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ABSTRACT

Although the field of software engineering is relatively new, it can benefit from the use of expert sys-
tems. Four separate, prototype expert systems have been developed to aid in software engineering
management. Given the values for certain metrics, these systems provide interpretations which explain
any abnormal patterns of these values during the development of a software project. The four expert
systems, which solve the same problem, were built using two different approaches to knowledge acquisi-
tion, a bottom-up approach and a top-down approach, and two different expert system methods, rule-
based deduction and frame-based abduction. In a comparison to see which methods better suit the
needs of this field, it was found that the bottom-up approach led to better results than did the top-
down approach, and the rule-based deduction systems using simple rules provided more complete and
correct solutions than did the frame-based abduction systems.

1. INTRODUCTION

The importance of expert systems is growing in industrial, medical, scientific, and other fields. Several
major reasons for this are: (1) the necessity of handling an overwhelming amount of knowledge in these
areas, (2) the potential of expert systems to train new experts, (3) the potential to learn more about a
field while organizing knowledge for the development of expert systems, (4) cost reductions sometimes
provided by expert systems, and (5) the desire to capture corporate knowledge so it is not lost as per-
sonnel changes.

Although the field of software engineering is still relatively new, it can certainly benefit from the use of
expert systems because of the ability to learn from them. The development of any expert system
requires organized knowledge; therefore, the knowledge engineer can learn more about the field of
software engineering as he is forced to develop, understand and organize relationships between various
pieces of knowledge.

On another level, the expert systems in this field can be used to train and help people, including
software managers. They can contain general software engineering principles as well as a history of
information from a particular software development environment which can be particularly helpful to
inexperienced managers and developers.
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Since software engineering is still such a new field with much of its knowledge unclear, special attention
has to be given to basic research issues concerning the development of expert systems in this field. The
high level goals of this project were to determine: (1) Are expert systems for software engineering, or
any new field with uncertain knowledge, feasible? (2) What methodology should be used for knowledge
acquisition? (3) What type of expert system methodology best suits software engineering? (4) Do the
experts themselves agree on the information to be used? (5) Are certain software environments more
suited for expert systems than others? (6) Are we ready to develop systems with environment-
independent, general truths? (7) What information should be included in the systems?

This paper will summarize the results of the development and comparative analysis of four separate,
prototype expert systems, collectively named ARROWSMITH-P. A more in-depth analysis of these sys-
tems can be found in (Ramsey, 1986a), and earlier versions of these expert systems are described in
(Basili, 1985). This represents an early attempt at defining the process of creating expert systems for
software engineering management. ARROWSMITH-P is intended to aid the manager of a software
development project in an automated manner. The goal of these systems is to help detect and assess
the problems which might occur during the coding and testing of a project as early as possible. The
systems work as follows. First, it is determined whether or not a software project is following normal
development patterns by comparing measures such as programmer hours per line of source code against
historical, environment-specific baselines of such measures. Then, the “manifestations” detected by this
comparison, such as an abnormally high rate of programmer hours per line of source code, serve as
input to each expert system, and each system attempts to determine the reasons, such as high complez-
ity or low productivity, for any abnormal software development patterns. Early detection of potential
problems can provide invaluable assistance to the manager of a software development project. These
expert systems should be updated as the environment changes and as more is learned in the field of
software engineering.

The rest of this paper is organized as follows. Section 2 provides a brief overview of the underlying
methodology used to build the expert systems discussed in this paper, and Section 3 details the imple-
mentations of ARROWSMITH-P. Section 4 furnishes the details for the evaluation of the expert sys-
tems. Section 5 then discusses results and conclusions from the development and testing of the expert
systems. Finally, Section 6 discusses current and future research needs.

2. BACKGROUND

In general, an expert system consists of two basic components, a domain-specific knowledge base and a
domain-independent inference mechanism. The knowledge base consists of data structures which
represent, general problem-solving information for some application area. The inference mechanism uses
the information in the knowledge base along with problem-specific input data to generate useful infor-
mation about a specific case.

The set of expert systems in ARROWSMITH-P was constructed using KMS (Reggia, 1982a), an experi-
mental domain-independent expert system generator which can be used to build rule-based, frame-based
and Bayesian systems. The ARROWSMITH-P systems were built using two different methods: rule-
based deduction and frame-based abduction. Rule-based deduction is a common method, and it is
briefly described below; frame-based abduction is a newer method which has not been widely used, so it
is described in more detail.

