
1

Characterizing and Assessing
a Large-Scale Software Maintenance

Organization

- Experience Report -

Lionel Briand, Walcélio L. Melo, Carolyn Seaman and Victor Basili*
Computer Science Department

Institute for Advanced Computer Studies
University of Maryland
College Park, MD, 20742

{lionel | melo | carolyns | basili}@cs.umd.edu

Abstract

One important component of a software process is the organizational context in which the process is

enacted. This component is often missing or incomplete in current process modeling approaches. One technique for

modeling this perspective is the Actor-Dependency (AD) Model. This paper reports on a case study which used this

approach to analyze and assess a large software maintenance organization. Our goal was to identify the approach's

strengths and weaknesses while providing practical recommendations for improvement. The AD model was found to

be very useful in capturing the important properties of the organizational context of the maintenance process, and

aided in the understanding of the flaws found in this process. However, a number of opportunities for extending and

improving the AD model were identified. Among others, there is a need to incorporate quantitative information to

complement the qualitative model.

1. Introduction
It has now been recognized that, in order to improve the quality of software products, it is

necessary to enhance the quality of the software processes used to develop and maintain them. This

requires the understanding and modeling of these processes in order to be able to analyze and

assess them. Following the example of other engineering disciplines, where empirical approaches

to management have been successfully applied, several methodologies have been defined for

allowing the characterization and incremental improvement of software processes (e.g., [Paulk et

al, 1991, and Basili, 1989]). As a necessary component of these approaches, techniques have been

developed for modeling software development and maintenance processes [Lott and Rombach,

1993, Finkelstein et al, 1994, and Melo and Belkhatir, 1994].

* During this work the authors were, in part, supported by the following grants: Briand by NSF grant 01-5-24845,
Melo by UMIACS, Carolyn by IBM-Toronto 91-1-20011, and Basili by NASA grant NSG-5123.

2

What has received less attention in the literature is the need to model the organizational

context in which a development process executes. It is not possible to fully understand and analyze

such process issues as information flow, division of work, and coordination without including the

organizational context in the analysis. Some process modeling approaches attempt to include

elements of organizational structure [Curtis et. al., 1992], but not to any great level of detail.

Some attempts have also been made to model development organizations as an entity apart from the

development process [Seaman, 1994]. One approach to organizational and process modeling

appears particularly promising [Yu and Myopoulos, 1994]. This approach is very new (it was

presented at last year's ICSE) and thus lacks any significant validation through use. One goal of

this paper is to report an early experience with this promising new approach.

Consistent with the philosophy presented above, [Briand et. al., 1994] has developed an

auditing process specifically aimed at software maintenance processes and organizations. Such an

approach requires, to a certain level of detail, the modeling of processes and organizations. In this

context, the Actor-Dependency modeling technique [Yu and Mylopoulos, 1994] mentioned above

appeared to be suitable because of its capability to capture numerous kinds of constraints and

dependencies frequently encountered in complex organizations. In addition, this technique proved

in practice to be intuitive and to facilitate communication with the maintenance staff of the studied

organization.

This work reports on the experience of using the Actor-Dependency technique to help

analyze a large software maintenance organization. We evaluate the approach's strengths and

weaknesses while providing practical recommendations for improvement. In Section 2, we briefly

describe the Actor-Dependency modeling approach and one of its extensions that we have used in

our study. Section 3 presents the case study we conducted. In Section 4 we evaluate the

advantages and weaknesses of the AD approach. Finally, in Section 5, we present a number of

suggestions for future work, both with the AD model and software organizational modeling in

general.

2. The Actor-Dependency Modeling Approach
The most important characteristic of the modeling approach presented by Yu et al, for our

purposes, is its capability to fully represent the organizational context in which a development

process is performed. This language provides a basic organizational model with several

enhancements, only one of which we will describe here. The basic Actor-Dependency model

represents an organizational structure as a network of dependencies among organizational entities.

The enhancement which we have used, called the Agent-Role-Position (ARP) model, provides a

useful decomposition of the actors themselves. These two representations are described briefly in

the following sections. For a more detailed description, see [Yu and Mylopoulos, 1993].

3

2.1. The basic Actor-Dependency (AD) model
In this model, an organization is described as a network of interdependencies among active

organizational entities, i.e., actors. A node in such a network represents an organizational actor,

and a link indicates a dependency between two actors. Examples of actors are: someone who

inspects units, a project manager, or the person who gives authorization for final shipment.

