspection X

Low-level design Design inspection X

Coding and unit test Error summary worksheet (ESW) [XTI X
After unit test completion | Engineering inspection X

Integration test Error summary worksheet (ESW) X
System test System trouble report (STR) X
Field test and operation | Trouble report (TR) X

failures. Throughout this paper, we use the term error to refer to a mistake made
by a software developer that resulted in either a fault or a failure. The definitions
~ used in the paper for several error-related concepts are as follows.

o Error-related effort:
— Error isolation effort — How long it takes to understand where the
problem is and what must be changed.

= Error fix effort — How long it takes to implement a correction for the
error.

— Error correction effort — How long it takes to correct an error, which
is the sum of error isolation effort and error fix effort.

o Error type:

— Wrong — Implementation requires a change. The existing code or logic
needs to be revised; the functionality is present but it is not working
properly.

— Extra — Implementation requires a deletion. The error is caused by
existing logic that should not be present.

— Missing — Implementation requires an addition. The error is caused
by missing logic or function.

o Error severity (trouble reports):
— 1 — Program is unusable; it requires immediate attention (bypass,
patch, or replacement).

— 2 — Program is usable, but functionality is severely restricted; prompt
action is required.

— 3 — Program is usable, but has functionality limitation that is not
critical; it can usually be avoided, bypassed, or patched.

— 4 — Problem is minor, e.g., message or documentation error, and is
easily avoided, bypassed, or patched.
e Error severity (inspections):
— Major — Error could lead to a problem reported in the field on a trouble
report.
~ Minor — Anything that is less than “major” severity, e.g., minor reor-
ganizations, some typographical mistakes and misspellings.
e Error reporter type (trouble reports):
— User — Error is reported by field user or found by a developer while
using the product.

— Developer — Error is discovered by a developer during field testing or
when looking at the source code or searching for errors in a released
system.

e Inspection type:

— Design inspections — These are inspections held during the high-level
and low-level design phases.

— Engineering inspections — These are code inspections that are held
after the completion of unit testing.

4.2 Software Errors from Inspections

10

Figure 2: Distribution of inspection type.

Inspection type
Design | Engineering | All
- #inspections 54 116 170

Figure 3: Distribution of errors (inspections) by severity and inspection type.

Severity Inspection type
Design | Engineering | All
Major 275 158 433
Minor 175 162 337
All 450 320 770

Summary of Results

1. There were 770 errors reported in 170 inspections [see Figure 2 and 3].

2. Inspectors reported more (56%) major (high) severity errors than they did
minor (low) severity errors [see Figure 3].

3. Design inspections resulted in the detection of 58% of all inspection-detected
errors [see Figure 3].

4. A majority (63%) of the major severity inspection-errors were detected dur-
ing design inspections [see Figure 3].

5. Four and one half (4.5) errors were detected per inspection on the average
[see Figure 4].

6. The number of major severity errors detected per inspection was three and
one half times greater in a design inspection than in an engineering inspection
[see Figure 4].

7. The overall design inspection error detection rate was three times greater
than the overall engineering inspection error detection rate [see Figure 4].

11

Figure 4: Distribution of average error detection rates (#errors/inspection) by
severity and inspection type.

Severity Inspection type
Design | Engineering | All
Major 5.1 14 2.5
Minor 3.2 1.4 2.0
All 8.3 2.8 4.5

Figure 5: Distribution of errors (inspections) by error class and inspection type.

Error class Inspection type
Design | Engineering | All
Wrong 269 228 497
Missing 93 68 161
Extra 25 24 49
All 387 320 707

8. Both design and engineering inspections have a profile across error class that
is proportional to the overall profile [see Figure 5].

9. Twice as many of the “missing” errors were of major severity than were of
minor severity. One and one half times as many of the “extra” errors were
of minor severity than were of major severity. The “wrong” errors included
a roughly equal number of major and minor severity errors. [See Figure 6.]

4.3 Software Errors from Trouble Reports

Summary of Results

1. There were a total of 54 valid trouble reports (TR’s) [see Figure 7).

12

Figure 6: Distribution of errors (inspections) by severity and error class.

Severity Error class

Wrong | Missing | Extra | All

Major | 246 111 18 | 375

Minor 255 55 31 341
All 501 166 49 716

Figure 7: Distribution of errors (TR’s) by reporter type and severity.

Reporter type Severity
11213]41Al
User 211012 2 | 26
Developer |0 7 |10 |11 | 28
Total 21172213 54

. TR-errors reported by users tended to be of higher severity than those re-
ported by system developers [see Figure 7]. Note that system users may
perceive errors to be of higher relative severity than do developers.

- The majority (70%) of the TR-errors were a design or code segment being
“wrong”, as opposed to being “missing” or “extra” [see Figure 8].

. Isolating a TR-error required almost twice as much effort as did fixing it,
and correcting (both isolating and fixing) a “wrong” error required more
effort than did correcting a “missing” error [see Figure 9]. Correspondingly,
the isolation of a “wrong” TR-error required the most effort — almost twice
as much effort as isolating a missing TR-error. Note that the isolation costs
would have been zero if the errors reported on TR’s had been found during
inspections. '

. The effort for fixing a “missing” error could be counted as development
effort, as opposed to error correction effort. With this interpretation, the
error correction effort for “missing” errors is only the isolation effort. In this
view, the error correction effort (isolation plus fix) for “wrong” errors is 2.8
times the correction effort (isolation only) for “missing” errors [see Figure

13

Figure 8: Distribution of errors (TR’s) by reporter type and error class.

Reporter type Error class
Wrong | Missing | Extra | All
User 14 7 0 21
Developer 18 6 1 25
Total 32 13 1 46

Figure 9: TR error correction effort (isolation effort plus fix effort) in hours by
error class.