2.1. RULE-BASED DEDUCTION

A common. method for expert systems is rule-based deduction. In this approach, domain-specific
problem-solving knowledge is represented in rules which are basically of the form:



“IF <antecedents> THEN < consequents>"’;

although the exact syntax used may be quite different (e.g., PROLOG). If the antecedents of such a
rule are determined to be true, then it logically follows that the consequents are also true. (For a full
description of rule-based deduction, see (Hayes-Roth, 1978).)

2.2. FRAME-BASED ABDUCTION

Another important method for implementing expert systems is frame-based abduction. Here, the
domain-specific problem-solving knowledge is represented in descriptive “frames” of information (Min-
sky, 1975), and inference is typically based on hypothesize-and-test cycles which model human reasoning
as follows. Given one or more initial problem features, the expert system generates a set of potential
hypotheses or “causes” which can explain the problem features. These hypotheses are then tested by (1)
the use of various procedures which measure their ability to account for the known features, and (2) the
generation of new questions which will help to discriminate among the most likely hypotheses. This
cycle is then repeated with the additional information acquired. This type of reasoning is used in diag-
nostic problem solving (see (Reggia, 1982b) for a review). INTERNIST (Miller, 1982), KMS.HT (Reggia,
1982a), (Reggia, 1983a), PIP (Pauker, 1976), and IDT (Shubin, 1982) are typical systems using frame-
based abduction.

In order to simulate hypothesize-and-test reasoning, KMS employs a generalized set covering model in
which there is a universe of all possible manifestations (symptoms) and a universe which contains all
possible causes (disorders). For each possible cause, there is a set of manifestations which that cause
can explain. Likewise, for each possible manifestation, there is a set of causes which could explain the
manifestation. Given a diagnostic problem with a specific set of manifestations which are present, the
inference mechanism finds all sets of causes with minimum cardinality which could explain (cover) all of
the manifestations. For a more detailed explanation of the theory underlying this approach and the
problem-solving algorithms, see (Reggia, 1983a), (Reggia, 1983b), (Nau, 1984), (Peng, 1984).

8. IMPLEMENTATIONS

In this section, we will first present the methodology developed for building expert systems for software
engineering. Then we will discuss the actual implementations of ARROWSMITH-P.

3.1. METHODOLOGY

The following two methodologies of knowledge acquisition for constructing expert systems for software
engineering management were developed. They can best be described as a bottom-up methodology and
a top-down methodology. (An earlier version of the bottom-up reasoning was presented in (Doerflinger,
1983).)

38.1.1. Bottom-Up Methodology

Given a homogeneous environment (i.e. one in which many similar projects are developed for the same
application area), it is possible to produce historical, environment-specific baselines of normalized
metrics from the data of past software projects. Normalized metrics are derived by comparing variables
such as programmer hours and lines of code against each other. This is done so that influences such as
the size of the individual project are factored out. The baseline for each metric is defined as the average
value of that metric for the past projects at various discrete time intervals (such as early coding or
acceptance testing). Only those metrics which exhibit baselines with reasonable standard deviations
should be used; too little variety in the values of the measures proves uninteresting, while too much
variety is not very meaningful. In addition, one ideally wants a relatively small number of meaningful
metrics whose values are easily obtainable.
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Next, experts can determine interpretations, such as unstable specifications or good testing, which would
explain any significant deviation (more than one standard deviation less than or greater than the aver-
age) of a particular metric from the historical baseline. The deviation of some metric can be thought of
as a manifestation or symptom which can be “diagnosed” as certain interpretations or causes. Further-
more, these relationships between interpretations and manifestations should be made time-line specific
because, for example, an interpretation during early coding might not be valid during acceptance test-
ing. In addition, measures to indicate how certain one is that the deviation of a particular metric has
resulted from a particular interpretation can be included.

The approach, described above, can be classified as a bottom-up approach because it seems to go in the
opposite direction of cause-and-effect. First the symptoms (deviant metric values) that something is
abnormal are explored, and then the underlying interpretations or -diagnoses of the abnormalities are
developed. This approach to knowledge acquisition is reasonable in a homogeneous environment because
the metrics are homogeneous, and deviations are indicative that something is wrong. However, this
approach contrasts with the development of expert systems in other fields, such as medicine, which typi-
cally use a top-down approach.

3.1.2. Top-Down Methodology

A top-down approach to knowledge acquisition can be similar to the bottom-up approach in that the
same manifestations and causes can be used. However, it would first define the various interpretations
or diagnoses and then indicate the metrics which would be likely to have abnormal values for each
interpretation.