Documents to be produced, goals to be achieved, and tasks to be performed are examples of

dependencies between actors. When an actor, A1, depends on A2, through a dependency D1, it

means that A1 cannot achieve, or cannot efficiently achieve, its goals if A2 is not able or willing to

fulfill its commitment to D1. The AD model provides four types of dependencies between actors:

• In a goal dependency, an actor (the depender) depends on another actor (the dependee)

to achieve a certain goal or state, or fulfill a certain condition (the dependum). The

depender does not specify how the dependee should do this. A fully built

configuration, a completed quality assessment, or 90% test coverage of a software

component might be examples of goal dependencies if no specific procedures are

provided to the dependee(s).

• In a task dependency, the depender relies on the dependee to perform some task. This

is very similar to a goal dependency, except that the depender specifies how the task is

to be performed by the dependee, without making the goal to be achieved by the task

explicit. Unit inspections are examples of task dependencies if specific standard

procedures are to be followed.

• In a resource dependency, the depender relies on the dependee for the availability of an

entity (physical or informational). Software artifacts (e.g. designs, source code, binary

code), software tools, and any kind of computational resources are examples of

resource dependencies.

• A soft-goal dependency is similar to a goal dependency, except that the goal to be

achieved is not sharply defined, but requires clarification between depender and

dependee. The criteria used to judge whether or not the goal has been achieved is

uncertain. Soft-goals are used to capture informal concepts which cannot be expressed

as precisely defined conditions, as are goal dependencies. High product quality, user-

friendliness, and user satisfaction are common examples of soft-goals because in most

environments, they are not precisely defined.

Three different categories of dependencies can be established based on degree of criticality:

4

• Open dependency: the depender's goals should not be significantly affected if the

dependee does not fulfill his or her commitment.

• Committed dependency: some planned course of action, related to some goal(s) of the

depender, will fail if the dependee fails to provide what he or she has committed to.

• Critical dependency: failure of the dependee to fulfill his or her commitment would

result in the failure of all known courses of action towards the achievement of some

goal(s) of the depender.

The concepts of open, committed, and critical dependencies can be used to help understand

actors' vulnerabilities and associated risks. In addition, we can identify ways in which actors

alleviate this risk. A commitment is said to be:

• enforceable if the depender can cause some goal of the dependee to fail.

• assured if there is evidence that the dependee has an interest in delivering the

dependum.

• insured if the depender can find alternative ways to have his or her dependum

delivered.

In summary, a dependency is characterized by three attributes: type, level of criticality, and

its associated risk-management mechanisms. The type (resource, soft-goal, goal, and task)

represents the issue captured by the dependency, while the level of criticality indicates how

important the dependency is to the depender. Risk-management mechanisms allow the depender to

reduce the vulnerability associated with a dependency.

Actor

Resource

Goal

Manager

Developer
Tester

Develop

Positive
Evaluation

Code

Positive
Evaluation

Soft
Goal

Good
Coverage

Legend

Dependencies:

Critical

Test

Task

X

X

X

Figure 1: A simple example of an AD model

Figure 1 shows a simple example of an AD model. A Manager oversees a Tester and a

Developer. The Manager depends on the Tester to test. This is a task dependency because there is

5

a defined set of procedures that the Tester must follow. In contrast, the Manager also depends on

the Developer to develop, but the Developer has complete freedom to follow whatever process he

or she wishes, so this is expressed as a goal dependency. Both the Tester and the Developer

depend on the Manager for positive evaluations, where there are specific criteria to define

"positive", thus these are goal dependencies. These two dependencies are also critical because the

future careers of the Tester and Developer depend completely on the evaluations. The Tester

depends on the Developer to provide the code to be tested (a resource), while the Developer

depends on the Tester to test the code well (good coverage). Assuming that there are no defined

criteria for "good" coverage, this is a soft-goal dependency.

2.2. The Agent-Role-Position (ARP) decomposition
In the previous section, what we referred to as an actor is in fact a composite notion that

can be refined in several ways to provide different views of the organization. Agents, roles, and

positions are three possible specializations of the notion of actor which are related as follows:

• an agent occupies one or more positions

• an agent plays one or more roles.

• a position can cover different roles in different contexts.

Position

Agent

Role

Legend

John Task
Assignment

Manager

occupies covers

plays

Figure 2. Associated Agent, Position, and Role

Figure 2 shows an example of an actor decomposition. These three types of specialization

are useful in several ways. They can be used to represent the organization at different levels of

detail. At a very high level, one might use only unspecialized actors. Positions provide more detail,

but still provide a high-level view. Roles provide yet more detail, and the use of agents allows the

modeler to specify even specific individuals.

