
 Int . J . Human – Computer Studies (1997) 46 , 103 – 124

 Browsing hierarchical data with multi-level dynamic
 queries and pruning

 H ARSHA P . K UMAR , * C ATHERINE P LAISANT AND B EN S HNEIDERMAN

 Human - Computer Interaction Laboratory , Department of Computer Science ,Institute
 for Systems Research † , Uni y ersity of Maryland , College Park , MD 2 0 7 4 2 - 3 2 5 5 , USA .
 email : harsha ê webizinc .com / plaisant ê cs .umd .edu / ben ê cs .umd .edu

 (Recei y ed 6 No y ember 1 9 9 5 and accepted in re y ised form 3 September 1 9 9 6)

 Users often must browse hierarchies with thousands of nodes in search of those that
 best match their information needs . The PDQ Tree - browser (Pruning with Dynamic
 Queries) visualization tool was specified , designed and developed for this purpose .
 This tool presents trees in two tightly-coupled views , one a detailed view and the
 other an overview . Users can use dynamic queries , a method for rapidly filtering
 data , to filter nodes at each level of the tree . The dynamic query panels are
 user-customizable . Sub-trees of unselected nodes are pruned out , leading to compact
 views of relevant nodes . Usability testing of the PDQ Tree-browser , done with eight
 subjects , helped assess strengths and identify possible improvements . The PDQ
 Tree-browser was used in Network Management (600 nodes) and UniversityFinder
 (1100 nodes) applications . A controlled experiment , with 24 subjects , showed that
 pruning significantly improved performance speed and subjective user satisfaction .
 Future research directions are suggested . ÷ 1997 Academic Press Limited .

 1 . Introduction

 Decisions are an integral part of human life . Whether deciding what movie to see or
 choosing which universities to apply to , people are constantly faced with decisions .
 Many everyday decisions and in engineering applications require the selection of
 one or a few elements from many , possibly thousands of elements . In such cases ,
 users often try to make a ‘‘good’’ choice by deciding first what they do not want , i . e .
 they first try to reduce the data set to a smaller , more manageable size . After some
 iterations , it is easier to make the final selection(s) from the reduced data set . This
 iterati y e refinement or progressi y e querying of data sets is sometimes known as
 hierarchical decision-making .

 A hierarchical data set (HDS) (also called a ‘‘tree’’) organizes data points into a
 hierarchy . HDSs are common , e . g . sales & budget data , catalogs of products , library
 indices , computer file systems , etc . A HDS can be filtered (queried and reduced)
 ef fectively using a hierarchical-decision making process because the data is in-
 herently hierarchical .

 The original motivation for this work was our research on user interfaces for
 network management (Kumar , Plaisant , Teittinen & Shneiderman , 1994) . While
 working on a user interface for satellite network configuration , we were faced with
 the task of choosing one leaf node from a large tree of thousands of nodes . Further ,

 * Current address : 39 , Glenbrook Road 4 3A , Stamford , CT 06902 , USA .
 † Author for correspondence .

 103

 1071-5819 / 97 / 010103 1 22$25 . 00 / 0 / hc960085 ÷ 1997 Academic Press Limited

 H . P . KUMAR ET AL . 104

 the task was such that the number of interesting leaf nodes could be reduced
 drastically based on selection criteria at various levels in the tree . This problem
 prompted us to design and implement the PDQ (Pruning with Dynamic Queries)
 Tree-browser .

 2 . PDQ Tree-browser requirements

 Based on our task analyses in the network management scenario and other
 tree-browsing applications , we specified the requirements for the PDQ Tree-browser
 visualization tool as follows .

 $ Browse the entire tree and view it at dif ferent levels .
 $ Query nodes at all levels on the basis of attribute values . Querying mechanism

 should be easy , rapid , yet powerful .
 $ Hide uninteresting nodes and branches rapidly , and thus reduce the data set

 progressively . Iterate easily by revealing hidden nodes / branches .