Using the top-down approach, the experts view the knowledge from a different perspective when defining
the relationships that exist between the interpretations and manifestations. This approach can be seen
as a more general approach than the bottom-up approach is to knowledge acquisition in the field of
software engineering. In the bottom-up methodology, the metrics are analyzed first and these are, by
their nature, environment-specific. -The focus is automatically limited to the specific environment. Con-
versely, in the top-down methodology, the experts think first of the causes or interpretations and then
indicate the effects or likely metrics which would show deviant values if a certain interpretation existed.
This generalizes the problem across environments somewhat because the emphasis seems to be switched
to the interpretations which can be universal.

3.1.3. Using the Expert Systems

Once the expert systems have been developed, the input to each expert system would then consist of
those metrics from a current project which deviate from a historical baseline of the same metrics at the
same time of development for similar projects. The knowledge base consists of information about vari-
ous potential causes, such as poor testing or unstable specifications, for any abnormally high or low
measures, and the expert system provides explanations for any abnormal software development patterns.

3.2. ACTUAL IMPLEMENTATIONS

ARROWSMITH-P consists of four independent expert systems, one using a bottom-up approach to
knowledge acquisition and rule-based deduction, a second using the bottom-up approach and frame-
based abduction, a third using a top-down approach to knowledge acquisition and rule-based deduction,
and a fourth using the top-down approach and frame-based abduction.

The bottorup methodology described above was based on previous research conducted on the
NASA/Goddard Space Flight Center Software Engineering Laboratory (SEL) environment (Doerflinger,
1983). Since the SEL environment is homogeneous, it was possible to produce historical, environment-
specific baselines of normalized metrics from the highly reliable data of nine software projects. (See
(Basili, 1977), (Basili, 1984b), (Basili, 1978), (Card, 1982), (SEL, 1982) for fuller descriptions of the SEL



environment.)

The bottom-up development was performed first, and nine metrics, derived from five variables, proved
satisfactory, exhibiting baselines with reasonable standard deviations. The metrics are displayed in
Table 1. These same metrics were later used during the top-down development to ensure consistency
and to allow a comparative study to be performed. The time-line for the baselines was divided (after a
slight modification) into the following five discrete intervals: early code, middle code, late code, systems
test, and acceptance test.

The sets of interpretations and the relationships between the interpretations and the abnormal values of
metrics were mainly derived from two experts who have had a great deal of experience in this field and
particularly in the SEL environment. During the bottom-up development, and later during the top-
down development, the experts were asked to provide these relationships for all five time phases. The
list of interpretations used and tested in the bottom-up and top-down expert systems is displayed in
Table 2.

In the rule-based systems, the rules are of the form “IF manifestations THEN interpretations,” while in
the frame-based systems, there is one frame (containing a list of manifestations) for each interpretation.
These formats are independent of whether the relationships between manifestations and interpretations
were defined using a bottom-up or a top-down approach to knowledge acquisition. The rule-based and
frame-based systems which used the bottom-up approach were intentionally built to be as consistent
with one another as possible. The causes and manifestations used were identical in both cases, as were
the relationships between them. The same was true for the two expert systems which employed the
top-down approach. See (Ramsey, 1986a) for more details concerning this implementation and research
issues related to this implementation.

4. EVALUATION OF EXPERT SYSTEMS
4.1. METHODS OF EVALUATION

The four expert systems have been evaluated and compared in several ways. The correctness of each
system was measured by comparing the interpretations provided by the expert system against what
actually happened during the development of the projects, thereby obtaining a measure of agreement.
This analysis was performed for ten projects (the original nine plus a newer project which was com-
pleted after the development of the expert systems) in all five time phases for each of the four expert
systems. Each of the original nine projects was compared against historical baselines of the remaining
eight projects to determine abnormal metric values, and the tenth project, which was tested later, was
compared against the original nine. A total set of 50 cases was tested on each of the four expert

TABLE 1 - METRICS USED IN EXPERT SYSTEM

- Computer Runs per Line of Source Code

- Computer Time per Line of Source Code

- Software Changes per Line of Source Code
- Programmer Hours per Line of Source Code
- Computer Time per Computer Run

- Software Changes per Computer Run

- Programmer Hours per Computer Run

- Computer Time per Software Change

- Programmer Hours per Software Change
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TABLE 2 - INTERPRETATIONS USED IN EXPERT SYSTEM

Unstable Specifications

Low Productivity

High Productivity

High Complexity or Tough Problem

High Complexity or Compute Bound Algorithms Run or Tested
Low Complexity

Simple System

Error Prone Code

Good Solid and Reliable Code

Large Portion of Reused Code

Lots of Testing

Little Testing

Good Testing or Good Test Plan

Lack of Thorough Testing

Poor Testing Program

Changes Hard to Make

Loose Configuration Management or Unstructured Development
Tight Configuration Management or Control

Computer Problems or Inaccessibility or Environmental Constraints
Lots of Terminal Jockeys

systems.