6

3. A Case Study using the AD Model

3.1. Background
Before describing our results, some background is necessary in order for the reader to

understand the analysis which follows. We will first describe the development environment which

serves as our context. Second, the auditing process used in the case study will be described.

3.1.1. The Studied Maintenance Organization

This study took place in the Flight Dynamics Division of the NASA Goddard Space Flight

Center (GSFC). Numerous software systems for the control and prediction of satellite orbits,

trajectories and attitude are maintained, sometimes for very long periods, and new releases are

regularly produced. Many of these systems are written in FORTRAN and are between 10 and 20

years old. Numerous communication, schedule, budget and technical problems arise with each

release. This results in somewhat unstable change requirements all along the release process, a

high turnover in some projects and difficulties in meeting deadlines. There was a need to study

these phenomena.

More precisely, our framework for this study is the NASA Software Engineering

Laboratory (NASA-SEL), an organization aimed at improving FDD software development

processes based on measurement and empirical analysis. Recently, responding to the growing cost

of software maintenance, the SEL has initiated a program aimed at characterizing, evaluating and

improving its maintenance processes. The first step in this direction was a set of studies conducted

using the auditing technique described below.

3.1.2. The Maintenance Process Auditing Methodology

In [Briand et. al., 1994], a qualitative and inductive methodology has been proposed in

order to characterize and audit software maintenance processes and organizations and thereby

identify their specific problems and needs. This methodology encompasses a set of procedures

which attempts to determine causal links between maintenance problems and flaws in the

maintenance organization and process. This allows for a set of concrete steps to be taken for

maintenance quality and productivity improvement, based on a tangible understanding of the

relevant maintenance issues in a particular maintenance environment. The steps of this

methodology can be summarized as follows:

Step 1: Identify the organizational entities with which the maintenance team interacts and

the organizational structure in which maintainers operate. In this step the distinct teams

7

and their roles in a change process are identified. Information flows between actors

should also be determined.

Step 2: Identify the phases involved in the creation of a new system release. Software

artifacts produced and consumed by each phase must be identified. Actors responsible

for producing and validating the output artifacts of each phase have to be identified and

located in the organizational structure defined in Step 1.

Step 3: Identify the generic activities involved in each phase, i.e. decompose life-cycle

phases to a lower level of granularity. Identify, for each low-level activity, its inputs

and outputs and the actors responsible for them.

Step 4: Select one or several past releases for analysis in order to better understand

process and organization flaws.

Step 5: Analyze the problems that occurred while performing the software changes in the

selected releases in order to produced a causal analysis document. The knowledge and

understanding acquired through steps 1-3 are necessary in order to understand,

interpret and formalize the information described in the causal analysis document.

Step 6: Establish the frequency and consequences of problems due to flaws in the

organizational structure and the maintenance process by analyzing the information

gathered in Step 5.

Modeling the organizational context of the maintenance process was a very important step

in the above analysis process. A model of the organization was necessary for communication with

maintenance process participants. Gathering organizational information and building the model was

critical to our understanding of the work environment and differences across projects. The model

was also useful in checking the consistency and completeness of the maintenance process model.

For example, the organizational model allowed us to determine whether or not all organizational

actors had defined roles in the process model. During this preliminary study, the following

requirements were identified for an optimal organizational modeling technique:

R1: The modeling methodology had to facilitate the detection of conflicts between

organizational structures and goals. For example, inconsistencies between the

expectations and intentions of interfacing actors seemed to be a promising area of

investigation.

R2: We needed to capture many different types of relationships between actors. These

included relationships that contributed to information flow, work flow, and fulfillment

of goals. The explicit and comprehensive modeling of all types of relationships was

necessary in this context.

8

R3: Different types of organizational entities had to be captured: individuals, their official

position in the organizational structure, and their roles and activities in the maintenance

process. This was important not only to be able to model at different levels of detail,

but also to provide different views of the organization, each relaying different

information.

R4: Links between the organization and the maintenance process model had to be

represented explicitly.

R5: The notation had to aid in communication through intuitive concepts and graphical

representation.

As a starting point, we decided to use the Actor-Dependency model introduced by Yu et al

in order to reach these objectives. The AD model, as we shall see, meets many of our

requirements.

In the next section, we provide the extended AD model of our maintenance organization

where, for the sake of simplification, we use only positions (one possible specialization of actors)

as vertices of the graph.