 3 . Previous work

 Information search is a vast topic (Marchionini , 1995) , but previous work on
 hierarchical data is more limited . Early work emphasized aesthetic and easy-to-read
 tree and graph layouts (Battista , Eades , Tamassia & Tollis , 1989) , and browsing /
 exploring / searching trees and graphs , but none of them provide a good solution to
 the attributes-based querying and browsing problem . Many visual browsers address
 two-dimensional-browsing , and some allow for manual pruning of uninteresting
 sub-trees / sub-graphs . Commonly used tree visualizations include two-dimensional
 node-link diagrams , space-filling treemaps , three-dimensional node-link diagrams
 and tables-of-contents or outliners .

 An advantage of node-link visualizations of trees is that they are a familiar
 mapping of structured relationships and therefore easy to understand . They can also
 display attributes of links by color or size if required . However , node-link diagrams
 make inef ficient use of screen space , and even trees of medium size need multiple
 screens to be completely displayed . This necessitates scrolling of the diagram and
 global context is lost , since only a part of the diagram is visible at any given time .

 Beard and Walker (1990) used a map window —a miniature of the entire
 information space with a wire-frame box to aid users in remembering their location .
 The map window is better known as an o y er y iew , the entire information space
 shown in full size is the detailed y iew and the wire-frame box is the field - of - y iew or
 the panner (Plaisant , Carr & Shneiderman , 1995) . The field-of-view can be dragged
 around in the overview to pan the detailed view . Similarly , scrolling the detailed
 view updates the position of the field-of-view in the overview . Hence , the overview
 and the detailed view are said to be tightly - coupled . Beard and Walker (1990) found
 that an overview significantly improves user performance , and the pan technique
 and the zoom and pan technique were significantly faster than the scroll technique .

 BROWSING HIERARCHICAL DATA 105

 Plaisant et al . (1995) provide a taxonomy and guidelines for image-browsers . This
 work attempts to standardize some of the terms being used by researchers today ,
 e . g . detail view , field-of-view , etc . Dif ferent kinds of browsers such as ‘‘detail only’’ ,
 ‘‘one window with zoom and replace’’ , and ‘‘tiled multilevel browser’’ are shown .
 The authors identify five classes of tasks that are accomplished with image browsers ,
 e . g . open ended exploration , navigation , monitoring , etc .

 The treemap visualization of tree structures uses a two-dimensional space-filling
 approach in which each node is a rectangle whose area is proportional to some
 attribute such as node size (Shneiderman , 1992) . The treemap algorithm utilizes
 100% of the designated space . Sections of the hierarchy containing more important
 information can be allocated more display space while portions of the hierarchy
 which are less important to the specific task at hand can be allocated less space .
 Treemaps have been used for file management , network management (Kumar et al .,
 1994) , budgets , sports data , etc .

 Robertson , Mackinlay and Card (1991) and Chignell , Zubrec and Poblete (1993)
 used three-dimensional node-link diagrams in order to visualize tree structures .
 Robertson et al . (1991) in the Information Visualizer project at Xerox PARC ,
 developed a tool called Cone Trees that allows for animation of three-dimensional
 trees . They contend that interactive animation can ef fectively shift cognitive
 processing load to the perceptual system . They describe gardening operations
 (Robertson et al ., 1991) where the user can manually prune and grow the view of the
 tree . Prune and grow operations are done either by menu or by gestures directed at
 a node . While these gardening operations do help in managing and understanding
 large , complex hierarchies , this manual mechanism of pruning or growing one
 subtree at a time , is clearly not suf ficient nor very ef fective in specifying complex
 searches spanning several levels of the tree .

 Chignell et al . (1993) built the Info-TV tool , which allows two styles of pruning as
 follows .

 $ The sub-branch(es) for which the chosen node is the root can be removed from
 the screen .

 $ The nodes and labels are removed , but the links remain .

 The authors however , do not describe how the nodes whose sub-trees are to be
 pruned are specified by the user . It is assumed that the user makes these
 specifications manually by selecting these nodes .

 Visualizations have also been used to browse graph structures . Examples of
 graph visualizations include hypertext graphs , finite-state diagrams , flow-charts ,
 parse-trees , pert-charts , dataflow diagrams , wiring diagrams and hierarchical
 decompositions .