The actual results of what took place during development were gathered from information in another
section of the database, mostly from subjective evaluation forms and project statistics forms. These
forms are described more fully in (Ramsey, 1986a)

The results from the expert systems were also analyzed statistically by using a Kappa statistic test
(Spitzer, 1967), (Cohen, 1968) on each interpretation. The Kappa statistic determines whether the
results are better or worse than chance agreement. It was used for each interpretation in each of the
four expert systems to determine whether certain interpretations are better understood than others.

In addition to testing the performance of the expert systems, an analysis was performed to compare the
information provided by the two experts for the systems. This was performed by comparing the rela-
tionships indicated by each of the experts against each other and also by comparing the relationships
indicated in the bottom-up systems against those indicated using the top-down approach.

4.2. RESULTS

The first results we would like to discuss are those comparing information provided by the experts.
This is essential because the expert systems can only perform as well as the knowledge contained in the
systems permits. The experts only agreed in about 1/3 - 1/2 of their indicated relationships overall.
Furthermore, the final set of relationships for the top-down approach is very different from the final set
for the bottom-up approach. We believe that the differences between the two approaches are mainly
due to two facts: (1) the experts were seeing the data from a very different point of view; and (2) the
metrics are not ideal in that some of the interpretations could not be adequately described in terms of
the available metrics, so the experts were not completely certain of all of the relationships that they
stated and they changed their opinions over time. However, there were certain relationships which
proved more consistent than others. For example, the two experts had strong agreement over the



relationships involving programmer hours per line of code, software changes per line of code; and com-
puter time per computer run. These metrics seem to be better understood than the others probably
because they are often used for evaluation and comparisons in this field.

The expert systems performed moderately well given the following limitations: (1) so much of the
knowledge and relationships are unclear in this field, (2) the experts themselves do not agree on much of
the knowledge, (3) the expert systems used only five variables and only nine metrics derived from these
variables to achieve the list of interpretations, and (4) the metrics used are not ideal.

The systems which were developed with the bottom-up approach performed better than those developed
with the. top-down approach, and the rule-based deduction systems performed better than the frame-
based abduction systems. Both the bottom-up and top-down rule-based systems performed better than
either of the frame-based systems. The bottom-up rule-based system performed best, agreeing with an
average of 36% (ranging from 29% to 44% depending on time phase) of the actual interpretations indi-
cated in the subjective evaluation forms and project statistics forms in the database, and the top-down
rule-based system agreed with an average of 27% (ranging from 20% to 33%) of the database conclu-
sions. The bottom-up frame-based system agreed with an average of 16% (ranging from 11% to 20%)
of the database interpretations, and the top-down frame-based system agreed with an average of 13%
(ranging from 6% to 16%) of the database conclusions. It should be pointed out that each expert sys-
tem produced relatively consistent results throughout its five time phases.

The results of using the Kappa statistic to evaluate the expert systems also show that the bottom-up
rule-based system performed best, indicating better than chance agreement for more of the interpreta-
tions than the other systems did. A few of the interpretations performed relatively well in all or most
of the expert systems. These were low productivity, loose management, error prone code, and computer
problems. The experts had fairly good agreement with each other and also over time (between the
bottom-up and the top-down approaches) on the manifestations for loose management and error prone
code. They agreed less on low productivity and mostly disagreed on computer problems. An interesting
observation was that the interpretations involving testing performed better in both bottom-up systems
than in the top-down systems in general. Perhaps testing is better understood using a very
environment-specific approach. For a more detailed analysis of the results of evaluating the expert sys-
tems, see (Ramsey, 1986a).

5. DISCUSSION

The goal of this study was to determine whether it is possible to build useful expert systems for
software engineering management. Some of the questions which we tried to resolve involved determin-
ing how to do the knowledge acquisition and what type of expert system methodology might be best
suited for this field.

The major limitation to developing expert systems for software engineering in general is that much of
the knowledge in this field is not well understood yet. Knowledge was gathered from two experts who
have had a great deal of experience in this field, and it was found that they did not agree with each
other about many of the relationships we were trying to determine. Furthermore, they did not always
agree with themselves when looking at the data from a different point of view at a later date.