Average effort Error class
Wrong | Missing | All
Isolation effort 7.2 4.2 6.3
Fix effort" 3.7 3.9 3.7
Total correction effort | 10.9 8.1 10.0

9]. Hence, it was less costly overall to leave out a design or code segment,
rather than to include an incorrect one.

6. The severity distribution of the TR-errors appears to be reasonably propor-
tional across the “wrong” and “missing” error classes [see Figure 10].

7. A majority (70%) of the inspection-reported errors were in the “wrong”
class, which is reasonably consistent with the percentage (70%) of “wrong”
TR-reported errors [see Figures 6 and 8.

8. In inspections there were proportionately more “extra” errors and fewer
“missing” errors than there were from TR’s [see Figures 6 and 8]. Seven
percent of the inspection-reported errors were “extra,” as opposed to two
percent of TR-reported errors [see Figures 6 and 8]. Finding “extra” errors is
certainly worthwhile since it helps reduce development costs; e.g., developers
do not have to test the “extra” portion. It is desirable to detect the “extra”
errors as early in development as possible, such as in design inspections [see
Figure 5].

14

Figure 10: Distribution of errors (TR’s) by severity and error class.

Severity Error class
Wrong | Missing | Extra | All
1 2 0 0 2
2 12 3 1 16
3 11 8 0 19
4 8 3 0 11
All 33 14 1 48

5 Data Bindings Analysis

5.1 Clustering with Data Bindings

One primary goal for this study was to investigate the relationship of “software
data bindings” to software errors [HB85]. “Data bindings” are measures that
capture the data interaction across portions of a software system. The theoretical
background for the measures are described in [HB85]. Earlier studies have revealed
insights about the usefulness of data bindings in the characterization of software
systems and their errors [BT75] [HB85]. In order to describe the data bindings
analysis process applied, we first introduce some terminology (see also [HBS85]).

Potential Data Binding A potential data binding is defined as an ordered triple
(p,x,q) where p and q are procedures and x is a variable within the static
scope of both p and q. Potential data bindings reflect the possibility of a
data interaction between two components, based upon the locations of o
q, and x. That is, there is a possibility that p and q can communicate via
the variable x without changing or moving the definition of x. Whether x
is actually mentioned inside of p or q is irrelevant in the computation of
potential data bindings.

Used Data Binding A used data binding is a potential data binding where p
and q use x for either reference or assignment. The used data binding requires
more work to calculate than the potential data binding as it is necessary to
look inside the components p and q. It reflects a similarity between p and q
(they both use the variable x).

15

Actual Data Binding An actual data binding is defined as a used data binding
where p assigns a value to x and q references x. The actual data binding
is slightly more difficult to calculate as a distinction between reference and
assignment must be maintained. Thus more memory is required but there is
little difference in computation time. The actual data binding only counts
those used data bindings where there may be a flow of information from p
to q via the variable x. The possible orders of execution for p and q are not
considered. That is, there may be other factors (e.g., control flow conditions)
which would prevent such communication.

There are stronger levels of data bindings. However, in this study we calculated
actual data bindings. This level of data bindings seems to offer adequate measure
of similarity while not requiring complex data flow analysis that stronger levels
need. Essentially, we are erring in the direction of safety (as done, for example, by
code optimizers) by assuming that procedures may influence one another unless
we can prove otherwise.

First, we calculated the actual data bindings in the system. Then, we applied
the statistical technique of clustering [Eve80] to the data bindings information to
produce a hierarchical description for the software system. The clustering takes
Place in a bottom-up manner. The process iteratively creates larger and larger
clusters, until all the elements have collapsed into a single cluster. The elements
in the clusters are the procedures and functions in the system. The elements with
the greatest interaction, in terms of actual data bindings, cluster together. The
technique of clustering has been applied previously to partition a large system into
subsystems in [BE82]. Hierarchical clusters have been formally defined in [Js71).

5.2 Data Bindings Analysis Software

A set of five software tools was developed to calculate these hierarchical, data
bindings clusters and applied to the 77 subsystems in the selected project. (As
defined in Section 2, a subsystem in the selected project is a large collection of
routines that are linked together to form an executable system feature; subsystems
averaged 19,000 source lines.) Four of the five tools are language independent; the
other tool — a major one — is language dependent. All of the tools are written
in the C programming language [KR78].

The tools determine the data bindings that occur among the procedures and
functions in the source code and then use them in cluster analysis as a measure

16

of similarity. The tools will therefore conduct source code analysis and cluster
analysis. Due to the fact that almost all large systems consist of many separately
compiled units, there must also be a program to gather the information from
several compilation units and combine it, somewhat similar to a linker.

The five tools convert the source code into a hierarchical system description
[Hut87]. The first two programs correspond roughly to the standard compile
and link paradigm. The first program, source_bind, reads the source code and
produces a file containing information about the variable usage of the procedures
and functions, from which the data bindings will be determined. This first program
is built specifically for the source language, and hence, is language dependent. The
second program, link_bind, takes the outputs from one or more runs of source_bind
and combines the information together in much the way that a link editor does,
giving each data object a unique name. The third program, matriz_bind, takes the
output of link_bind and builds a matrix that contains a row and a column for each
procedure and function in the source code. The matrix entries are the number
of actual data bindings between a pair of procedures or functions. The fourth
program, fold_bind, reads the output of matrix_bin and creates a dissimilarity
matrix (a non-negative, real, symmetric matrix with zeros on the diagonal [HB85]
[JS71]) that contains the binding information in a format that cluster programs
require. The fifth program, cluster_program, reads the output of fold_bind and
produces a description of the system as a tree. The tree gives a view of the
hierarchy of the system with respect to data usage.