 According to Henry and Hudson (1991) and Henry (1992) , the ‘‘best layout’’
 depends on the user’s current region of interest . Consequently , a single layout
 algorithm cannot always produce the best results . Thus , the ability of users to
 customize the layout to meet their current needs and interests is essential .
 Therefore , users must be provided with interacti y e tools to iterati y ely dissect large
 graphs into manageable pieces . Henry and Hudson (1991) describe manual selection
 in which users select nodes and edges using simple direct manipulation techniques ,
 and algorithmic selection in which users apply an algorithm to the graph . But by

 H . P . KUMAR ET AL . 106

 classifying manual selection into only individual selection or marquee selection , the
 authors are greatly restricting the range of interesting selection subsets that can be
 specified by the user . They conclude by identifying two primary future directions :
 using domain specific graph semantics to guide the layout and the selection , and
 creating a methodology that can be used to build an interacti y e system for
 nonprogrammers to specify selection and layout algorithms . Our work extends their
 strategies .

 Gedye (1988) built a system that presents users with a list of all the objects . They
 can choose an object , and then upon choosing one particular relationship , a directed
 acyclic graph , tree , or an equivalence set is created in a new window . So , the tangled
 web that would have resulted by showing all the relationships is eliminated by using
 one window per relationship . Noting that both zooming and panning were
 inadequate for arbitrary graph structures , the authors implemented pruning in order
 to assist in the browsing . A sub-graph is selected that contains few enough nodes to
 comfortably fit in the window , and this sub-graph is displayed in its entirety . The
 sub-graph obtained by the pruning procedure is called the ‘‘display graph’’ .

 Schaf fer , Zuo , Bartum , Dill , Dubs , Greenberg and Roseman (1996) found that
 users performed better using fisheye views of hierarchically-clustered graphs than
 using full-zoom views . Hollands , Carey , Matthews and McCann (1989) , however
 found users getting somewhat disoriented while using fisheye views for complex
 tasks . None of the fisheye view implementations described above allow for
 attributes-based specification of the foci of interest . A novel alternative is the
 hyperbolic tree browser (Lamping , Rao & Pirolli , 1995) .

 The review of the literature pertaining to tree and graph browsers did not provide
 a good answer to the problem of specifying selection subsets on large connected data
 sets like trees and graphs . Those that do allow for uninteresting nodes / sub-
 trees / sub-graphs to be pruned out , require users to make subset specifications
 manually . We believe that dynamic queries can be used ef fectively for this purpose .
 Dynamic queries describes the interactive user control of visual query parameters
 that generates a rapid (100 ms update) animated visual display of database search
 results . Dynamic queries are an application of the direct manipulation principles in
 the database environment . They depend on presenting a visual overview , powerful
 filtering tools , continuous visual display of information , pointing rather than typing ,
 and rapid , incremental , and reversible control of the query (Shneiderman , 1992) .
 Dynamic queries have been applied to browse databases of houses , movies , chemical
 tables of elements , etc . These concepts of dynamic querying and tight-coupling are
 similar to those of Focusing and Linking (Buja , McDonald , Michalak & Stuetzle ,
 1991) .

 4 . PDQ Tree-browser design

 4 . 1 . THEORY
 Our PDQ Tree-browser design consists of the following features .
 $ Two tightly-coupled node-link views of the tree (Overview and Detailed View) .
 $ Dynamic Query Environment for users to customize their dynamic query panels .
 $ Dynamic Queries at dif ferent levels of the tree .
 $ Pruning of sub-trees of uninteresting nodes to get more compact views .

 BROWSING HIERARCHICAL DATA 107

 4 . 1 . 1 . Dynamic queries on hierarchical data sets
 Dynamic queries have been applied to data sets consisting of independent data
 points (Ahlberg & Shneiderman , 1994) . In such cases , whether a data point satisfies
 a given query or not does not af fect the outcome for other data points . This is
 because there are no interrelationships between the data points . Thus , the data set
 can be thought of as ‘‘flat’’ . Queries are merely queries on the attributes of
 individual data points . For example , in the FilmFinder , each movie is an indepen-
 dent data point . Similarly , in the HomeFinder (Shneiderman , 1994) , each house is
 an independent data point .