The expert systems performed moderately well, especially when one considers that many of the relation-
ships between the metrics and the interpretations are unclear. The experts did not agree on many of
the relationships, and the expert systems cannot perform better than the information included in them.
Indeed, the bottom-up rule-based system performed about as well as the experts agreed with each other.
In addition, a relatively small number of metrics were used to suggest many interpretations, and the
_metrics used were not ideal. The experts felt that some of the interpretations could not be adequately
described in terms of the available metrics. However, the five variables used in the metrics were easily
obtainable, and this is an important consideration when creating expert systems.
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Another fact we would like to stress is that the expert systems for the earlier time phases also per-
formed well. This is especially important because a manager should learn of potential problems as early
in the development process as possible. Expert systems can be very helpful because they may detect
problems which a manager may not recognize early on.

The bottomrup approach to developing the expert systems produced better results than did the top-
down approach. This may well be because the bottom-up approach is more environment-specific. Since
the field of software engineering is still new, it is probably better to develop expert systems for one
homogeneous environment rather than trying to determine general truths across different environments.
In general, it may be advantageous to work with small domains when building expert systems for fields
with uncertain knowledge.

The selection of which expert system methodology to use for building expert systems is not usually
clear, although an attempt has been made to provide guidelines in (Ramsey, 1986b). In 48% of the
cases, the rule-based and frame-based systems provided the same interpretations. However, when
analyzing the results from all projects, the rule-based systems provided more interpretations and exhi-
bited a higher rate of agreement with the database than did the frame-based systems. This is directly
attributable to the fact that simple rules containing one manifestation in the antecedent were used in
the rule-based systems, leading to solutions which contained the complete list of all possible interpreta-
tions associated with the manifestations, while the frame-based systems provided only those explana-
tions of minimum cardinality and often missed correct interpretations because the relationships between
interpretations and manifestations were not always correct. It is better to have extra interpretations
than to miss correct interpretations, so we conclude that a rule-based system with simple rules is prob-
ably more applicable to newer fields with unclear knowledge, such as software engineering. However, as
a field becomes more established, a frame-based system may provide better solutions. Also, newer
methods of implementing frame-based abduction with irredundant covers should provide better results
than those currently provided by frame-based abduction using minimal set covers. (A set of interpreta-
tions which covers all of the manifestations is srredundant if none of its proper subsets also covers all of
the manifestations. See (Peng, 1986), (delKleer, 1986) for a full description of these ideas.)

This study has provided many additional new insights into the development of expert systems for
software engineering. It is feasible to develop prototype expert systems at this point in time, but one
must realize that in any new field with uncertain knowledge, the expert systems cannot perform better
than the state of knowledge in the field permits. One of the best reasons to develop these systems may
be to learn from their development. The knowledge engineer can learn a great deal about a field as he
organizes the information. Then, analyzing the performance of the working systems can give further
insight about what is and what is not understood. In order to develop better expert systems for
software engineering management, one needs to define fully the relationships that exist between the
components. In particular one must define what development characteristics would result in what types
of abnormal measures, how this changes through various project development phases, and how certain
one is that an abnormal measure results from a certain characteristic. As more is learned about
software engineering management, more can be incorporated into useful expert systems.

6. FUTURE RESEARCH DIRECTIONS

The development of ARROWSMITH-P was a preliminary attempt at constructing expert systems for
software engineering management. There is certainly a need for further research in the field of software
engineering. As more is learned, the information contained in the knowledge bases can be refined, and
new knowledge, such as information about error metrics (Weiss, 1985), (Basili, 1984a) or information
about other phases of development such as requirements or design, can be incorporated into the expert .
systems to make them stronger. As incorrect relationships are brought to the surface, the systems can
be changed to incorporate the knowledge gained from testing. Eventually, the rules should become
more complex as relationships between manifestations and causes become better defined. In addition,



the testing of current, ongoing projects can be performed on the expert systems. The data from the
new projects can then be incorporated into the environment-specific baselines of metrics so the systems
continue to be updated as the environment changes.

In a more general sense, a theoretical framework for developing expert systems for software engineering
is needed. For example, a categorization scheme, which would address such issues as when a top-down
system is better than a bottom-up system and vice versa, should be built. Also, perhaps a new and
different type of inference mechanism or method for building expert systems would better suit the needs
of some aspects in this field. All of these issues require a great deal of further research and analysis.
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