6 Data Analysis

The data collection and analysis methodology was successful in producing a wide
range of statistically significant results. Several analysis techniques, including
analysis of variance and cluster analysis, were employed in the study.

6.1 Terminology

Throughout the analysis and interpretation, we use the terms subsystems and
routines as follows:

¢ Routine — A routine is a main program, procedure, or function. There are
a total of 451 source code routines in the system.

17

e Subsystem — A subsystem is a large set of routines that are linked together
to form an executable system feature. There are 77 executable features in
the system. They average 19,000 source lines in size.

A routine is linked into 12.4 subsystems on the average. Therefore, the total size
of the whole system is not 77 x 19,000 = 1,463,000 source lines; the total size is
140,000 source lines. See Section 2 for further description of the subsystems and
routines in the software system. ‘

We used the analysis tools described in Section 5 to produce hierarchical de-
scriptions for each of the 77 subsystems. The hierarchical descriptions are rooted,
connected trees that indicate the internal subsystem structure. Each routine in a
subsystem occurs as a leaf node in the tree exactly once. Subtrees indicate group-
ings of routines that form natural clusters based on the data bindings criteria.
There is a one-to-one correspondence between subtrees and clusters. A cluster
can contain either routines or other clusters. In other words, the root node of a
subtree can have as its children either leaf nodes (i.e., routines) or the root node
of another subtree (i.e., a subset of its own routines that form a smaller cluster).

In the software system being analyzed, a routine may be linked into more than
one subsystem. Each of the 77 subsystems has a separate hierarchical description.
Therefore, a routine appears in the hierarchical description of each subsystem into
which it is linked. A routine may cluster with different sets of routines in different
subsystems.

Associated with each cluster in a subsystem is a number ranging from 0 to 100. .
This number reflects the nature of the binding of the routines in the cluster. This
number is interpreted as the following ratio:

the coupling of the cluster with other clusters in the subsystem
the internal strength of the cluster

That is, the number captures the coupling/ strength ratio for a cluster of routines
within a subsystem. The coupling/strength ratios range from 0 to 100 since they
are calculated on a relative scale. The use of the word “relative” here means rela-
tive to the coupling/strength ratios that could result from the range of all possible
occurrences of data bindings. In the data bindings analysis process, the clusters
are formed in a bottom-up manner. The clusters with the lowest coupling/strength
ratios form in the first iteration, the clusters with the next lowest ratios form in
the second iteration, and so forth.

The lower a cluster’s coupling/strength ratio is, the lower the relative cou-
pling with other clusters and the higher the relative strength of binding within

18

the cluster. The higher a cluster’s coupling/strength ratio is, the higher the rel-
ative coupling with other clusters and the lower the relative strength of binding
within the cluster. Software engineering principles generally suggest that it is de-
sirable to have low coupling and high strength, which in this context means a low
coupling/strength ratio [SMC74].

The data bindings analysis produced 77 trees corresponding to the subsystems
which included a total of 4211 clusters containing 5045 routine occurrences. Recall
that there were a total of 451 routines in the system — each routine was bound
into 12.4 subsystems on the average (see Section 2). We calculated three different
measures based on the clusters resulting from the data bindings analysis. For each
routine occurrence, we calculated:

¢ Routine coupling/strength ratio — The coupling/ strength ratio of the first
cluster to form that included the routine as a member. This metric is in-
tended to capture the relationship of a routine to other routines in a subsys-
tem in terms of coupling and strength.

* Routine location in subsystem’s data binding tree — The depth in the tree of
the first subtree (i.e., cluster) to form that included the routine as a member.
More precisely, it is the depth in the tree of the root of that subtree. This
metric is intended to characterize the location of a routine in a data binding
tree. This location information is useful to know when data binding trees
are used as an alternate form of system documentation.

For each subsystem, we calculated:

e Subsystem coupling/strength ratio — The median of the coupling/strength
ratios for the clusters within the subsystem. We use a non-parametric statis-
tic here, i.e., a median, because the coupling/strength ratios are relative
measures. This metric is intended to characterize the overall coupling and
strength within a subsystem.

6.2 Data Analysis Method

An analysis of variance model was used to characterize subsystems and routines
that had either many/few errors or high/low development effort spent in error
correction.

19

6.2.1 Independent Variables

The analysis of variance model considered numerous factors simultaneously [Sch59)].
When defining the levels for some of the factors, we used non-parametric statistics
(e.g., quartiles) since the coupling/strength ratios are relative measures and the
data bindings trees have different overall depths. Some thresholds between fac-
tor levels (e.g., 86 for subsystem coupling/strength ratio) were selected to create
groups approximately equal in size. Subsystem size and routine size are included
as factors in the analysis because earlier analyses have indicated a relationship be-
tween size and software effort and error data (e.g., [Boe81] [BSP83|). The primary
factors and their respective levels in the model were:

1. Subsystem size

¢ Small — Subsystems with less than or equal to 12,148 source lines,
including comments

e Large — Subsystems with greater than 12,148 source lines, including
comments

2. Subsystem coupling/strength ratio

¢ Low — Subsystems with a coupling/strength ratio of less than 86

¢ High — Subsystems with a coupling/strength ratio of greater than or
equal to 86

3. Individual subsystem’s attributes
e One level for each of the 77 subsystems
4. Routine size

¢ Small — Routines with less than or equal to 255 source lines, including
comments ‘

o Large — Routines with greater than 255 source lines, including com-
ments

5. Routine coupling/strength ratio

o 4 _Highest — The uppermost quartile of the coupling/strength ratios
for the clusters in a subsystem

20

o 3_Higher — The next lower quartile of the coupling/strength ratios for
the clusters in a subsystem

® 2_Lower — The next lower quartile of the coupling/strength ratios for
the clusters in a subsystem