3.2. AD Organizational Model
The organizational model in Figure 3 is very complex despite important simplifications

(e.g., agents and roles are not represented). This shows how intricate the network of dependencies

in a large software maintenance organization can be. The lessons learned are presented below and

the approach's advantages and drawbacks are the focus of the next section.

The organizational model presented in Figure 3 was built using information from a variety

of sources: we read maintenance standards release documents, interviewed people involved in the

change and configuration management process, analyzed release management reports, and studied

the official organization charts.

The model is by necessity incomplete. We have focused on those positions and activities

which contribute to the maintenance process only. So there are many other actors in the NASA

organization which do not appear in the AD graph. As well, we have aggregated some of the

positions where appropriate. For example, Maintenance Management includes a large number of

separate actors, but for the purposes of our analysis, they can be considered as an aggregate.

Because only the primary dependencies are shown at this level of detail, nearly all of them are

shown as critical. This issue will be discussed in more detail later. Below are listed the positions

shown in the figure, and a short explanation of their specific roles:

Testers present acceptance test plans, perform acceptance test and provide change requests

to the maintainers when necessary.

9

Task
Leader

User

Tester

Maintainer

Maintenance
ManagementQA

Engineer

Release
on time

Priority List +
Change

requirements

Change
requirements

System
information,

expertise Change
Implemented,
Unit tested,

Integration teste

Error
Reports

Release
Documentation

Resources,
Staff

Release
pre-approval

Configuration
Manager

Baseline
source

code

Configured
ReleaseModified

Components

System
Support

Release

Release Docs.
Reviews

Configuration Chang
Requests

Process
Analyst

Data, Forms

Task
Assignment,

Change informatio

Inspection
results &
Feedback

Test plan
& results

NASA
Management

Budget Cost
EstimatesCost

Estimates

High
conformance

to
standards

Feasible
Release

Unambiguous
Requirements

Release
Integrity

Reliable
Software

XX

X

X
XX

X

X

X

X
X

X

X
X

X

X

X

X

X

X

X X

X
X

X

X

X

X

X

Figure 3: AD Model of a Maintenance Organization.

10

Users suggest, control and approve performed changes.

QA Engineer controls maintainers' work (e.g., conformance to standards), attends release

meetings, and audits delivery packages.

Configuration Manager integrates updates into the system, coordinates the production and

release of versions of the system, and provides tracking of change requests.

Maintenance management grants preliminary approvals of maintenance change requests and

release definitions.

Maintainers: analyze changes, make recommendations, perform changes, perform unit and

change validation testing after linking the modified units to the existing system, perform

validation and regression testing after the system is recompiled by the Configuration

Manager.

Process Analyst collects and analyzes data from all projects and packages data to be reused.

NASA Management is officially responsible for selecting software changes, gives official

authorizations, and provides the budget.

3.3 Lessons Learned
Below are the main flaws that were found in the maintenance process and which we

reported to the maintenance organization. In all cases, the flaws were uncovered, or at least better

understood, by studying the AD model.

Task Leader

From our analysis, it appears that the Task Leader is a very central position. This is clearly

illustrated in Figure 3. The centrality of the Task Leader gives rise to two possible problems:

overloading of the person filling this position, and over-dependence of the project on this one

position. Analysis of the Task Leader's role decomposition, especially in conjunction with

quantitative analysis, would be helpful in determining the extent of these problems, and possible

solutions.

Quality Assurance

Standards conformance and quality inspections were not perceived by the task leaders and

maintainers as critical. They considered these processes mainly bureaucratic. This is reflected in the

(non-)criticality symbols on the corresponding dependencies in Figure 3. This pointed out a

weakness in the process and organization that could be remedied through more suitable inspection

procedures and better definition and communication of quality needs.

11

Requirements

Unambiguous requirements (a dependency between the Task Leader and the User) is not an

enforceable soft-goal dependency since the users and maintainers belong to two different

management hierarchies. In other words, the Task Leader and User and so far removed from each

other in the network of management dependencies that the Task Leader has no practical recourse

for ensuring that the User provides unambiguous requirements. Moreover, the fact that this

dependency is a soft-goal and not a goal raises another issue: standards for defining unambiguous

requirements should be defined and applied. The lack of such standards indicates that the

organization is still immature in this area.

