Representing Software Engineering Models:
The TAME Goal Oriented Approach!

Markku Oivo? and Victor R. Basili3

Abstract

This paper describes a methodology as well as a knowledge representation and reasoning framework for
top down goal oriented characterization, modeling and execution of software engineering activities. A
prototype system (ES-TAME) is described which demonstrates the underlying knowledge representation
and reasoning principles. ES-TAME provides an object-oriented :_neta—modei concept in order to provide
effective support for tailorable and reusable software engineering models. It provides the basic
mechanisms, functions and attributes for all the other models. It is based on inter-object relationships,
dynamic viewpoints and selective inheritance in addition to traditional object-oriented mechanisms.
Describtive software engineering models (SEMs) include representations for basic software engineering
activities like life cycle models, project models, resource models, design methods, quality models etc.
They are controlted and made operational by active GQM models which are built by a systematic
mechanism for defining and evaluating project and corporate goals and using measurement to provide
feedback in real-time. A rule-based data-driven mechanism is defined for constructing and instantiating
generic GQM templates into hierarchical GQM models. Support for the RT-SA/SD method is used as a

case study of modeling the design phase of real-time software development.

! This work has been supporied in part by Air Force grant AFOSR 60-0031, Technical Research Centre of Finland, Tekniikan
Edistamisaatio foundation and Tauno Tonningin Saatio foundation.

2 M. Oivo is with the Institute for Advanced Computer Studies, University of Maryland, College Park, MDD 20742 on leave from the
Technical Research Centre of Finland, Computer Technology Laboratory, Culu, Finland.

3 V. Basili is with the Department of Computer Science and the Institute for Advanced Computer Stadies, University of Maryland,
College Park, MD 20742 '

TABLE OF CONTENTS

I, INTRODUCTION .eeorevenererssreseesssesnesensasmarass eeeereremee Rt AR R R A e AR S RS SRRt 2
2. MEETING THE REQUIREMENTSevruvcsssssessuesesesesssecersosssestssmssssssssss aisss et ssssssts asssssossscssacssessssssssrssrses 5
3. SOFTWARE ENGINEERING MODELS (SEM)eciirerrirnsrnrrrererrsssisiissssmssnsasasssnerasniasisssssas sssasssrnsasnasanses 9
3.1. Modeling MECRANISITS.cvuimriesisissssssessesssrarsrermnrmssssssase s s s st s e vas s s an b s e amsr s sisasassnes 9
3.1.1. Inter-Object REIAHONSHIPScovivverniresiiinsnes csssnsistessssss st ssssec st asn st st stes e e 10
3.1.2. Dynamic Viewpoints and Selective INHETitaNCewmerieecrisneisissrsssmesssssorissessssssssssass 13
3.2.PrinCIPIEs Of SEMS ...curiiecieniistiniisississsaniasas e sasssssssstes s s sosansessissessnssnsasassstan st stesssesmasssnass 14
3.3.Planning and CharacteliZiNg.......couecveeiversrvisssnnrssesnesiisissistnens e bessisnsnssnsssotssas sisssnsnssa s nssssss 15
3.4.Modeling for the Design Phase of Project EXecution eeeeeeees e s oes s ama s saa s 16
4, GQMS.....oerivrerrersranssssrnsrssesastoresesasessiasbasssss s trsrssstbbsta e s e et s s st st es s sn b Lh bt R n SRR St SRR 19
4.1. Modeling PrNCIPIES wc.cueriereicninirises s rssrmersresssssssssntatsssseeacaonacos st nsssnsass s ssssrsnsasstonsssassnsssiosas 20
4.2, Construction and INSIANHALONeeireiveirrrerrrrrsscsstaresstersssssserrsssinrssrstas s smnss sesaseramsstssssnnsassveassas 22
4.3, Product Goal BXAMIPIE.cciucuirevreecesienercsserrcermsbmibbssssssasntsssassnssasatasnssss tsssn sosssarssassnsas sasassmsissas 25
5. CONCLUSIONS ... eeueeesssasamesereesearssssissnsssssssssenssssssaterararenssnsbhsstastassestassass rsstsssbbsstass s sssesssshtsansssssnns 27
ACKNOWLEDGEMENTS ..cevvvrerrersrsressassssessassastesstssassiassaerabesiasissstissssntosssrasssassans 14004aaasanssnssassonissassansessnss 28
REFERENCES o...eeoeeasaressssesseesrrsersissestassesassassssssssasonss irosssrnt s bist s 1t tessnnssssesianmssssbsterenssasssesssarsrssssssassastares 28

1. Introduction

There is a great deal of software engineering research going on, i.e., people are building technologies,
methods, models, etc. However this research is mostly bottom-up, done in isolation. It cannot be logically
or physically integrated. It is not aimed at solving the big problem. It is not evaluated or analyzed via
experimentation. It is not refined and tailored to the application emvironment. It cannot be easily
transferred into practice, We cannot understand the relationships between various models of the processes
and products. What is needed is a top down framework in which research can be focused, logically and
physically integrated to produce quality software productively, and evaluated and tailored to the

application environment.

TAME [4] is meant to serve as a framework for research and development activities by providing an
integrating umbrella for various software engineering research projects, offering a focus and a laboratory
environment for experimentation, and supporting the efficient transfer of technology into practice. It is an
attempt at defining a measurement-based, closed-loop process for software development and

maintenance.

TAME'S specific goals are to provide a framework for (1) defining an integrated sct of measurable
 software process and product models and goals relative to the project and the organization, (2) provide a
guantitative basis for selecting the appropriate methods and tools and tailoring thmﬁ to the needs of the
project and the organization, (3) support the evaluation of the quality of the process and product relative
to the specific project and organizational goals, and (4) provide an organizational structure to support

puilding, analyzing, refining, and using experience models.

The key components upon which TAME is based include an evolutionary improvement paradigm tailored
for the software business, called the Quality Improvement Paradigm [2], a paradigm for establishing
project and comporate goals and a mechanism for measuring against those goals, called the
Goal/Question/Metric Paradigm [4], and an organizational approach for building software competencies

and supplying them to projects, called the Experience Factory [5].

-3-

The Quality Improvement Paradigm (QIP) is defined by the following steps:

. Planning: an iterative process involving characterizing the current project and its
environment, setting the quantifiable goals for successful project performance and
improvement over past performance, and choosing the appropriate process model and

supporting methods and tools for this project.

. Execution: a closed-loop project cycle which involves executing the processes, constructing
the products, collecting and validating the prescribed data, and analyzing it in real-time to

provide feedback for corrective action on the current project.

. Analysis and Packaging: a post mortem analysis of the data and information gathered to
“evaluate the current practicés, determine problems, record findings, and make
recommendations for future project improvernents, and a packaging of the experience gained
" in the form of updated and refined models and other forms of structured knowledge gained
from this and prior projects and the storing of the packages in an experience base so it is

available for future projects.