® 1_Lowest — The lowest quartile of the coupling/strength ratios for the
clusters in a subsystem
6. Routine location in subsystem’s data binding tree
® 4_Root — The uppermost quartile (nearest the root of the tree) of the
clusters in a subsystem’s data binding tree

e 3_Shallower — The next lower quartile of the clusters in a subsystem’s
data binding tree :

¢ 2 Deeper — The next lower quartile of the clusters in a subsystem’s
data binding tree

¢ 1 Deepest — The lowest quartile (furthest from the root of the tree) of
the clusters in a subsystem’s data binding tree

Four two-way interactions were also included in the model:

7. Interaction of subsystem size with subsystem coupling/strength ratio
8. Interaction of routine size with routine coupling/strength ratio

9. Interaction of routine size with routine location in subsystem’s data binding
tree

10. Interaction of routine coupling/strength ratio with routine location in sub-
system’s data binding tree

6.2.2 Dependent Variables

There were four dependent variables examined with the analysis of variance model.

1. Total errors — The total number of inspection, Trouble Report (TR), System
Trouble Report (STR), and Error Summary Worksheet (ESW) errors in a
routine

21

2. Total errors per KLOC — The total number of inspection, TR, STR, and
ESW errors in a routine per 1000 lines of source code

3. Error correction effort — The total amount of effort (in hours) spent cor-
recting TR and ESW errors in a routine

4. Error correction effort per KLOC — The total amount of effort (in hours)
spent correcting TR and ESW errors in a routine per 1000 lines of source
code

In general, the discussion will focus on the errors per KLOC and the error
correction effort per KLOC measures of the routines as opposed to the absolute
numbers. This factors out possible underlying correlations between source lines
and number of errors or amount of error correction effort. The statistics for all
four measures are reported, however. The discussion will tend to highlight results
that demonstrated a statistically significant difference, as opposed to those where
there was no statistical difference.

6.3 Characterization of High-Error and Low-Error Sub-
systems

In the source code portions of the system (see Section 2), there was a total of 299
distinct errors recorded from inspections, error summary worksheets (ESW’s),
system trouble reports (STR’s), and trouble reports (TR’s). Data on the effort -
required for error correction were available for 204 distinct errors recorded on

ESW’s and TR’s. In the subsequent figures, all inspection, ESW, STR, and TR
errors are counted equally.

In the following sections we analyze the number of errors and the error correc-
tion effort in the subsystems. The characterization of the subsystems is based on
subsystem coupling/strength ratio, subsystem size, and interactions across these
two factors. The results are summarized in a following section.

6.3.1 Subsystem Coupling/Strength Ratio

Figure 11 presents the errors and error correction effort in the routines in
subsystems with different coupling/strength ratios. This figure and the following
analogous figures give the means and standard deviations for (i) the number of

22

Figure 11: Distribution of errors and error correction effort by subsystem cou-
pling/strength ratios.

Subsystem Errors _ Error correction hours
coupling/ || per KLOC Total per KLOC Total
|_strength || Mean Std | Mean Std || Mean Std | Mean Std

High 1.54 3.95| 0.44 099 2.80 7.53| 0.88 2.69
Low 031 1.16| 0.15 0.52 | 0.91 4.51| 042 2.39
Overall 1.28 3.58 | 0.38 0.92| 2.39 7.03| 0.78 2.63

errors per 1000 lines of source code (KLOC), (ii) the number of errors, (iii) the error
correction effort per KLOC, and (iv) the error correction effort in the routines.
Subsystem coupling/strength ratio was not a statistically significant factor with
respect to either errors per KLOC or error correction effort per KLOC (a > .05)2.

6.3.2 Subsystem Size

Figure 12: Distribution of errors and error correction effort by subsystem size.

Subsystem Errors Error correction hours
size per KLOC Total per KLOC Total
Mean Std | Mean Std Mean Std | Mean Std
Large || 1.52 3.94] 0.43 098 2.77 7.44] 086 261
Small 035 1.22| 0.17 0.58| 0.98 4.96| 0.49 2.71
Overall 128 3.58 | 0.38 0.92 2.39 7.03] 0.78 2.63

Figure 12 presents the errors and error correction effort in the routines in
subsystems with different sizes. The subsystems of large size had routines that
averaged 1.52 errors per KLOC, which was greater than the small subsystem

average of 0.35 errors per KLOC (a < .05). A plot of errors per KLOC versus
subsystem size appears in Figure 13.

2The F-test significance levels reported in this and later sections are based on the use of Type

IV partial sums of squares[Sch59]. Any statistical difference discussed will at least be significant
at the a < .05 level, unless otherwise noted.

23

Figure 13: Relationship between errors per KLOC in the routines and subsystem
size. Legend: A = 1 observation, B = 2 observations, etc.

Average errors per KLOC

4.5 +
4.0 +
3.5 +
3.0 +
2.5 +
2.0 +
1.5 +
1.0 +
0.5 +
0.0 w

A
A
A
A
A
A
A
A
A
B A AA
CA A A
B A A A A
A A A
A
A
A A
AA A
BA
CABAAA B A
FE A A AAA AA A
CA
+ — e et + + + t + t + + t t t +
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000

Lines of source code in the subsystem

24

6.3.3 Interactions Across Subsystem Coupling/Strength Ratio and Size

Figure 14: Distribution of errors and error correction effort across subsystem
coupling/strength ratios and subsystem size.