Data Collection

Process analysts attempt to collect data in order to evaluate and better predict the

maintenance process. However, such a procedure is inherently difficult to enforce when

maintainers do not clearly understand the benefits of such data collection, in terms of useful

feedback. In terms of the AD model, the Process Analyst's dependency on the Maintainer is a

vulnerability, with no risk management mechanism available to reduce that vulnerability.

4. Evaluation of the AD Model

4.1. Advantages
The notions of enforcement and assurance, as well as the modeling of goal and soft-goal

dependencies, helped us to detect potential problem areas, such as critical dependencies that are not

enforceable and for which there were no clear assurances of commitment. The Task Leader's need

for unambiguous requirements is an example of such an inconsistency. This seemed to fulfill, at

least partially, requirement R1.

The AD model captured all the information, work, and resource flows through resource

and task dependencies. This allowed us to identify inconsistencies between what some agents

needed and the support that they were actually getting. The problem of the Process Analyst's need

for development data from maintainers is an example of this. We also found that the soft-goal

dependency in particular was useful in highlighting areas in which the environment was immature.

The unambiguous requirements dependency exemplifies this situation. The various types of

dependencies in the AD model therefore fulfilled requirement R2.

The actor decomposition extension to the AD model makes a clear distinction between

various organizational entities by defining and differentiating roles, positions and agents as

different specializations of actors (requirement R3). This allowed us to extract different information

from different versions of the AD model, using different specializations of the actors. For

12

example, we found that the model remained fairly stable from project to project when nodes

represented positions (as in Figure 3). However, when we used the role specialization, significant

differences appeared between projects. For example, roles of managers often varied significantly,

depending on their technical background. This served to show that process participants found the

freedom to tailor their work to the situation, while the official organizational structure could remain

stable. Roles also provide a way to create explicit links between the organizational model and any

process model composed of consistently defined activities (requirement R4).

Many interactions with various members of the maintenance organization were necessary in

order to clarify inconsistencies and insure completeness. The AD model played an important role in

this communication, because it facilitated the exchange and comparison of perceptions about the

organizational structure. It served as a good communication tool (requirement R5).

4.2. Issues
Despite the numerous advantages of the AD model mentioned in the previous section, some

problems have been identified and should be the subject of further research.

Classification of dependencies

Once a dependency has been identified, it is not always straightforward to classify it

according to the defined taxonomy (requirement R2). One example is the difficulty in

distinguishing between a task dependency and a goal dependency. A task may be partially defined

(e.g., through standards) but some significant degree of freedom can exist for the dependee whose

understanding of the task objectives may or may not be complete. It is for this reason that we have

included no task dependencies in our AD model (see Figure 3). Also, the borderline between soft-

goals and (hard-)goals is not always clear. When is a goal sufficiently defined to be classified as a

(hard-)goal? More precise guidelines are needed in order to classify dependencies in an appropriate

fashion.

Another inadequacy of the classification scheme is in the case of information dependencies.

As defined, information dependencies are one type of resource dependency. However, a need for

information is different in nature from a need for time, money, or personnel resources. From a data

analysis point of view, information dependencies are described by different attributes than those

that would be used to describe other resource dependencies. For this reason, any kind of

information flow analysis necessitates the treatment of information as a separate type of

dependency.

13

Criticality of dependencies

No precise and unambiguous definition exists to classify a dependency as critical,

committed or open, which impedes fulfillment of requirement R1. Because of this, most of the

dependencies in our context appeared critical since they were certainly important from the

dependee's perspective. It was, from a practical perspective, difficult to determine if they were

really indispensable.

Another difficulty with identifying committed and open dependencies is that practitioners

often do not mention them in interviews and they are usually not included explicitly in process

documents. We have found that direct observation is the only effective way to capture such

secondary dependencies. This is time- and effort-consuming. Furthermore, when modeling at the

level of detail of our model, it is sufficient to include only the primary dependencies, which are

usually critical .

Interactions between dependencies

The notions of enforcement, assurance and insurance are extremely useful but they are

difficult to represent explicitly in the AD model representation (requirement R5). These notions

need to be captured explicitly by the organizational model. In the next section, we suggest a way to

do this by treating these three mechanisms as interactions between dependencies.

5. Suggestions
Based on this case study and our evaluation of the AD model, we provide here some

suggestions which may be useful to those wishing to extend the AD concepts, and to those who

are engaged in organizational modeling.

5.1. An Entity-Relationship Model
Figure 4 shows the meta-model for our modified Actor-Dependency model expressed as an

Entity-Relationship (ER) diagram in which we define . This meta-model serves two purposes.