The Goal Question Metric Paradigm (GQM) is a mechanism for defining and interpreting operational
and measurable software goals. It combines models of an object of study, e.g., a process, product, or any
other experience model and one or more focuses, e.g., models aimed at viewing the object 6f study for
particular characteristics that can be analyzed from a point of view, e.g., the perspective of the person
needing the information, which orients the type of focus and when the interpretation/information is made
available for any purpose, e.g., characterization, evaluation, prediction, motivation, improvement, which

specifies the type of analysis necessary to generate a GQM model relative to a particular environment.

The Experience Factory is a logical and/or physical organization that supports project devélopmems_by
analyzing and synthesizing all kinds of EXperience, acting as a repository for such experience, and
suﬁply'in'g that experience to various projects on demand. It packages experience by building informal,
formal or schematized, and productized models and measures of various software processes, products,

and other forms of knowledge via people, documents, and automated support.

The Experience Factory requires an experience base that supports accumuléﬁng experiences (learning)
via recording and analysis of experience, off-line generalizing and tailoring of experience, and

formalizing of experience, storing experience models in a variety of modeling notations that are

-4 -

tailorable, extendible, understandable, flexible and accessible, and accessing and modifying packages of
experience to meet the needs of the current project (reuse). An effective experience base must contain

‘accessible and integrated set of analyzed, synthesized, and packaged experience models that captures the

local experiences.
Requirements overview

To formalize the QIP, each of the various steps needs to be better defined and integrated. The experience
base acts as the mechanism of information and integration. These next items implicitly define the

genuine requirements for the experience base:

. “We need to build and store models of various software engineering experiences that
characterize the project and the organizational environment, €.g., products, processes,

IeSorces.
. We need to integrate these models based upon the various relationships between them, e.g.
" what resource model is appropriate for a particular class of products. .
. The model definitions need to be able to evolve, be modified or refined based updn learning,

e.g., Wc need to be able to modify a resonrce model by adding new project data, refine a
process model by recognizing a different set of activities that need to be performed based
upon a specific project characteristic.

. The model definitions need to be instantiated with specific project characteristics, e.g., we
need to instantiate the parameters of a resource model based upon actual project values, map

- process activities into a process model according to the actual life cycle model .

. Models need to be classified and subclassified based upon type so that the appropriate types
of models can be combined in a GQM, e.g., that product evaluation qualities such as
coupling or cohesion are applied to products defined in the appropriate notation such as RT-

- SA/SD.

. Some models may need to be applied to available data, so the experience base must permit
access 1o a data base containing the current project and historical data. e.g. an evaluated

- . GQM model. '

® We need to initialize and evolve various versions of the experience base for different

organizations.

Fundamental to the TAME concept is the ability to formally define software engineering models so that
they can be integrated for evaluation, re-configured based upon particular project needs, and stored for

future use. This requires a more formal definition of the components of the QIP, including the GQM and

-5-

the definition of an experience base that contains useful models and supports the configuration of models

as needed.

Knowledge-based techniques have shown promise in modeling various aspects of software engineering
{71,[12],[15),[16].{17]. In this paper we describe a methodology and a knowledge representation and
reascning framework for the experience base [5]. We will first describe the fundamental requirements of
TAME and the experience base (section 2). We present a meta-model concept which implements the
basic requirements and supports tailorable and reusable models (section 3). It provides a foundation for
software engineering models (SEMs) and GQM models. The knowledge representation mechanisms for
SEMs are discussed in section 4. The modeling techniques are based on an enhanced set of inter-object
relationships, dynamic viewpoints, and selective inheritance. Finally, section 5 presents a goal oriented
top-down method and a- rule-based construction tool for building active GQM object hierarchies which
o are used to control and make.the mostly passive knowledge of SEMs operational.

TAME is a very large concept énd 100 huge a task to be implemented in one step. We have impleniented
a‘ domain specific vérsion, called ES-TAME, to provide more comprehensive support for building
embedded systems. It uses RT-SA/SD (Real-Time Structured Analysis and Design [20]) method as a case
study of modeling the design phase of building software for embedded systems.

2. Meeting the Requirements

Obviously the previous requirements call for numerous models for representing all the relevant aspects
and knowledge needed to build a viable software engineering environment. However, despite the large
“variety of requirements we can identify several principles, attributes and functionalities which are
common to most of the models. Consequently, we introduce a meta-model concept for defining an overall
knowledge representation and reasoning framework for 2ll the models. It is an object-oriented model
. which specifies the basic mechanisms, functions and attributes for all the other models. The meta-model
includes support for characterizing, plaﬁning and pac-iéxging activities as well as user interface issues. It
provides all the necessary functions and attributes for building and maintaining the ‘actual tailorable
models. Essentially it is a virtual model which has to be refined and augmented to implement the TAME
models. Farthermore, it provides a unifoﬁn mechanism to link the mbdels to various additional tools like
spreadsheets, project management tools, database management syétems and metrics software, and

combines their data under a rigorous object-orienied formalism.

. We have classified our models into two categories: soﬁﬁzare engineering models (SEMs) and GQM

maodels (figure 1). Both are generic models which are defined using the meta-model as a basis for their

-6-

specification. SEMs include representations for the basic software engineering activities like life cycle
models, project models, resource models, design methods, quality models etc. They involve mostly
descriptive knowledge which is known and available during the characterization and planning activities
of a project life cycle. GQMs involve mainly procedural knowledge which is used to make the
descriptive knowledge of SEMs operational. They manipulate and use the knowledge of SEMs in setting

goals, answering questions and collecting data.

Meta Model
- tailoring
- characlerizing
- packaging
- reuse '
- viewpoints

SEM GQam

- Process models
- Project models Message
- Quality models passing
- Resource modeis s
- Product models)

« Design metheds

- Goals
- Questions
- Metrics

Figure 1. The basic models.

By making a clear distinction between the SEMs and GQMs we can create a highly modular system
.architecture and achieve far better support for representing knowledge in areusable foi-m. The descriptive
knowledge of SEMs can be created and maintained without having to know how they are used and made
operational by the more complicated GQMs. On the other hand, the constructing of GQMs' is simpler'
because the user can concentrate on the essential feamres of GQMs without having to worry about the

vast amount of knowledge involved in the SEMs.

The meta-model with the SEM and GQM models constitute a generic meta-tool envi:onmem which has
to be tailored for each organizaﬁon and project {figure 2). Note that figure 2 does not imply any static
relationships. The tailoring diamonds stand for concurrent processeé which relate the basic TAME
environment to various corporations and in each corporation to various projects; All the entities in the

figure are constantly evolving as we learn more about the changing environment and requirements. New

-7-

features are introduced and existing ones are modified by evolving the objects and their relationships
inside the TAME meta-tooi. '

Entity
TAME Legend:

]
<>

Relaticnship

@
Tailori Organization

alloring characteristics Changes
® '

Or$:|;liléation [' Changes .| Organization

@ Evolves
o Project '
Tailoring characteristics Changes
Project |J Project
TAME o

Evolves

\/

Figure 2. TAME instances tailored for various needs.

'Figure 3 describes the overall architecture of ES-TAME. It depicts the usage of ES-TAME to support the
design activities of software deveIOpment Other acuwues and their corresponding documents would be
-represented in a similar way. For example testing would have its own user interface controlled by the
viewpoint manager and test documents would be stored in the Model Base in an analogous way as the
design documents. The main parts of ES-TAME include the Model Base, Model Management, User.