Subsystem | Subsystem Errors Error correction hours
coupling/ size per KLOC Total per KLOC Total
strength Mean Std | Mean Std Mean Std | Mean Std

High Large 1.66 4.12| 046 1.02| 2.99 7.71] 092 2.66
Small 045 141 021 066 1.11 5.31| 0.56 2.93

Low Large 036 1.27 | 0.15 0.52 | 0.91 4.11] 0.39 2.07
Small || 0.28 1.09| 0.15 0.52 | 0.90 4.75| 0.44 2.57

Overall 1.28 3.58 | 0.38 092 2.39 7.03| 0.78 2.63

Figure 14 presents the errors and error correction effort in the routines in
subsystems with different coupling/ strength ratios and different sizes. Combin-
ing different subsystem coupling/strength ratios and different sizes resulted in a
statistically significant interaction for errors per KLOC (a < .011). Large sub-
systems with high coupling/strength ratios had routines that averaged 1.66 errors
per KLOC, which was substantially more than the other subsystems — their
combined average was 0.36 errors per KLOC. In addition, combining subsystem
coupling/strength ratio and size resulted in an interaction that was almost statisti-
cally significant for error correction effort per KLOC (e < .066). Large subsystems
with high coupling/strength ratios had routines that averaged 2.99 error correc-
tion hours per KLOC — the other subsystems had a combined average of 0.97
error correction hours per KLOC. -

6.3.4 Summary of Results

1. Large subsystems with high coupling/ strength ratios had routines with the
most errors per KLOC.

2. Large subsystems with high coupling/ strength ratios had routines with six
times as many errors per KLOC than did small subsystems with low cou-
pling/strength ratios.

25

3. Large subsystems with high coupling/strength ratios had routines with ten
times as many unit and integration test (ESW?) errors per KLOC than did
small subsystems with low coupling/strength ratios.

4. Large subsystems with high coupling/strength ratios had routines with eight
times as much error correction effort per KLOC from unit and integration
test (ESW) errors than did small subsystems with low coupling/strength
ratios.

6.4 Characterization of High-Error and Low-Error Rou-
tines

In the following sections we analyze the number of errors and the error correction
effort in the routines. The characterization of the routines is based on routine
coupling/strength ratio, routine size, routine location in the data binding tree, and
interactions across these three factors. The results are summarized in a following
section. As mentioned in Section 6.3 there were 299 distinct errors, counting all
inspection, ESW, STR, and TR errors equally; 204 of them had data on error
correction effort.

6.4.1 Routine Coupling/Strength Ratio

Figure 15 presents the errors and error correction effort in the routines with -
different coupling/strength ratios. As before, this figure and the following analo-
gous figures give the means and standard deviations for (i) the number of errors
per 1000 lines of source code (KLOC), (ii) the number of errors, (iii) the error
correction effort per KLOC, and (iv) the error correction effort in the routines.

The routine coupling/strength ratio statistically effected both the number of
errors per KLOC and the error correction effort per KLOC in the routines (e
< .0008 and a < .002, respectively). The routines in coupling/strength region
4 HIGHEST had the most errors per KLOC (an average of 2.27) and the highest
error correction effort per KLOC (an average of 5.86 hours). The routines with
coupling/strength ratios in either region 3_HIGHER or 2.LOWER had the second
most errors per KLOC and the second most error correction effort per KLOC.
The 3_HIGHER and 2_.LOWER regions were not statistically different in either

3Errors during unit and integration testing were reported on error summary worksheets
(ESW’s); see Figure 1.

26

Figure 15: Distribution of errors and error correction effort by routine cou-
pling/strength ratios.

Routine Errors Error correction hours
coupling/ | per KLOC Total per KLOC Total
strength || Mean Std | Mean Std || Mean Std | Mean Std

4 Highest | 2.27 4.58| 0.59 1.04| 5.86 10.98] 1.94 4.20
3_Higher || 1.15 3.13| 0.34 0.74| 2.19 6.84 | 0.72 2.54
2_Lower 145 419 044 1.18 | 1.57 4.27 | 0.49 1.61
1 Lowest || 0.28 1.11| 0.15 0.49(0.21 1.09 | 0.06 0.29

Overall 1.28 3.58 | 0.38 0.92 || 239 7.03 | 0.78 2.63

errors per KLOC or error correction effort per KLOC. Those routines in region
1.LOWEST had the fewest errors per KLOC (an average of 0.28) and the least
error correction effort per KLOC (an average of 0.21 hours).! Plots of errors
per KLOC and error correction effort per KLOC versus routine coupling/strength
ratio appear in Figures 16 and 17, respectively. These results empirically support
the software engineering principle of desiring low coupling and high strength.

6.4.2 Routine Size

Figure 18 presents the errors and error correction effort in the routines with -
different sizes. The routine size statistically effected the error correction effort per
KLOC for the routines (« < .0001). Routines of large size had an average of 3.22
hours error correction effort per KLOC, which was more than did those of small
size (an average of 1.36 hours error correction effort per KLOC). Although small
routines had slightly more errors per KLOC than did large routines, the difference
was not statistically significant (a > .05). A separate study has indicated, however,
that smaller routines may be more error-prone than larger routines [BP84]. A plot
of errors per KLOC versus routine size appears in Figure 19.

6.4.3 Routine Location in Data Binding Tree

4All multiple comparison results, such as the one in the previous four sentences, were con-
ducted with Tukey’s multiple comparison statistic [Sch59) (Ins82]. All of the pairwise statistical
comparisons of these four categories are statistically significant at the o < .05 level simultaneously.

27

Average er1

27.

25.

22.

20.

17.

15.

12.

10.

Figure 16: Relationship between errors per KLOC in the routines and routine
coupling/strength ratio. Legend: A = 1 observation, B = 2 observations, etc.

rors per KLOC

A A B AA
A B AA AB
A AA AA AAAD F B
A
A A A
A A A A A
A
A
A A BAAA B A
A
A B A AA AABB
AAB AAA
A
A AA AAEBAA BB
A A AA
A A BAAAAA
A AB AA CAA BAA AA
A A A AAAB AB BA A AA A

Routine coupling/strength ratio

A AA A BAA B A ACAADFB DFBCA A
A B A B E BDDC A BADA ACDCEG CBBCB ECCADAFGEJHDKNHNJAOLHNBBC
ww 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

28

Figure 17: Relationship between error correction effort per KLOC in the rou-
tines and routine coupling/strength ratio. Legend: A = 1 observation, B = 2
observations, etc.