 In a ‘‘non-flat’’ data set , on the other hand , there are predefined interrelationships
 between data points . For example , in a HDS , some nodes are related to some others
 by the parent – child relationship (Kumar et al ., 1994) . Therefore , whether a node
 matches a given query or not might af fect some other nodes . Specifically , while
 searching a hierarchical data set in a top-down manner (i . e . parent first) , it makes
 sense to prune out all descendant nodes of nodes that do not match the query . For
 example , if users are looking for departments in universities with low tuition , it
 makes sense to eliminate those departments whose universities have high tuition .
 When criteria (like low tuition , high average SAT scores , high placement indices ,
 etc .) exist at all or most levels in the hierarchy , stepwise refinement of the query can
 be done to progressively reduce the initial (large) data set into a smaller set , from
 which good choices may be made .

 4 . 1 . 2 . Dynamic query en y ironments
 The HomeFinder and the FilmFinder are examples of systems that provide
 hard-coded graphical widgets for the user to manipulate in order to dynamically
 update the visual display . If the user wanted to find homes that were within 2 miles
 of any hospital , the current HomeFinder interface would have to be reprogrammed .

 Therefore , a Dynamic Query En y ironment , first implemented in a browser for the
 National Center for Health Statistics (Shneiderman , 1994) , should allow users to
 customize dynamic query control panels based on current interests . Users should be
 able to select what combination of attributes they wish to query on , and have the
 appropriate widgets created , at run-time . The method of selecting the attributes and
 creating widgets should be easy , and also allow for modifications / backtracking .
 Having the interface not be application-dependent would have the added advantage
 of reusability across applications .

 4 . 2 . DESCRIPTION OF THE INTERFACE

 The PDQ Tree-browser interface consists of two main parts (Figure 1) as follows .

 $ Data display : the tree structure is visualized in two tightly-coupled views , a
 detailed view (on the right) and an overview (on the left) . If the PDQ

 Tree-browser window is resized by the user , the field-of-view shape and size is
 updated automatically .

 H . P . KUMAR ET AL . 108

 F IGURE 1 . The PDQ Tree-browser interface .

 $ Dynamic query panel : this panel (below the Data Display) consists of two
 parts , the Attributes List on the left and the Widgets Panel on the right .
 Initially , there are no query widgets in the Widgets Panel . Users may select (by
 dragging-and-dropping) up to three attributes from the Attributes List for each
 level in the hierarchy (except the root level) . This causes an appropriate widget
 (range-slider for numerical attributes and menu for textual attributes) to be
 created and initialized . Queries (on up to three attributes) at each level are
 AND-ed together . Users can replace an existing widget with another by
 dropping a new attribute name over the original widget’s attribute name .
 Existing widgets can be deleted by dropping ‘‘No Query’’ onto the correspond-
 ing attribute name .

 The Treeview and Range-slider widgets of the University of Maryland Widget
 Library T M (Carr , Jog , Kumar , Teittinen & Ahlberg , 1994) were used in the PDQ
 Tree-browser implementation .

 If users manipulate a widget at the current lowest level displayed , the nodes
 matching the query at that level are colored yellow , otherwise they are grey . These
 updates of the data display are real-time (within 100 ms of updates to the control

 BROWSING HIERARCHICAL DATA 109

 widgets) in accordance with the principle of dynamic queries . Buf fering was done in
 order to make the updates as smooth and flicker-free as possible .

 If users manipulate a widget at a level other than the current lowest level , the tree
 visualization first ‘‘jumps’’ to that level , i . e . the level of the widget is made the tree’s
 current lowest level . This is done so that the structure of the tree during direct
 manipulation of the widgets remains constant and only the colors of the nodes
 change . Then the nodes at the new lowest level are updated (by coloring yellow or
 grey) in real-time to show whether they match the query or not .

 The tree structure changes only when the current lowest level of the tree is
 changed , which can be accomplished by users in three ways as follows .