First, it helps define the information that needs to be collected for any type of quantitative analysis

of an organization (quantitative analysis is discussed in a later section). Also, it clarifies the issue

of the separation between the organization and the process.

5 . 1 . 1 . Data meta-model

Defining precisely the entities and attributes of interest is not only necessary for data

analysis, but also helps clarify the modeling approach itself. One entity that we have added in

Figure 4 is the Qualification entity. An agent "has" one or more qualifications, e.g., maintaining

ground satellite software systems. Moreover, based on experience, it may be determined that some

role "requires" specific qualifications, e.g., experience with Ada. Comparison of the required

14

qualifications and the actual organizational set-up appears useful for identifying high-risk

organizational patterns.

Dependencies

Medium

Role

Position

Qualification

Agent

Interactions requires

occupies

covers has

implements

Process
Activities

performs
ORGANIZATIONAL MODELING

PROCESS MODELING
n

1

n n
nn n

n

n n

n

depender

dependee

n

n

n

n

n

n

n

n

1

Figure 4: Modified ER model for AD graphs

 We have retained the agent/role/position decomposition of an actor defined by Yu et al,

which we found very useful. The meta-model also shows "depender" and "dependee" as ternary

relationships. This reflects the fact that a depender or dependee of a dependency can be either a role

or a position. A role may be functionally dependent on another role in order to perform a given

process activity. Positions are usually interdependent because of the need for authorization or

authority. However, we believe that dependencies are not inherent to agents themselves, at least

not in our context.

We have also added a new entity, Medium, which is the communication medium used to

implement a particular dependency (especially information dependencies). This entity is used in

some types of quantitative analysis, which is described in a later section.

Finally, dependencies are related to each other and this is captured through the interaction

relationship, also described in a later section.

5 . 1 . 2 . Linking an organization model with a process model

The meta-model also makes explicit the relationship, and the separation, between process

and organization. Analysis of an organization is aided by the isolation of organizational issues

(e.g., information flow, distribution of work) from purely process concerns (e.g., task

scheduling, concurrency). This is especially true when dealing with quantitative data analysis.

Process entities and organization entities are described by different quantitative attributes.

15

Separation of these attributes clarifies the analysis. Although organization and process raise

separate issues, their effects are related. Understanding the relationship between organization and

process is crucial to making improvements to either aspect of the environment (requirement R4).

For example, the "performs" relationship can link a role to a set of activities, which may be seen as

lower-level roles. The entity Process Activity is itself related to other entities in the process model

not specified here.

5 . 2 . Dependency Interactions

There are several different types of interactions between dependencies. The meanings of

these different types are:

1) Being committed to the source dependency makes the commitment to the target

dependency more difficult. This represents a negative assurance.

2) The source dependency is an additional motivation to the target dependency. This

represents a positive assurance.

3) The source dependency's failure can provoke the failure of the target dependency. One

dependency's depender is the other dependency's dependee and vice-versa. This

represents a dependency enforcement.

4) Failure of one dependency is mitigated by the other dependency. Both dependencies

have the same depender but different dependees. This is a dependency insurance.

If a depender can count on many dependees to deliver a dependum, we can say that the

dependency is insured. In this case, different dependees can be committed to the same dependum.

This can be graphically represented in a AD graph in a fashion similar to OR branches in AND-OR

trees. For example, Figure 5 shows a case where a Task Leader (depender) can count on a

Maintainer or a Tester (two different dependees) for delivering the "Test Plan & Results" (a

particular dependum).
Task

Leader

Maintainer Tester

Test Plan
& results

 Figure 5: Insurance Representation.

16

We also provide a representation for expressing assurance interactions between

dependencies, shown in Figure 6. All nodes in the diagram are dependencies, and the arrows

between them represent either negative or positive assurances.1 In Figure 6, all the soft-goals

contribute positively (are positive assurances) to the goal "High-quality release", but all but one

contribute negatively to "Release on time". All of these dependencies have to be previously defined

in the AD model.

Our proposed representation of dependency enforcements is a variation of the above. A

dependency which enforces another dependency can be seen as one which completely assures it.

So our representation uses the same arrows between dependencies shown in Figure 6, with the

infinity symbol ("∞") in place of the plus ("+") or minus ("-").