Average error correction hours .per KLOC

35 + >>w >>>
A
30 +
A
25 +
20 + A A A B A A
15 +
B A
A AA A
A
10 +
A A A A A DC AACB
A AA AA AAAC F B
A A ABA AB
A A BAA B A
5 ! A AA >> A
B A AA C A BBA AD DB AABB A
A A AA B
A A B AA A
] A A B AA AB
0 H A A B A AA CB ABAA
nmwl|||+um|x . >;) A w B B A B E BDDCA A BADA BCDCFGA DBCDC ECDBDAFGFJIGKOMQJASPIPCBD
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Routine coupling/strength ratio

29

Figure 18: Distribution of errors and error correction effort by routine size.

Routine Errors Error correction hours
size per KLOC Total per KLOC Total
Mean Std | Mean Std || Mean Std | Mean Std
Large 1.19 254 0.47 0.99 || 3.22 8.72| 1.20 3.42
Small 139 455 0.26 0.80 | 1.36 3.81] 0.26 0.71
Overall | 1.28 3.58 | 0.38 0.92] 2.39 7.03| 0.78 2.63

Figure 20 presents the errors and error correction effort in the routines with
different data binding tree locations. The routine location in the data binding tree
statistically effected the number of errors per KLOC in the routines (a < .0001).
Routines in tree location region 3. SHALLOWER had an average of 1.78 errors
per KLOC, which was more than any of the other three tree location regions.®

The routine location in the data binding tree also statistically effected the error
correction effort per KLOC for the routines (@ < .0001). The routines in tree
location region 3.SHALLOWER had the most error correction effort per KLOC
(an average of 3.55 hours), those in tree location region 2_.DEEPER had the second
most, and those in regions 4 ROOT and 1. DEEPEST had the fewest and were not
statistically different (they had a combined average of 1.53 hours). A plot of error
correction effort per KLOC versus data binding tree location appears in Figure 21.
One interpretation for there being less error correction effort per KLOC in regions
4.ROOT and 1.DEEPEST may be the following: The structure of the system
at the highest level (i.e., initial stages of problem decomposition) and the lowest
level (e.g., formulation of abstract data types) may be better understood than
the intermediate levels of system development. The effect of the less understood
intermediate levels is compounded in larger subsystems, as was seen in Sections
6.3.2 and 6.3.3.

6.4.4 Interactions Across Routine Coupling/ Strength Ratio, Size, and
Location in Data Binding Tree

Figure 22 presents the errors and error correction effort in the routines with
different coupling/strength ratios and different data binding tree locations. There
was a significant interaction between the routine coupling/ strength ratio and data

3Also, note that region 1 DEEPEST had more errors per KLOC than did region 4 ROOT.

30

Figure 19: Relationship between errors per KLOC in the routines and routine
size. Legend: A = 1 observation, B = 2 observations, etc. Note: 34 observations

Emmmb. behind Z’s.

Average errors per KLOC

27.5 +

G
25.0 +
22.5 +
20.0 +
17.5 +

H
15.0 +
12.5 + A S
A
C
E A
10.0 +
A

A

7.5 + A I
A

DI

5.0 + G
A A

GJA A

A (o]
2.5 + F C A

Jp A AA
A HA EB ’ A A

ML DAM CA

0.0 + A BDM ZZZKZKRABCDGCJAA GDA AAA C A A C A A
e o + + + + + -+ 4 + + + +
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Lines of source code in the routine

31

Figure 20: Distribution of errors and error correction effort by routine location in
data binding tree.

Routine Errors Error correction hours
tree per KLOC Total per KLOC Total
location Mean Std | Mean &d Mean Std | Mean Std

[4 Root 0.88 2.82] 0.30 0.77 || 1.30 4.82] 0.37 1.59
3_Shallower | 1.78 4.44| 0.51 1.12 355 888 1.19 3.36
2 Deeper || 0.96 2.48| 0.27 0.63| 2.51 7.39| 0.83 2.82
1 Deepest || 1.28 3.73| 0.38 0.96 | 1.76 5.08| 0.57 1.95
Overall 1.28 3.58[0.38 0.92| 2.39 7.03| 0.78 2.63

binding tree location for the number of errors per KLOC in the routines (a <
.0001). All of the three two-way interactions (routine coupling/strength ratio
with routine size, routine coupling/strength ratio with routine tree location, rou-
tine size with routine tree location) statistically effected the error correction effort
per KLOC for the routines (all at @ < .0001). Routines with the highest cou-
pling/strength ratios (4_.HIGHEST) and a location in the “central portion” of the
data binding tree (3.SHALLOWER or 2.DEEPER) had the most error correction
effort per KLOC (a combined average of 6.46 hours).

6.4.5 Summary of Results

1. The routines with the highest coupling/strength ratios had the most errors
per KLOC and the most error correction effort per KLOC.

2. The routines with the lowest coupling/strength ratios had the fewest errors
per KLOC and the least error correction effort per KLOC.

3. The routines with the highest coupling/strength ratios had over eight times
as many errors per KLOC than did routines with the lowest coupling/strength
ratios.

4. The routines with the highest coupling/strength ratios had over 27 times as
much error correction effort per KLOC than did routines with the lowest
coupling/strength ratios.

32

Figure 21: Relationship between error correction effor: per KLOC in the routines
and routine location in the data binding tree. Legend. A = 1 observation, B = 2
observations, etc. Note: 5 observations hidden behind Z’s.