 $ By clicking on the corresponding level button (i . e . the buttons labeled ‘‘Network’ ,
 ‘‘DPC’’ , ‘‘LIM’’ and ‘‘Port’’) just below the data display (Figure 1) .

 $ By manipulating a widget at any level other than the current lowest level , as
 explained above .

 $ By clicking on the 1 or 2 buttons to either increase or decrease the levels
 displayed .

 When the current lowest level is changed so as to show more levels , pruning of the
 tree is done so as to eliminate sub-trees of nodes that do not match the query at
 their own levels . For example , if the user manipulates the range slider for Network
 ID such that Nets 1 and 2 do not match the query (Figure 2) , and then increases the
 lowest level displayed by 1 , the children of nets 1 and 2 are not shown , while
 children of other nets are shown (Figure 3) . Nets 1 and 2 now appear in grey , while
 all the other nets appear in orange , simply to show that those nodes did match the
 query at their own level . This feedback enables users to go back and change queries
 at higher levels , and thus iteratively refine the selection subset .

 As explained above , nodes at the current lowest level are colored either yellow or
 grey , while nodes at higher levels are colored either orange or grey . Also , the level
 button corresponding to the current lowest level is colored yellow so as to focus the
 attention of the user to that level . Buttons at other levels are colored grey .

 F IGURE 2 . Nets 1 and 2 do not match query .

 H . P . KUMAR ET AL . 110

 F IGURE 3 . Sub-trees of Nets 1 and 2 are pruned out .

 When the current lowest level is changed so as to show fewer levels , the tree is
 simply ‘‘folded’’ back to the new lowest level , and then the nodes at that level are
 colored either yellow or grey based on the query at that level . Thus , users can easily
 jump back and forth between levels in order to fine-tune their search .

 The Attributes List on the left shows only the attributes corresponding to the
 current lowest level . Users can access names of attributes at other levels by choosing
 the appropriate level name (e . g . Network , DPC , etc .) from the attributes menu just
 above the Attributes List (Figure 1) .

 There are four feedback indicators , one corresponding to each level (other than
 the root level) , that are updated in order to show the number and proportion of
 nodes that currently match the query (i . e . number of ‘‘hits’’) . The proportion of the
 feedback indicator that is colored yellow corresponds to the proportion of hits . This
 proportion is a percentage of the total number of nodes at that level , not of the
 number of nodes at that level currently displayed . The actual number of hits is also
 displayed at the top of each feedback indicator . Proportion indicators are displayed
 from level 1 down to the current lowest level only , those for deeper levels are
 hidden (greyed out) . This is because calculating the number of nodes that would
 match the query at deeper levels is computationally intensive and would slow down
 the dynamic queries on nodes at the current level . At any time users can select the
 ‘‘Hide gray leaves’’ button to hide the greyed out nodes .

 To summarize , the PDQ Tree-browser is a visualization tool for hierarchical data
 that makes use of dynamic queries and pruning . The PDQ Tree-browser uses two
 coordinated or tightly-coupled views of the same tree , one a detailed view and the

 BROWSING HIERARCHICAL DATA 111

 other an overview . The user can select up to three attributes (numerical or textual)
 for dynamically querying nodes at each level in the hierarchy . Sub-trees of nodes
 that do not match the query at their own level are pruned out of the visualization .
 Thus , one can reduce a large data set (with thousands of nodes) to a much smaller
 set , from which good selections can be made .

 4 . 3 . EXAMPLE APPLICATION : THE UNIVERSITY FINDER

 We applied the PDQ Tree-browser to two applications , Network Management and
 the UniversityFinder . The latter is described here . The database organizes univer-
 sities hierarchically ; we have regions of the world , followed by states , then
 universities , and finally , departments . The UniversityFinder demo is available on
 videotape (Kumar , 1995) .

 Let us say that I am a high-school senior looking for universities that best match
 my needs . The PDQ Tree-browser initially shows all the regions in the world . I ask
 to see the entire tree to get an idea of the size of the database . The feedback
 indicators show that there are 740 departments in 286 universities in 62 states in five
 regions of the world (Figure 4) .