" Interface Manager, Reuse Repository and Analyzing and Packaging Unit. This paper focuse's on the most

essential concepts of the Model Base, Model Management and"U_ser Interface Manager. Furthermore, we

demonstrate the modular Designer Interface with a.support system for the RT-SA/SD method.

- SEM building blocks [: Software

- SEM's

- GOM templates : Analyzing and devrzl::sns'lem
- GOM's packaging unit < » P

- measurements

- design elements ete,

GO template

GOM construe- |

tion manager

Modol Base

Legend: ———P» Interface with all modules of 2 unlt
—>» Interface with one module

: /
Figure 3. ES-TAME architecture for design support.

Model Base impléments the main knowledge representation techniques and models .in the system. It
includes all the Software Engineering Models (SEMs) and design documents (see section 4) as well as
GCM models (see séc[ion 5). SEMs and GQMs interact in termas of both relationship links between
models and by GQMs using and making the descriptive knowledge of SEMs operational. Because the
Model Base includes elements which are developed and modified during the software development, it is

considered as a part of the development process which includes additional elements and activities.

SEMs and GQMs are created and managed by a set of tools in the Model Management unit (GQM
Template Editor, GQM Construction Manager and SEM Manager). The relationships between the various
SEM and GQM models are established and maintained by a Relationship Manager.

The user interface consists of two main units, The first unit, the ES-TAME User Interface, provides the
main functions which are relatively independent of the design methods. It includes three modules. The
Browser offers graphical tools to view and manipulate the various relationship hierarchies. The System

‘Manager controls the analysis of the software development process and the packaging of the results into

-9.

the experience base. Viewpoint Manager provides several different perspectives to the system using the
Browser and the Designer Interface as tools for viewing the system. The second amain unit is the Designer
Interface. It is a plug-in module which can be changed to other design method tools without much effect

on the rest of the system.

The Reuse Repository consists of a Reuse Manager which stores and retrieves SEMs and GQMs in the
Repository. The Analyzing and Packaging Unit measures, collects and packs data from the software
development process. The knowledge representation principles of these systems are essentially analogous
to the principles presented in this paper. A discussion of the reuse management and measurement issues

related to TAME can be. found in [21. [41, [6]-

We have built an ES-TAME prototype system to demonstrate the ideas of this paper. The run-time
environment is a 20 Mhz 386 PC with 6MB of RAM and 80 MB of hard disk. The development tools
inclnde Kappa expert system development environment, ToolBook, Excel and C all running under

Windows 3.0.

3. Software Engineering Models (SEM)

The software engineering models (SEMs) provide the essential means for characterizing the current
project and its environment as well as representing the knowledge involved in them. Their underlying
object-oriented structure supports tailorability and reusability. SEMs consist of mainly pass:ve objects

whrch serve as a basis for pro_]cct execution and are governed by the active obJects of GQMs.
3.1. Modeling mechanisms

In order to have a better understanding of the underlying modeling principles of ES-TAME, we will first
study the major features needed to model the SEMs. The model building is based on object-oriented |
modeling, inter-object relationships and a dyramic viewpoin: mechanism with a highly Selective
inheritance. Object-oriented modeling is the basis of fnost of the technical topics. Since the basic object-
oriented techniques are well documented in the literature [8], [11], {14], [18], [21] they are not describe_d
explicitly in this paper. Inter-object relationships are used to construct models consisting of various types
- of objects and define the relationships between them. Dynamic vieWpoints with selective inheritance are

used to view the models from various perspectives and to control their inheritance via the relationships. -

-10-

3.1.1. Inter-Object Relationships

In addition to the basic Is-A hierarchy found in object-oriented systems, the meta-model provides a set of
- predefined relationships for building various model hierarchies and networks. By offering a limited
collection of relationships we caﬁ maintain consistent models and provide automated support for
managing the models. The baﬁic inheritance hierarchies or latiices {Smalltalk-80, Eiffel, KEE, C++ etc.)
are not enough for modeling SEMs and GQMs. On the other hand, using attributes* to store relationships
without a rigorous set of rules can easily lead to a Spaghetti-like relationship network which is very
difficult to maintain in a large modeling application. With a well-defined set of relationships we can

build models which are flexible and yet manageable.

The relationships offered by ES-TAME are Is-A/Children, Instance-Of/Instances, Part-OffHas-Parts,
Compatible-Objects, Dynamic-Attribute and a Counterpart relationship. The principle of having all the
relationships in péirs is important because of the emphasis of using ES-TAME to build reusable objects.
Each object can be taken out of its original hierarchy and subsequently be stored into the reuse repository
for future wse. It must retain knowledge not only of its descendants in the 'hierarchy but also of 1ts
possible ancestors, parts if it is a composite object, to which context it belongs and information on how |
its relationships can be used in new applications. It is a reusable object with relationships as connectors

which can plug into other objects both upwards and downwards in any of the relationship hierarchies.

The relationships are created and managed internally by the Relationship Manager moduie in the Model
Management unit (figure 3). The graphical user interface to the relationship is provided by the Browser
which is controlled by the Viewpoint Manager.

The Is-A / Children and Instance-Of | Instances relationships are the standard class/subclass and
class/instance relationship offered by most object-oriented and frame-based systems [8], [10], [11], [14].
They are the only relationships which employ the conventional inheritance in ES-TAME. However, we
do not provide traditional multiple inkeritance. Instead we provide dynamic linking of the Is-A
relationships. Each object can have a potential Is-A relationship to several super classes but only one of
them is active at any point in time. All the attributes of the active super class are inherited, whereas
inheritance via the other Is-A relationships is highly selective and must be explicitly defined. This is the
foundation of the dynamic viewpoints described in section 4.1.2. The children relationship is used to

catalogue all the subclasses or instances of a given class.

4 We will use attribute as a collective synonym for instance variables of objects and slots of frames.

-11-

The fact that we do not currently use multiple inheritance does not mean that we would argue that it is
pseless in the context of software modeling and construction. On the contrary, it is easy i0 identify
numerous cases where objects are conceptually related to more than one parent. However, the multiple
viewﬁoints and selective inheritance offer many of the benefits of multipie inheritance and avoid name
collision and repeated inheritance problems [8], [18], [21]. The optimal strategy for ES-TAME would be

to use mainly the current mechanisms and carefuily use multiple inheritance in selected cases.