Average error correction hours per KLOC

35

30

25

20

15

10

A A A A A
+ A A
A
+
A
+
+ A A A A A A A
IT
A B
A B A
A
.At
A B c A C A D A C
B D AA A B A AA A AB A
A AA A A A B A
a B A B A A A
A AA A A
H A
B A B B A AG AAB A D A E A
A A B A A
A A A A A B
A a >>w> A B BAA A A
AABA AA A
H+ ms A v A AAB HA w>>>o> BDU A Esn>occ>u§nnm§o§mo on%wﬁogno% BC A A
0 1 N 3 4 5 6 7 8 9 10 11 12 13 14 15

Level of depth in the data binding tree of

the routine

33

Figure 22: Distribution of errors and error correction effort across routine cou-

pling/strength ratios and routine tree location.

Routine Routine Errors Error correction hours
coupling/ tree per KLOC Total per KLOC Total
strength location Mean Std | Mean Std || Mean Std | Mean Std
4_Highest 4 Root | 2.26 4.71] 0.55 1.07| 3.85 8.09 1.10 2.74
3_Shallower || 2.37 4.71| 0.63 1.06 | 6.85 12.05 2.33 4.68
2_Deeper 1.62 267 0.45 0.63 || 6.06 11.12]| 2.10 4.49
1 Deepest 1.33 1.88| 0.83 1.18 | 0.27 0.38 0.17 0.24
3 Higher 4 Root 0.00 0.00| 0.00 0.00{ 0.00 0.00 0.00 0.00
3_Shallower || 1.31 4.26| 0.36 0.95 || 0.93 3.89 0.27 1.29
2 Deeper 1.23 2.75| 0.36 0.68| 3.58 9.11 1.21 3.41
1 _Deepest 1.04 2.55| 032 0.64 | 1.77 5.49 0.58 2.08
2_Lower 4 Root 0.00 0.00] 0.00 0.00] 0.00 0.00 0.00 0.00
3_Shallower || 2.04 4.99| 0.68 1.53{ 1.36 3.26 0.44 0.90
2 Deeper 093 265| 025 0.69) 1.43 3.96 | 0.42 1.63
1 _Deepest 1.61 4.54 | 047 1.191 2.04 5.17 0.65 2.00
1_Lowest 4 _Root 035 0.89| 0.23 0.60| 0.25 1.19 0.07 0.32
3_Shallower | 0.09 0.87| 0.03 0.21 | 0.10 0.74 0.03 0.21
2_Deeper 0.15 090]| 0.05 0.23{ 0.16 1.01 0.04 0.24
1_Deepest 046 241 0.11 043} 0.21 1.10 | 0.06 0.30
Overall 1.28 3.58| 0.38 0.92 | 2.39 7.03 0.78 2.63

5. Routines in data binding tree location region 3.SHALLOWER had more er-
rors per KLOC and more error correction effort per KLOC than did routines
in the other tree regions.

6. Small routines had more unit and integration test (ESW) errors per KLOC
than did large routines.

7. Large routines had more error correction effort per KLOC than did small
routines when either all errors or just unit and integration test (ESW) errors
were considered.

8. Large routines tended to have a higher average amount of correction effort
per error for unit and integration test (ESW) errors than did small routines.

34

6.5 Data Bindings for System Documentation and Evalu-
ation

The following observations resulted from dialogue with project personnel regarding
the data binding trees generated.

1. The data binding clusterings were able to detect major system data struc-
tures. '

2. The data binding clusterings seemed to provide a different view of the system
than that provided by the system documentation, which included textual
documents and a calling hierarchy.

3. Analyzing the clusters of data bindings provided insights to the development
and maintenance team.

7 Interpretations and Conclusions

In this study, we have merged two goals:

¢ To collect and analyze data from an ongoing software project without neg-
atively impacting the software developers; and

o To investigate the software engineering principles of coupling and strength -
(or cohesion) and their relationship to software errors and error correction
effort.

This study highlights and empirically supports several software engineering prin-
ciples. Some of them are widely recognized and some are not. The interpretations
span several areas: development methodology, inspection methodology, data col-
lection and analysis, size, coupling/strength, and system structure.

Development Methodology

It is better to leave it out than do it incorrectly, and it is better to do only what is
necessary. In other words, it is less costly to leave out part of the design or code
than to include incorrect design or code. It is cost effective to eliminate extraneous
design and unexecutable code.

'35

¢ Errors of omission (“missing”) are 74% of the cost of errors of commission
(“wrong”). Moreover, when you consider that fixing errors of omission is
actually postponed development cost, errors of omission are actually 39%
the cost of errors of commission.

e It is worthwhile finding “extra” design or code during inspections, especially
design inspections, since the associated life cycle costs, e.g., development and
testing, are eliminated. Seven percent of the errors found during inspections
were “extras.” '

Inspection Methodology

Design and engineering inspections are cost effective vehicles for error detection,
and design inspections are more effective than engineering inspections.

o It is less expensive to find errors during inspections than via trouble reports
(TR’s) since it is 1.7 times more expensive to isolate errors than to fix them.

® If you are not using inspections, you are better off starting with design
inspections since they were 3.0 times more effective in terms of errors found
per inspection than engineering inspections. Design inspections were 3.6
times more effective in finding major severity errors.

Data Collection and Analysis

Data can be gathered and analyzed during an ongoing software project without
hindering the developers.

e Software project personnel should be motivated by the purpose of data col-
lection and briefed on the results of data analysis.

e Data collection forms should be simple, few in number, and general, with
clearly indicated required/optional sections. Data should be collected at the
appropriate granularity for analysis and kept on-line.

¢ An in-house data collection coordinator helps catalyze the data collection
process and validate data.