 I realize that planning through this entire tree is not an easy task and return to the
 region level . Since I am only interested in regions where English is the primary
 language , I create a textual menu of primary languages by dragging-and-dropping
 the attribute Primary Language on to one of the empty slots under the Region level

 F IGURE 4 . PDQ tree-browser applied to the University Finder application .

 H . P . KUMAR ET AL . 112

 F IGURE 5 . Querying for desirable states .

 button . I select English from the menu and South America turns grey , while USA ,
 Canada , Africa and Europe remain yellow .

 I now proceed to the state level . South America’s sub-tree is not expanded . That
 sub-tree was pruned out since South America did not satisfy our criterion for
 primary language . However , South America is still shown in grey in order to provide
 context feedback .

 I would really like to study in a state that is relatively safe , so I choose to query on
 the level of violence . I manipulate the range-slider to select only states with a
 violence index less than 65 , leaving 37 states . I further reduce the number of
 interesting states by choosing only those with good traf fic conditions . The number of
 states has now dropped to only seven (Figure 5) .

 Now , I can look at the universities , but first I recapture space occupied by
 uninteresting states by clicking on the ‘‘Hide gray leaves’’ button . This gives me a
 more compact view that often is visible on a single screen . When I now go to the
 university level , only the remaining seven states are expanded to show 25
 universities .

 I now reduce the number of universities by first eliminating those with high tuition
 and then setting the average SAT scores to closely match mine . I hide grey leaves
 once again and see that I am down to seven universities : a couple in Arkansas , a
 couple in Ontario , etc .

 Satisfied with this set of universities , I proceed to the department level to closely

 BROWSING HIERARCHICAL DATA 113

 F IGURE 6 . Final selection subset of 17 universities .

 look at departments (Figure 6) that best match my interests and needs in terms of
 availability of financial aid , etc .

 4 . 4 . PDQ TREE-BROWSER LIMITATIONS

 The UniversityFinder scenario demonstrates how the PDQ Tree-browser can be
 applied to everyday applications , in addition to complex applications like network
 management . The tool itself is general and can be used for any hierarchical data set
 with attributes for nodes at dif ferent levels of the hierarchy . However , the current
 implementation does have the following limitations :

 $ The PDQ Tree-browser interface has been ‘‘fine-tuned’’ for a tree of depth 5 . The
 underlying tree data structure and node-link widgets place no constraints on the
 depth of the tree , but the current interface has been customized to look best for a
 tree of depth 5 , e . g . the levels of the tree in the detailed view align nicely with the
 corresponding buttons and query widgets .

 $ Users can select only up to three attributes to query on at each level , and these
 queries can only be ANDed together . ORs and NOTs are not supported
 currently .

 $ Since the focus of this work was not on layout , the algorithm used produces an
 aesthetic tidy layout , but not the most compact one . Also , the implementation
 does not enforce the overview to always show the entire tree (so users might have
 to scroll the overview) .

 H . P . KUMAR ET AL . 114

 $ Users can not open sub-trees of nodes by manually selecting (e . g . double-clicking)
 them . We believe that both manual selection and attributes-based selection are
 necessary in a complete system .

 4 . 5 . POSSIBLE DESIGN ALTERNATIVES

 There are some interesting design alternatives that deserve special mention here .

 $ Pruning vs . greying out : the PDQ tree-browser prunes out sub-trees of nodes that
 do not match the query at their own level . Another approach would have been to
 show the entire sub-tree , but with all the nodes greyed out . The possible
 advantage of this approach over the pruning approach would be the increased
 constancy in the tree structure . Expert users might experience improved produc-
 tivity as they get more and more familiar with the tree structure . The disadvantage
 of this approach is that the tree is displayed in its entirety at any level , even when
 most of the nodes that take up a lot of screen space are uninteresting . This results
 in increased overheads of scrolling and panning and slower response times . In
 Section 6 , we describe a controlled experiment which compared these behavior
 alternatives .