The dynamic manipulation of the Is-A links is done at the meta-model level in order to assure the
propagation of the viewpoint to all the pertinent elements. During a link change, all the application level
local values of an object, i.e. instance values which are not inherited from the old parent, must be

maintained in the object in order to be accessible also under the new parent. All the ataibutes selected by
the user to be mhented and ported under the new parem must also be maintained. Attributes without a
local value and which are not explicitly defined to be maintained by the user can be removed in the
object level because if the IS-A link is changed to point back to the old parent the attributes are
automatically inherited again from the old parent. The following algorithm describes the principle of the
atribute manipulation of an object Objecr during dynainic changing of an Is-A link from Old-Parent to

New-Parent:

FOR EACH attribute inherited from the Old-Parent in the Object
IF attribute has a local value in the Object
OR attribute is selected by the user to be inherited THEN
‘Make attribute local in Object and maintain the local values
ELSE
Remove attribute from Object
Change IS-A link of Object to the NEW—Parent

The Part-Of / Has-Parts relationship pair is used to describe compound objects. A composite object is a
collection of objects which can be managed as a single entity. However, we do not require a composite
object to be instantiated in a top down fashion [1] because of the emphasis on reusable components and
parallel design in large projects. For example, we may want to design a reusable door control unit which
can be integrated, using a Part-Of relationship, into several different types of elevator control systems
that use this type of door. Each component of a composite object can be independently defined in its own
class hierarchy and used as a component in several compound objects {e.g. a door control can ‘be Part-Of
a simple elevator control system for low-rise buildings as well as a Part-Of a high speed elevator control
system). This allows us to define objects in their most natural logical class hierarchies and use them in
“various compound objects without having to define the similar objects in different compound objects.
Part-Of relationships can also be used for performing system level operations on compound objects and

for broadcasting messages to all the components of a subsystem, For example, if a successful

-12 -

development team gets a raise in salary we can automatically propagate the change to every SEM object
representing a member of the team via the Part-Of relationships and consequently automatically update
the relevant cost estimaiion model. This can't be done using the Is-A hierarchy because team member
objects and team objects are defined in different class hierarchies. Team members belong to teams (Part-
Of relationship), they are not subclasses of teams (Is-A relationship). Furthermore, if we want to change
an atiribute in all the modules of an elevator control system we can automatically propagate the change
to every object representing the module via the Part-Of relationship {e.g. DoorControl is a Part-Of the

ElevatorControl).

The Compatible-Objects relationship is used to describe objects which can be used together, e.g. the
function point method might be compatible with MIS projects but not with real-time projects. This
information is used {0 assure that the objects which we include from the meta-model in the company and

project level models are compatible with each other.

Furthermore, Compatible-Objects provide a mechanism for reuse-oriented model building (see section
4.3) and system design. By navigating in the compatibility network, picking from the list of compatible
objects for each element, we can configure a system using the most appropriate objects from the reuse
repository. This mechanism results in a procedure for building a hierarchical system design, starting with

* the root of the design model tree and successively adding nodes selected from the compatibility network.

With the Dynamic-Attribute we provide a way of associating an object's attribute with the attribute of |
another object; e.g. if we have estimated the number of source lines (SLOC) in the product
characterization and given it as an attribute to the product model, we can link the corresponding SLOC
attributes of the resource estimation and defect slippage models to the product model's SLOC attribute.
Thus we maintain the SLOC estimate in one place only and changing the estimate can be automatically
updated in the other modeis. This would be impossible to implement with multiple inheritance because

~ these models are conceptually totally different and belong to different class hierarchies.

The Counterpart relationships are provided for creating various domain specific relationships énd links
between objects. They are normally used to define relationships between objects which are used in the
same conteﬁct to build a larger scheme. Counterpart relationships have some similarities with the
association relationships [8]. Counterpart relationships are also used for establishing links between SEMs
-and GQMs. By counterpart relationships the user can create, edit _'and browse any kind of application
specific hierarchies. Naturally, each object can also be viewed from all the standard viewpoints provided
| by ES-TAME. We could, for example, establish a Counterpart relationship between data flow diagram

-13-

models and design level coupling models. They are independent objects but they are both used in the
same context in assessing the quality of the system design. These relationships are used to manage the
interconnections and interactions between the related objects, including message passing, constraint

reasoning and value propagation.
3.1.2. Dynamic Viewpoints and Selective Inheritance

We introduce a mechanism for attaching a generic viewpoint mechanism for any of the models or model
components and their relationships. It is provided by the Viewpoint Manager which controls the Browser
and the Design Method Tools according to the choice of the user (figure 3). Normally each user has a
default viewpoint to the system. For example, the system designer is mainly interested in the design
models and their features, and views other models as different perspectives of systems, subsystems and
objects. On the other hand, management is more interested in budgets, resources, cost, project schedule,
etc. and can have models tailored according to the management perspective. The manager may impose a
schedule for the whole project using the project model. The system designer may estirﬁate cost and effort
from the viewpoint of design models by taking a cost estimation viewpoint on the design models and .

using the tools of the cost estirnation model on the des'ign moc_leis.

Each model or cbmponent of a model is defined as an object. Each object is defined with attributes which
are relevant to itself as a class or as an instance of a class. For example, a data flow diagram is defined
with. its relevant attributes in the context of structured analysis and design. HoWever, as a part of the
meta-model it inherits the capability of having several viewpoints. If the user wants to examine the
- quality aspects of a particular data flow diagram, he/she would change the viewpoint of that object 0 a
particular quality model. .As a result, the &ata flow diagram wouid be dynamically linked to that quality
model and inherit its features and functionality. Note that this is different from multiple inheritance.
Linking is dynamic and inheritance is applied only while the object is linked to the viewpoint, When
changing the viewpoint again, only those attributes which are instantiated during the old viewpoint, i.e.
those that have been modified or given local vatues, are ported into the new viewpoint.

One of the advantages of the dynamic viewpoint mechanism and selective inheritance is it limits the
amount of information in each object. Because most of the objects can be viewed from a variety of
predeﬁned perspectives (quality models, cost estimation, testing, design, implemeniation etc.), use of
straightforward mulr.lple inheritance or implementing the attributes and functions as part of the objects
would yield excessive information and obscure the user's understandmg of the object itself and its
conceptual relationships to other objects. With dynan}m viewpoints we can focus our attention on the

features which are relevant 1o our current interes_t.

-14 -

3.2.Principles of SEMs

The main purpose of the SEMs is to formalize various software engineering experiences and their
relationships. The experience or knowledge associated with SEMs is recorded in various forms, including
model level and object level descriptive knowledge and attributes, inter-class relationships, rules,
procedures, spreadsheets and diagrams. The recorded experience can be accessed from several viewpoints
both by browsing the meta-model and by general purpose queries. Informal knowledge is accessed
mainly by browsing whereas access to formalized knowledge is more automated. SEMs are internally
created by the SEM Manager and they are maintained in the Model Base (figure 3). Their relationships to
the GQMs are maintained by the Relationship Manager. The user can use the Browser and the Viewpoint
Manager to create, modify and view the SEM hierarchies. '