Release
Integrity

Unambiguous
requirements

Conformance
to standards

Reliable
software

High-quality
Release

Release
on time

+

+

+

-

-
-

+

 Figure 6: Representing Assurances

5 . 3 . Use of quantitative data

The use of quantitative data is critical to the useful analysis of development processes and

organizations. Without quantitative information, the analysis results are not sufficient to effectively

compare alternatives and to make decisions. Qualitative analysis, while important for intuitive

understanding and insight, must be taken further to provide a basis for action. For example, [Perry

et. al., 1994] have recently attempted to characterize and quantify the workload of software

developers across software development process activities.

In fact, the AD model is particularly well suited to incorporating data, although there is not

an explicit facility for this in the modeling methodology. One way to perform such analysis is to

1 Readers familiar with the work of Yu et al will find this notation similar to their Issue Argumentation model,
which we did not make use of in our work. However, our notation which we present here has different semantics
than the IA model, and the two should not be confused.

17

associate attributes with the various AD entities (positions, roles, dependencies, etc.). The

attributes could be used to hold the quantitative information. Then analysis tools can be used to

analyze the AD graph, by making calculations, based on the data, according to the structure

represented in the graph.

One type of quantitative analysis, which has already been alluded to, is information flow

analysis. Information dependencies (one type of resource dependency) can have attached to them

attributes such as frequency and amount of information. Each information dependency is also

related to the different communication media (the entity Medium in Figure 4) that it uses to pass

information, e.g. phone, email, formal and informal documents, formal and informal meetings.

The many-to-many relationships between dependencies and their media also have attributes (e.g.,

effort). By way of example, a simple way to use these attributes is to calculate, for each

information dependency, the product of the dependency frequency, the amount of information, and

the effort associated with the medium related to the dependency. This product gives a quantitative

assessment of the effort expended to satisfy the information dependency. Summing these values

for each pair of actors in the AD graph shows how much effort the pair expends in passing

information to each other. This information can be used to support such management decisions as

how to fill different positions, how to locate these people, and what communication media to make

available. Without quantitative analysis, these decisions are subject to guesswork, trial and error,

and the personal expertise of the manager. For more on metrics for organizational information

flow, see [Seaman, 1994].

During the course of our study, we noticed that many differences between projects were

reflected in variations in the breakdown of positions into roles. In other words, the people filling

the same positions in different projects divided their effort differently among their various roles.

These variations were usually symptomatic of differences in management strategy and leadership

style. This provides yet another opportunity to exploit quantitative analysis with the AD model.

Data needs to be collected to capture the important variations in effort breakdown across

organizations and projects. This data must then be attached to entities in the AD model so that it can

be used to analyze variations in job structure. For example, suppose that we wanted to find out

which projects require a manager with technical expertise. If we have quantitative data available on

the effort breakdown of the different managers, then we can easily see which managers spend a

high proportion of their time on technical activities. This information can be used in choosing

people to fill different management positions. Variations in effort breakdown can also be

represented in an AD graph by varying the thickness of the lines which join a position with its

various roles, as shown in Figure 7.

18

Task
Leader

Managing
Change
Process

Estimating
Costs

Approving
Documentation

Position

Agent

Role

Legend

Figure 7. Representing effort breakdown

Effort breakdown is only one example of the many possibilities for analysis of the

role/position/agent structure of actors. Qualification analysis, which would involve the

Qualifications entity, is another example. Understanding the sharing of tasks and responsibilities

is another area in which quantitative analysis could be useful. All of these involve the evaluation of

quantitative attributes attached to roles, positions, agents, and the links (occupies, contains,

performs) between them.

5 . 4 . Acquisition process

Any modeling effort requires that a great deal of information be collected from the

environment being modeled. Building an AD model requires collecting information about all the

people in the environment, the details of their jobs and assignments, whom they depend on to

complete their tasks and reach their goals, etc. Our experience has shown that it is useful to follow

a defined process for gathering this information, which we will call an acquisition process. The

acquisition process which we followed, with modifications motivated by our experience, is

presented in this section. The steps are as follows:

Step 1: First, we determined the official, (usually) hierarchical structure of the

organization. Normally this information can be found in official organization charts.

This gives us the set of positions and the basic reporting hierarchy.

Step 2: We determine the roles covered by the positions by interviewing the people in

each position, and then, to check for consistency, their supervisors and subordinates.

Process descriptions, if available, often contain some of this information. However,

when using process descriptions, the modeler must check carefully for process

conformance.

Step 3: In this step, we focus on the goal, resource, and task dependencies that exist

along the vertical links in the reporting hierarchy. To do this, we interview members of

different departments or teams, as well as the supervisors of those teams. Also, direct

19

observation of supervisors, called "shadowing", can be useful in determining exactly

what is requested of, and provided by supervisors for their subordinates.