36

Size

Subsystem size seems to be at least as important, if not more important, than
routine size. Hence, maybe the software community has been worrying about the
wrong issue.

¢ Smaller subsystems had routines with 4.3 times fewer errors per KLOC than
did larger subsystems.

¢ Smaller routines had a slightly higher average of errors per KLOC than
did larger routines, although the difference was not statistically significant.
When just unit and integration test errors are considered, however, smaller
routines had significantly more errors per KLOC than did larger routines.
Overall, errors in smaller routines were 2.4 times less expensive to fix.

Coupling/Strength

High strength and low coupling are desirable.

¢ Routines with the lowest coupling/strength ratios had 8.1 times fewer errors
per KLOC than routines with the highest coupling/ strength ratios and errors
were 27.9 times less costly to fix. :

e Large subsystems with high coupling/strength ratios had routines with 4.6
times more errors per KLOC than did the other categories of subsystems.

System Structure Hierarchy (Data Bindings View)

The structure of the system at the highest level, i.e., initial stages of problem
decomposition, and lowest level, e.g., formulation of abstract data types, appear to
be better understood than the intermediate levels of abstraction and specification.

® The errors were 50% less costly to fix in routines at the shallowest and
deepest levels of the data bindings view of the system structure hierarchy
than at the middle levels, and there were 21% fewer errors per KLOC.

37

8 Acknowledgement

The authors are very grateful to several persons on the selected software project
for their assistance and support in this research. Their names cannot be mentioned
because of a non-disclosure agreement. The authors appreciate the assistance of D.
Hutchens in developing the data bindings analysis tools and S. Wilkin in collecting
the data.

38

References

[Bas85]

[BE82]

[BK83]

[Boe81]

[BP84]

[BS84]

[BSPs3]

[BT75]

[BW84]

[Eme84]

[Eve80]

Victor R. Basili. Quantitative evaluation of software methodology. In
Proceedings of the First Pan Pacific Computer Conference, Melbourne,
Australia, Sept. 10-13 1985.

L.A. Belady and C.J. Evangelisti. System partitioning and its measure.
Journal of Systems and Software, 2(1):23-29, February 1982.

V. R. Basili and E. E. Katz. Metrics of interest in an ada develop-
ment. In JEEE Workshop on Software Engineering Technology Transfer,
pages 22-29, Miami, FL, April 1983.

B. W. Boehm. Software Engineering Economiecs. Prentice-Hall, Engle-
wood Cliffs, NJ, 1981.

V. R. Basili and B. T. Perricone. Software errors and complexity: an
empirical investigation. Communications of the ACM, 27(1):42-52, Jan.
1984.

V. R. Basili and R. W. Selby. Data collection and analysis in software
research and management. In Proceedings of the American Statistical
Association and Biometric Society Joint Statistical Meetings, Philadel-
phia, PA, August 13-16, 1984.

V. R. Basili, R. W. Selby, and T. Y. Phillips. Metric analysis and data -
validation across fortran projects. IEEE Trans. Software Engr.; SE-
9(6):652-663, Nov. 1983.

V. R. Basili and A. J. Turner. Iterative enhancement: a practical tech-
nique for software development. IEEE Transactions on Software Engi-
neering, SE-1(4), Dec. 1975.

V. R. Basili and D. M. Weiss. A methodology for collecting valid software
engineering data*. Trans. Software Engr., SE-10(6):728-738, Nov. 1984.

T. Emerson. A discriminant metric for module cohesion. In Proc. Sev-
enth Intl. Conf. Software Engr., pages 294-303, Orlando, FL, 1984.

B. S. Everitt. Cluster Analysis, 2nd ed. Heineman Educational Books
Ltd., London, 1980.

39

[FagT76]

[Fag86]

[GloT9]

[HB8S]

[HKS81]

[Hut87]

[IEES3]

[Ins82]

[IS71]

[KR78]

[Sch59]

[Sel85]

[SMC74]

- -

M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Sys. J., 15(3):182-211, 1976.

M. E. Fagan. Advances in software inspections. Trans. Software Engr.,
SE-12(5):744-751, July 1986.

S. A. Gloss-Soler. The DACS Glossary: A Bibliography of SoftwareEngi-
neering Terms. Technical Report GLOS-1, Data & Analysis Center for
Software, Griffiss Air Force Base, NY 13441, Oct. 1979.

D. H. Hutchens and V. R. Basili. System structure analysis: clustering
with data bindings. IEEE Trans. Soft. Engr., SE-11(8), Aug. 1985.

S. Henry and D. Kafura. Software quality metrics based on interconnec-
tivity. Journal of Systems and Software, 2(2):121-131, 1981.

David H. Hutchens. Software Tools for Data Bindings Analysis. Tech-
nical Report, Dept. of Computer Science, Clemson University, Clemson,
SC, 1987. (in preparation).

IEEE. IEEE Standard Glossary of Software Engineering Terminology.
Technical Report IEEE-STD-729-1983, IEEE, 342 E. 47th St, New York,
1983.

SAS Institute. Statistical Analysis System (SAS) User’s Guide. Techni-
cal Report, SAS Institute Inc., Box 8000, Cary, NC, 27511, 1982.

N. Jardine and R. Sibson. Mathematical Tazonomy. John Wiley and
Sons, New York, 1971.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, Englewood Cliffs, New Jersey, 1978.

H. Scheffe. The Analysis of Variance. John Wiley & Sons, New Y -rk,
1959.

R. W. Selby. Evaluations of Software Technologies: Testing, CLEAN-
ROOM, and Metrics. Technical Report TR-1500, Ph.D. Dissertation,
Dept. Com. Sci., Univ. Maryland, College Park, 1985.

W. P. Stevens, G. J. Myers, and L. L. Constantine. Structural design.
IBM Systems Journal, 13(2):115-139, 1974.

40