Basically, the SEMs are built as class/subclass hierarchies using the Is-A relatipnship. Descriptive
knowledge is stored in the atiributes of the objects and can be shared among objects using inheritance or
the Dynamic link relationship. Descriptive knowledge includes mainly textual, graphical and numerical
characterization of the SEM objects. The Is-A classification hierarchy is extensively enhanced using the
Part-Of, Compaﬁble—Objects and Counterpart relationships. These links often have no specific value in
the generic classes. They may have constraints for attribute or link values. For example, a link might be
allowed to be established only to subclasses or instances of certain classes. The undefined attribute values
and links are defined in the lower levels of the object hierarchies, most often at instance level. Rules,
procedures, spreadsheets and diagrams are defined with methods which either fully implement the

functionality or provide an interface 10 a tool which offers the service,

The meta-model defines the building blocks and their relationships for creating the actval models and
environments for each project. For example, the waterfall model can be constructed using the Is-A and
Part-Of relationships (figure 4). It is defined as a subclass of a generic life cycle models class with Par:-
Of relationships constrained to possible process activity classes (analysis, design, coding, test,
maintenance, etc.) or their descendants which are defined as their own independent object models. The
process activity objects can be used as building blocks for constructing different life cycle models. A
tailored waterfall model is defined in three phases. First we define a customized waterfall model which is
reﬁnéd as a subclass or an instance of waterfall models. For example, we might specify the model as
having separate phases for product design and detailed design instead of having only one design phase.
As a second step, in the design activities, we might choose to represent the .dal;a structure, software

architecture and procedural design in terms of entity relationship diagrams, data flow diagrams, state

-15-

transition diagrams and structured English respectively. As a third step the tailored process activities® are
defined to be parts of the customized waterfall model. Thus the customized waterfall moﬁel is a
compound object which is a subclass of waterfall models and its component objects are subclasses of the
prodess activities. This same approach applies for most of the SEM meodels. The meta-modet defines
independent reusable building blocks and mechanisms for customization and interconnection. The actual
environment is established by tailoring the classes and defining the relationships described in the
previoué section. |
Is-A I‘Il_erlrchy

Ubgect Lirowser

Waterfal
L W“<Ilﬂ“m

SBIJICH

Analpn

N ' § Change

[SEYTRIN B SEIPLAE

= Hidden object hisrarchy

Part-Of hierarchy

Figure 4. Is-A and Pari-Of relationships of the waterfall model.
3.3.Planning and Characterizing

" This section provides an overview of how the meta-model supports the planning steps of the QIP. It does
not, however, include the detailed goal construction techniques which are described in section 5. The

characterizing is based on refining and augmenting the generic SEM objects and components as well as

"5 These process activitiés tan be reused as parts of other life cycle models, either as is or modified for the particular model.

.16 -

building larger models and compound objects by combining the template objects with pertinent

relationships.

The meta-model can be tailored for various organizations by refining and augmenting the objects,
~ relationships and, more importantly, by using several viewpoints into the system and combining the
model hierarchies according to the interest of the user. Selective inheritance can be used for picking up
relevant attributes and functionalities from various object classes without the burden of inheriting too
much information from several sources. Initial tailoring of the meta-model is performed during the

project planning activities. The meta-model can be further modified at any point during the project.

ES-TAME encourages reuse of previously defined models and objects in the planning and characterizing
phase as well as in building the actual application software. Using a compatibility relationship network it
can suggest objects and object hierarchies from the experience base that can be used in building and
tailoring the models for the current project. With a sufficiently large reuse repository this works like a

chain reaction.

‘We normally start the planning from a previously built meta-model which is tailored either for the
company or for the type of project that we are going to run. Thus, the starting point is a template model
* which has components with several compatibility relationships whose values are constrained 1o classes or.
class- higrarchies which can be directly linked to this component. These compatible components are
offered by the Reuse Manager (see figure 3). By retrieving a component from the repository we obtain a
component which can suggest other components from the repository which are compatible with the
current one. These in turn can suggest new components and so on. The procedure is like building a tree
with nodes which can further suggest new nodes or sub-trees below themselves. The tree can be any of
" the relationship hierarchies supported by ES-TAME. We can, for example, start with a node and pick up
from the list of potential Part-Of components building a Part-Of hierarchy. At any moment we could
change our approach and start picking up from the list of potential subclasses of a class level component.
This procedure can be repeated until we have exhausted the list of poiential com_poncnté from the various

compatible components. o ’
3.4.Modeling for the Design Phase of Project Execution

Execution in the context of the QIP is defined as a closed-loop process of executing the processes,
consiructing products, collecting and validéting data and giving feed-back in real-time. This section
describes the aspect of defining the SEMs to support thése activities. We will use design activities of the

-17 -

project life cycle as an example of the modeling support for project execution. The process of making

these models executable also involves the GQM models.

In order to be able to support the activities after the initial project planning phase, we have to support the
methodology chosen by the user to model the system being built. Normally the design involves the
decomposition of the system into subsystems and further into more detailed subsystems in a hierafchical
manner. Our approach can be applied for functional decomposition as well as object-oriented
decomposition. The main assumption is that the method supports some mechanism for decomposing the
system into subsystems or class hierarchies. In functional decomposition, the design is internally

represented with Part-Of relationships by ES-TAME.

For our first prototype of ES-TAME we have chosen RT-SA/SD (Real-Time Structured Analysis and
Design) as the case study for the system modeling and implementation oriented models [16], [20].
However, most of the principles in the following examples can be applied to other methods, often simply

by replacing the name RT-SA/SD with the corresponding method name.

RT-SA/SD serves as a starting point for software developers to view various aspects of the product and
process via multiple viewpoints of the ES-TAME models. The amount of information associated with
" each RT-SA/SD element in a real world ES-TAME would be overwhelming (both RT-SA/SD related
information and more general information related to each sub-system in the RT-SA/SD models, including
quality attributes, cost atiributes, schedules, implementation, testing etc.). Multiple viewpoints of the
- system help avoid cognitive overload of the user. For example, the user can choose to view the RT-
SA/SD model from the point of view of testing and access information of the testing methods, test data,
test results, etc. which are relevant 1o the particular RT-SA/SD model. Multiple viewpoints can be active
at the same time providing features like checking the quality model and testing features of a specific RT-
SA/SD model. | - -

The entity rclationship diagram in figure 5 shows the relationships of the various viewpoints of a
subsystem in an imaginary elevator control system. It describes the viewpoints to a FancyDoor control
system in an elevator control system and its relationship to the simplified product model. FancyDoor
control subsystem has an Is-A (subclass) relationship o the RT-SAISD diagram element which in turn has
an Is-A relationship 1o the more general Method element. The Method element object has a property of
being able to provide several v1ewpomts to itself. Each viewpoint (resource model, quahty model etc.) is
dynamically] hnked to the Method eiement prov1dmg the user 1 ton different viewpoints into the Methad

- 18 -

element. The FancyDoor control inherits all the different viewpoints from the Method element via Is-A

relationships and consequently has a capability of providing several viewpoints to itself.

The left side of the diagram illustrates how the FancyDoor element is related to the simplified product
model of the elevator control system. FancyDoor is conceptually a subclass of a more general class of
Automatic doors which in turn is a subclass of a Door control class. The Elevator control has several

parts, one of which is the Door control class.