Step 4: Here we focus on resource (usually informational) and goal dependencies between

members of the same team. Direct observation (through shadowing or observation of

meetings) is also useful here. Interviews and process documents can also be used to

identify dependencies.

Step 5: Finally, we determine the informational and goal dependencies between different

teams. These are often harder to identify, as they are not always explicit. Direct

observation is especially important here, as often actors do not recognize their own

subtle dependencies on other teams. It is also very important in this step to carefully

check for enforcement, assurance, and insurance mechanisms, since dependers and

dependees work in different parts of the management hierarchy.

6 . Conclusions
This paper presents the experience of using the Actor-Dependency modeling approach in a

real-world case study. The approach was used to model and analyze a large scale maintenance

organization. The AD model was found to be very useful at capturing the important properties of

the organizational context of the maintenance process, and aided in the understanding of the flaws

found in this process. There were, however, some inadequacies of the approach, which we have

addressed through a set of proposed extensions.

One major potential extension of the approach is to use quantitative data and analysis

methods, within the framework of an AD model. Qualitative methods are not sufficient to

differentiate organizations and especially variations across projects. Measurement is therefore

necessary for studying organizations.

The AD model also needs automated support for real-scale organizations. This is required

to allow the user to analyze a real-time organization and define complementary views of the studied

organizations, at different levels of refinement, at different levels of completeness. Automated

support is especially crucial for the use of quantitative analysis.

Also, in order to expand the E-R model presented in Figure 4, we intend to use more

powerful modeling concepts such as the KAOS (Knowledge Acquisition in autOmated

Specification) meta-model [Dardenne et. al., 1993] which integrates the usual entity and

relationship concepts with the notions of inheritance, AndOr relationships, invariants, constraints

and goals. Also important is to better define the relationship between the organization and the

development process. Separating organizational concerns from process concerns, but considering

20

them in conjunction with each other, is a crucial element in the comprehensive study of

development environments.

Finally, collecting information about an organization for building an accurate AD model is a

complex task. Therefore, based on experience, we need to define an optimal data acquisition

process that can be tailored to various maintenance environments.

References

Basili, V.R. (1989). "Software Development: A Paradigm for the Future". In Proceedings, COMPSAC '89, Orlando,
FL, September.

Briand, L. C.; Basili, V. R.; Kim, Y.M.; Squier, D. R. (1994) "A change analysis process to characterize software
maintenance projects". In Proc. of the IEEE Int'l Conf. on Software Maintenance. September, Victoria,
Canada.

Curtis, B.; Kellner, M.I.; Over, J. (1992). "Process Modeling". In Communications of the ACM, 35(9):75-90,
September.

Dardenne, A.; van Lamsweerde, A.; Fickas, S. (1993). "Goal-directed requirements acquisition". Science of
Computer Programming, Methods of Software Design Techniques and Applications, 20(4):3-50, April.
Elsevier Pub.

Finkelstein, A.; Kramer, J.; Nuseibeh, B., eds.(1994). Software Process Modeling and Technology. Research Studies
Press (distributed by Wiley & Sons).

Lott, C.M.; Rombach, H.D. (1993). "Measurement-based guidance of software projects using explicit project plans".
In Information and Software Technology, 35(6/7):407-19, June/July.

Melo, W. and Belkhatir, N. (1994). "Collaborating Software Engineering Processes in Tempo". Journal of the
Brazilian Computer Society, 1(1):24-35.

Paulk, M.C.; Curtis, B.; Chrisis, M.B.; (1991). "Capability Maturity Model for Software". Software Engineering
Institute Technical Report, CMU/SEI-91-TR-24, August.

Perry, D.; Staudenmayer, N.; Votta, L. (1994), "People, Organizations, and Process Improvement". IEEE Software,
11(4):36-45.

Seaman, C.B. (1994), "Using the OPT Improvement Approach in the SQL/DS Development Environment". In
Proceedings of CASCON'94, (CD-ROM version), Toronto, Canada, October.

Yu, E.; Mylopoulos, J. (1993). "An Actor Dependency Model of organizational work - with application to Business
Process Reengineering". In Proc. Conference on Organizational Computing Systems (COOCS 93),
Milpitas, CA, November.

Yu, E. S.; Mylopoulos, J. (1994). "Understanding 'why' in software process modeling, analysis, and design". In
Proc. of the 16th IEEE Int'l Conf. on Software Engineering. Sorento, Italy. pp. 159-168.