Linking the different viewpoints into the generic method element provides an important independence of
the design method. The mechanism for changing viewpoints is defined and implemented in the generic
method element object and inherited by the elements in differént methods. The first ES-TAME prototype
can be enhanced by linking corresponding elements from other design methods (JSD, SADT, SDL.,...) to
the generic method element thus providing similar viewpoints for each method. The enhancement is
implemented by creating an object-oriented model of each method (conceptually similar to the RT-
SA/SD model). It will then inherit all the viewpoints, attributes and functionatities of the generic method
element which are further refined to meet the needs of each method. We have demonsirated this xdea
rw:th a design level quality model example wh:ch was initially built for RT-SA/SD and was used for JSD

with very few modifications,

Elevator
control

E Method

_element

Door

et Control
Drive
system @ ‘ IsA

dynamic

RT-SA/SD I 'Qnm_
Aut ti
G| |deem | [Lt
7 element

Resource
mode!

SimpleDoor

FancyDoor &

Figuwre 5: The relationship between the product hierarchy and multiple viewpoints.

-19 -
4. GQMs

GQMs are the primary means of making our models operational. They provide information to the
analysis and packaging activities using data collection, metrics, analysis and packaging procedures
incorporated in the objects either as methods or as interface links to appropriate tools. GQMs are the

" main execution and analysis "engine” of the system.

GQM models are an organized collection of active objects which can perform functions on their own
without explicit activation by the user or other objects. SEMs, on the other hand, are a collection of
passive objects which are used for formalizing and packaging software engineering knowledge and they

perform functions oniy when activated by the user or by GQM objects.

The constructing of GQMs consists of two concurrent processes (figure 6). P1: Creating, tailoring and
reusing GQM template objects to create a GQM model base which ié used by the software development
projects (GQM Template Editor in figure 3). P2: Rule-based construction and instantiation of the GQM
model base into a collection of operational GQMs (GQM Construction Manager in figure 3). These
. processes are concurrent rather than sequential in order to support iterative development of the GQM
models. The first process is actually a part of the characterization and planning phase of the QIP. It
involves the construction of GQM object templates and the creation of a generic model using terhplate
objects as building blocks. The second process includes refining and augmenting the often incomplete

objects and instantiating them into operational objects.

-20-

GQM templates -
- goal termplates

- question templates

- metrics tempiates

Reuse, tailor and - Legend:
P1 create GQM templates

; & @ O Classes {evolution}

(] Instances

Generic GQM
models

Rule-based construction

P2 and instantiation

Refined GQM objects
and their instances
combined into an
operational

GQM model

Figure 6. Constructing GQM models.
4.1, Modeling Principles.

GQMs are modeled as hierarchies of goals, questions and metrics for various types of constifuents .ahd
products of the software engineering process. As a case study, we have created GQM hierarchies based
on the classification of the GQMs intb four classes [9]: 'project entities, requircmenrs analysis entities,
iﬁiplementatidn entities and delivery related entities (figure 7). The palf_ticular _ classificati@n is not
important from the point of view of our systerh; it could be any.h‘ierarchiéa.l classiﬁdatioh of the software
development activities. Actally, the principle of tailorability encourages classifications which are most

snitable for the organization. On the other hand, the principle of building GQM hierarchies is-very

-21 -

important. According to the naming convention in the figure, the objects with a name beginning with
"G." define goals (or sub-goals when they are under another goal object in the hierarchy). Objects with a
name beginning with "Q." define questions. They inherit the goal definition from their ancestors in the
* hierarchy, Lastly, the objects whose name start with "M." define metrics or data collection procedures.
They inherit both the goals (from "G." objects) and the questions (from "Q." objects). Consequently, they
include a complete chain of definitions of a portion of a GQM or a GQM template including goal,

question and metric level definitions.

’ M _AppEcationT yp
. M_HW
Q.Enva '
G.Inputs 4<H.SW
a.10 M.Languages
_uKc
G.0utputs Q.5ize M.TochDocPagos

\H.U:uDocPlgcs

MotaModel S0OM.Elemant GOMs ; ' ::::::m : :tllﬂuu
foien] \fBmtiol "\ G aumisaive M Sl
SE Mogl | ics . Q. Sldﬁng—< M.StalfPaak

- B.Piocess M. Individuals

' l].Dvualeim<:';‘££l .

6.Knowledga !
& o090 : N M. MorAppE xposic
: : Q.AMIPC<"_‘-wEw
ObjectName| = Hidden object hierarchy - Q. Accoptancellui——M.ExrarsKi DC
: 6. Qualky <u.umvauauan,—u.ssnmmc
G.Feedback Q.5 M_MgE valuntion

Figure 7. Upper level classes in the GQM hierarchies.

Top-down construction of a GQM model starts with a formulation of an overail top level goal object. It
can be subsequently defined by lower level sub-goal objects. The goal objects at the lowest levels in the
goal hierarchy are characterized by attaching question level attributes o the objects yieiding' more
specific goal/question objects needed for achieving the goals. Each goal can generate one or more
questions. Each question in turn .is.deﬁned by one 6r more metrics. Metrics can be either automated
measurement, data co]iecuon and interpretation procedures, or mteractwe information gathenng sessxons '
w1th the user. They can also be combinations of these acnvmes 'Each questmn can be used in the

defimuon of several goals and each metnc can be used to answer several quesnous (ﬁgure 8)

.29,

) @ @

éoafs @ @ ® Questions @ @ Métrics
® @

Figure 8. Entity relationship diagram of goals, questions and metrics. -

- GQM models are basically compound objects consisting of goals, questions and metrics which are .
normally modeled as ‘stractured objects. Each object is defined using a template driven editor. The
templates have a predefined structure but the interpretation of the attributes can be different for various
objects and object hierarchies. Moreover, atiribute definitions and template values can be inherited via
the GQM hierarchy. A free form way of defining goals, questions and metrics is also provided by ES-

TAME but automated support for them is limited.
4.2. Construction and Instantiation

GQM construction and instantiation is the final step of planning and characterizing before the project
execution. The purpose of these activities is to perform the final refinement and augnienn'ng of the GQMs

in order to make them operational (P2 in figure 6).

The formal semantics of the GQMs allow us to infer the underlying functionality of each attribute of a
GQM mode! or its component. This feature is used extensively in assisting in the process of constructing
goals, questions and metrics. The user starts with a goal template (see figure 9), refining and augmenting
its attributes according to the needs of the project. Each new piece of knowledge prompts the system to
determine if it can automatically deduce the necessary elements for the definition of the goal or the
shbsequent questions and metrics. Thus, the process of iteratively deﬁning goals, f;uestions and mefrics
can activate functions which are associated with the particular object. If a GQM model is not yet fully
| defined, a user input into the iemplate can activate the automatic generation of questions for goals or
metrics for questions. If a particular GQM model is fully specified when the attribu‘tes are filled in, the
template can automatically activate the corresponding data collection procedures which interact with the

user and the SEMs.

-23 -

The construction of the GQM:s is performed using a rule-driven GQM generator. It is a tool which uses
forward chaining, data-driven rules to help in the process of creating GQMs. When the user creates a goal
he/she is uses an editor to fill in and instantiate a goal template. The semantics of the templates are
defined by rules. When an attribute of a template is filled in, _it can fire one or several rules, These rules
can infer more information and fire additional rules in a forward-chaining manner. Fired rules can
generate more information based on the given initial data, they can fill empty attributes of the template,

suggest or generate questions based on the data, and so on.

The same rule-driven construction principle applies to creating questions. Normally the user has to be
involved in defining the questions, although in some cases the questions can be created automatically
based on the goal by the GQM generators rule-base. The construction includes choosing, filling and

"instantiating question templates according to the information from the goal definition.

Finally, the user chooses and defines the metrics and data collection procedures with the help of the
GQM rules. This procedure uses the SEMs in the meta-model in an object-oriented way. For example, if
the cost of a sub-system is not known and it is needed to-answer a question of a GQM then a message is
sent to the corresponding sub-system object in a SEM. The SEM object calculates the cost, possibly
asking further questions of the user if sufficient information is not available. On the other hand, if the
cost is already available in the SEM, either by previous calculations or as previously given by the user,
then the method in the SEM object simply returns the value of the cost to the GQM. Furthermore, the
mechanism for calculating the cost depends on the context of the object. It may be calculated by
summing up the cost of sub-systems, based on recorded and user provided data, or estimated by a given
formula (e.g. Cocomo). In all cases, the GQM model is the same and does not have to know anything
about how the corresponding SEM gets the value. The differehces are defined in the ¢orresponding SEMs
(product model, project_ model, cost model etc.) and can be hidden from the objects who ask for the

information.

GQMs and SEM typically communicate using the metrics level objects of the GQMs. Goal and question
level objects normally refer io lower level objects in the GQM hierarchy to obtain information. The links
between the SEMs and GQMs are established during the constrﬁction and instantiation of the operational
GQM, either automatically or with user assistance. The rules and constraints for the relationships are

defined in the GQM template objects by the person who is responsible for the ES-TAME system. .

For example, consider a GQM which needs information on the experience of the manager in order 1o

evaluate the development team, i.e. the GQM involves several questions and one of them is "What is the

-4 .

experience of the manager?". The GQM is initially constructed from a template object (P1 in figure 6)
which defines that its manager link (defined as a Counterpart relationship) must point to an Instance-Of
managers class in the SEMs. When a GQM object needs the experience information for the first time, it
doesn't know who the manager is. However, based on the manager link constraint, it knows that it must
be an instances of the manager class. Consequently, it asks for the name by giving a list of instances of
the manager class to the user. When the user selects the name of the manager in the menu, the sysiem
automatically initializes the Counterpart relationship between the GQM and the selected manager object
ih the SEM and all future references to the manager use this link. When the link is established, the GQM
. object sends a message to the manager instance asking for the experience of the manager. If the

information is not available in the manager object, it activates characterization prbcedures which provide '
the user with a form editor for defining the necessary facts for the manager object. When the
characterization is done the manager object returns the experience data to the GQM object. Naturally, the
manager instance saves this new information from the form editor during the cha:acteﬁzaﬁon process and
can immediately return the experience data, as well as any other characteristics defined in the

characterization, without any user interaction during the next requests.

The communication between the GQMs and SEMs is analogous to the previous example when the
information flow is reversed, i.e. when the GQMs are manipulating the infofmation of the SEMs. For
example, when a metrics method of a GQM has measured the error density it will send the results as a
message 1o the corresponding quality model (SEM), The establishment of the link is also similar. The
template objects provide the allowable quality models which can be linked to the pa:ﬁcular GQM and the
final establishment of the link is done either antomatically or interactively during the construction and

instantiation of the GQMs.

By having separate SEMs and GQM models we can have a clear interface between the general principles
of creating GQMs and the project specific information defined and stored in the SEMs. All the

complexities and implementation details can be hidden in the corresponding models.

The actual usage of fully specified GQM:s is performed by backward chaining rule-based reasoning. The
goal part of a GQM is used as a high level goal® in the backward chaining process. The reasoning process
will establish questions and finally meirics as backward chaining sub-goals. When metric level goals are

established in the reasoning they will activate the corresponding metrics procedures.

6 Notice the dual meaning of the word goal. It is used 1o refer both to the goal part of a GQM and to the goal of a backward chaining

reasoning process. The context of the word should clarify the meaning.

-25.

4.3, Product Goal Example

Consider an example where we want to analyze the quality of a sub-system in our product. We initiate
_the process by formulating our overall goal with the template driven editor, ES-TAME provides us with
purpose and perspective templates where we have several slots to be filled. Figure 9 illustrates the
purpose and perspective aspects of the goal objects. The selections for our example are highlighted. Note
that the elements of the template are internally modeled in a hierarchical GQM model (see figure 6).
Figure 9 merely illustrates the principle of a simplified template driven editor which can be applied o

assist the user in constructing GQMs.

PURPOSE; - |analyze process understand
characterize product evaluate
evaluate the model in order to |manage it
predict metric ' engineer
motivate testing . |leam
other ... review improve

' other ... ' other ...

PERSPECTIVE: :) cost

effectiveness developer
. quality manager
. r with respect to_jcorreciness " from the point of view of __|customer
defects corporate
changes other...
product metrics
other ...

Figure 9: Simpliﬁéd GQM emplates.

We can choose either pre-defined options for the slots or choose other... and provide our own definitions.

In our case study we will choose: '

analyze the product in order to improve it

with tespect to quality from the point of view of developer.

If we select one of the predefined options in the templates then ES-TAME is capable of choosing the
most potential optioﬁs for the corresponding sub-goals and questions. For example, choosing keyword
analyze and product would trigger rules which would sggest sub-goalé for analyzing the whole product,
hardware, software, sub-systems, etc. At the same time the system automatically creates a Counterpart

- relationship in the GQM and constrains its value so that it is altowed io point either 1o product moedel or

- 26 -

to the parts of the product. The relationship also includes a definition for its semantics, i.e. the link

indicates the potential target objects of the quality analysis,

Let us select the software sub-system catled FancyDoor which internally instantiates our Counterpart
relationship between the goal object and the FancyDoor object. Since we select quality in the perspective
template and because we have already chosen to study a software sub-system for the product, ES-TAME
triggers rules which will suggest coupling, cohesion, defects, etc. as aspects of quality. Again, the system
creates the corresponding Counterpart relationships automatically in the background. The user can select
from the options offered by the system or can make histher own choice. Finally the rule driven
construction process generates several sub-goals for analyzing the quality of the product and one of the

goals is:

anatyze the sub-system DoorControl in order to improve it

" with respect to coupling from the point of view of developer.

Now that Wé have generated all the goals with pre-defined options related to our initial goal, ES-TAME
can shggest questions and metrics to achieve the goals. Choosing analyze-product options in the
templates activates the forward chaining GOQM building rulés to suggest a product related questionnaire
which is. a]rezidy stored in the meta-model. Methods in the product questionnaire object suggest
appropriate mefrics if the attributes are not already known by the user. In the coupling example, the
coupling sub-goal changes the viewpoint of the FancyDoor into the coupling models for that specific
| type of design and activates the methods for evaluaﬁng the coupling. For design level coupling it
activates general purpose coupling routines which sends messages to the FancyDoor design objects to

obtain the coupling information,

The abm'.reA process creates several relationship neiworks. The Counterpért feIationship network is used
extensively in sending messages between the objects and actually making the GQM operational.
Furthermore, the definition of the goals, questions and metrics creates a GQM hierarchy. The highest
node is the most general statement of the goal (enalyze the product in order to improve it with respect to
quality from the point of view of developer). The lowest levels in the GQM hierarchy are the most
specialized definitions (analyze the sub-system DoorControl in order to improve it with respect to
coupling" from the ﬁoint of view of developer). In practice the process would create several mid-level

objects and various branches in the hierarchy.

27 -
5. Conclusions

We have described a methodology, a knowledge representation, and a reasoning framework for the top
down goal oriented characterization, modeling and execution of software engineering activities. This is
done in the context of the Quality Improvement Paradigm (QIP). The QIP is an evolutionary
improvement paradigm tailored for the software business defined by three steps: (1) planning, {2)
execution, and (3) analysis and packaging. The Experience Factory concept provides an environment for

the organizational approach for building software competencies and supplying them to projects.

| A prototype system (ES-TAME) is described which demonstrates the underlying knowledge
representation and reasoning principles. Support for the RT-SA/SD method is used as a case study .of
modeling the design phase of building software for real-time systems. ES-TAME provides an object-
oriented meta-model concept which supports tailorable and reusable software engineering models. It
provides the essential mechanisms, functions and attributes for building other mbdels. Modeling is based
on inter-object relationships, dynamic viewpoints and selective inheritance in addition to the traditional
' object-oriented techniques. This extended object-oriented approach has proven.i0 be effective in
- implementing the two types of highly modular and tailorable ES-TAME modei categories: ‘descriptive
SEMs which consist of mainly passive objects and procedural GQMs wh.ich consist of active objects. By
defining SEMs and GQMs as two clearly separate models, we can create a highly,modular‘ system and_ a

far better support for representing knowledge in a reusable and easily maintainable form.

SEM models include representations for the basic software engineering activities. They iﬁvol_ve mostly
descriptive knowledge defined in the characterization and planning activities of a project life cycle.
SEMs are used and made operational by the active GQM models which are defined by a systematic
mechanism for defining and evaluating goals and using measurement to provide feedback in real-time.
GQMs provide a paradigm for establishing project and corporate goals and a mechanism for measuring
against those goals, A rule-based forward chaining mechanism provides a user friendly, incremental and

flexible way of constructing the GQM templates into GQM object hierarchies.

The current implementation of ES-TAME provides a framework for creating and maintaining tailorable
- SEMs and GQMs. It demonstrates the main knowledge representation and feasoning mechanisms of the
Model Base, Model Management and ES-TAME User Interface unit including the Viewpoint-Manager
{figure 3) and an interface to Design Méthod Tools. However, it does not include automatic support for
the Analysis and Packaging Unit and these functions must be carried out manually. Furthermore, the

Reuse Repository needs additional research to be useful in practical environments.

-28 -

Potential directions for future research include comprehensive support for building and managing the
reuse repository, using reverse engineering techniques for creating and maintaining the experience base
for an organization, using case-based reasoning techniques for packaging information into the experience

base and supporting GOM management with deep knowledge.

Acknowledgements

The anthors wish to thank Lionel Briand, Gianluigi Caldiera and Robert France for their constructive and

valuable comments.

References

{11 Banerjee, J. , Chou, H.T., Garza, J.F., Kim, W., Woelk, D., Ballou, N., Data Model Issues for

. Object-orienied Applications, ACM Transactions on Office Information Sysiems, January 1987.

[2] Basili, V.R. , Quantitative Evaluation of Software Engineering Methodology, Keynote address,
First Pan Pacific Compuier Conference, Melbourne, Australia, September 1985 also available as
Technical Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park,
Tuly 1985].

[3]1 Basili, V.R.,Rombach, H.D).,, TAME: Integrating Measurement into Software Environments,
Computer Science Technical Report Series, (CS-TR-1764), University of Maryland at College
Park, College Park, Maryland, June 1987,

[4] Basili, V.R. , Rombach, H.D. The TAME Project: Towards Improvement-Oriented Software

Environments, IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988, pp. 758-

773. ;

[5] Basili, V.R., Software Development: A Paradigm for the Future, Proceedings of the Thirteenth
Annual International Computer Software & Applications Conference, Orlando, Florida, September
1989, pp. 4714835,

[6] Basili, V.R., Rombach, H.D., Support for Comprehensive Reuse, IEE Software Engineering
Journal, September 1991.

" [7]1 Bennet, K., White, D. ,The Knowledge-Based Software Assistant, overview. Proceedings of the
Second Annual Knowledge-Based Software Assistant Conference. Rome Air Development Cenire,
New York, January 1988, pp. 13 - 24.

[81 Booch, G., Object-Oriented Design with Applications, Benjamin/Cummings Publishing Company,
Redwood City, CA, 1991, 580 p.

[9] <Caldiera, G., personal communication, 1991,

[10] Fikes, R., Kehler, T. , The Role of Frame-Based Representation in Reasoning. Communications of
the ACM, Vol. 28, No. 9, September 1985, pp. 904 - 920,

[1}] Goldberg, A. , Robson, D., Smalltalk-80: The Language and its Implementation, Reading,
Massachusetts, Addison-Wesley Publishing Company, 1983.

[12} Hahn, U., Jarke, M., Rose, T. Teamwork Support in a Knowledge-Based Information Systems
Environment, IEEE Transactions on Software Engineering, No 17, May 1991, pp. 467-482.

[13] Kim, W., Object-Oriented Databases: Definition and Research Directions. IEEE Transactions-on
Knowledge and Data Engineering, Volume 2, No. 3, September 1990, pp. 327-341.

[14] Meyer, B., Object-oriented Software Construction, Prentice Hall, New York, 1988.

[15]

(16]
- {17]
(18]

(191

1201

[21]

229

Mi, P., Scacchi, W., A Knowledge-Based Environment for Modeling and Simulating Software
Engineering Processes. IEEE Transactions on Knowledge and Data Engineering, Vol.2, No. 3,
September 1950, pp. 283-294.

Oivo, M., Knowledge-Based Support for Embedded Computer Software Analysxs and Design.
Espoo, Finland, Technical Research Centre of Finland, VTT Publications 68, 1990, 82 p.

Rich, C., Waters, R., The Programmer's Apprentice. Reading, MA: Addison-Wesley, and
Baltimore, MD: ACM Press, 1990. _
Stefik, M., Bobrow, D., Object-Oriented Programming: Themes and Variations, AI Magazine,
Volume 6, No 4, Winter 1986, pp. 46-62.

Stroustrup, B.: The C++ Programming Language, Addison Wesley, Reading, Massachusetis, 1986.
Ward, P., Mellor, 8., Structured development for Real-time Systems, Vol 1...3, New York, 1984.
Wegner, P., Concepts and Paradigms of Object-Oriented Programming, Expansion of Oct 4
OOPSLA-89 Keynote Talk, OOPS Messenger, Vol I, Number I, August 1990, pp.7-87.