 $ Whether to update the data display when a query widget is created or replaced at
 a level dif ferent from the current lowest level : the PDQ Tree-browser changes
 levels whenever widgets at levels other than the current lowest level are
 manipulated . But it does not change levels when a new widget is created or an
 existing widget replaced , at a level dif ferent from the current lowest level . This
 design decision was based on the assumption that users might create a number of
 widgets at dif ferent levels at the same time (e . g . at the beginning) , and not want
 the level to change each time . The disadvantage of this approach is that the data
 display is potentially inaccurate till the next time users visit that level .

 4 . 6 . GENERALIZING THE DESIGN

 This section attempts to generalize the PDQ tree-browser design so as to overcome
 some of its limitations and make it more generally applicable to trees of varying
 structures and sizes . Ideas on extending the query interface to allow specification of
 complex boolean queries are discussed . The PDQ Tree-browser illustrated the
 advantages of using dynamic queries and pruning while visualizing trees as
 two-dimensional node-link diagrams . The same advantages are there to be had by
 other tree visualizations as well , e . g . treemaps and Cone Trees . We illustrate this
 with examples for the treemap case .

 4 . 6 . 1 . Coping with y arying structure and growing size
 In this section , we examine some of the issues that need to be addressed in order for
 our design to be extensible to trees of varying structure and size .

 $ Trees of arbitrary depth : Figure 7 shows how one might extend the current PDQ
 Tree-browser interface to handle trees arbitrarily deep . Due to screen space
 constraints , it will not be possible to see all the query widgets at all levels in the
 hierarchy . In Figure 7 , on the lower left corner , is a list of levels in the hierarchy ,
 from which users select the current lowest level (level 2 in this case) . The

 BROWSING HIERARCHICAL DATA 115

Overview Detailed View

LIST OF LEVELS Current Level 2

Level 0 name

Level 1 name

Level 2 name

Level 3 name

Level 4 name

Level 5 name

Level 6 name

Level 7 name

– +

Attributes
List-Level 2

Level 2
query widgets

Level 1
query widgets

 F IGURE 7 . Extending the PDQ Tree-browser design to trees of arbitrary depth .

 Attributes List then updates to show the list of attributes for level 2 . The query
 widgets for the current lowest level and for the previous level visited (i . e . level 1
 in this case) are shown in the query panel .

 $ Trees of arbitrary size : as the size of the tree to be visualized becomes larger ,
 performance would tend to deteriorate and the browsing mechanism becomes
 inadequate . But there are approaches that can be taken to alleviate this problem
 as follows .

 (1) Performance issues . Our node-link layout algorithm , in the worst case (i . e . when
 all nodes are to be shown) , requires two complete traversals of the tree .
 Dynamically querying nodes at any level is more ef ficient in that it only requires
 traversal of each node at that level and not of the entire tree . Therefore , the system
 is likely to slow down appreciably as the size of the tree increases , especially for
 operations that require re-computation of the structure and layout .

 More sophisticated data structures and algorithms would be necessary in order to
 minimize the performance deteriorations . For example , one might only traverse the
 nodes visible in the detailed view to evaluate dynamic queries . But this would mean
 that the overview would not be tightly-coupled with the detailed view . Algorithms
 for pruning could be improved so that only sub-trees that have been dynamically
 queried since the last structure change need to be traversed . There are several
 interesting challenges that remain to be solved , with respect to performance issues .
 (2) Interface issues . Ideally , the overview would always show the entire data display
 in miniature , even if it means that no details are visible ; and the overview provides
 only global context . However , when the size of the tree gets huge (say 50 000

 H . P . KUMAR ET AL . 116

 nodes) , there is no way that one overview would suf fice . Plaisant , Carr and
 Hasegawa (1992) found that in some cases , it might even be useful to provide an
 intermediate view in addition to the overview and the detailed view , when the
 detail-to-overview zoom ratio is above 20 .

 Another feature that might be useful is to allow users to restrict the nodes to be
 displayed before displaying them . For example , if the user requests to see a new
 level with 20 000 nodes , the system should present the user with the option of
 restricting this set (feedback might be provided by displaying the number of
 matching nodes) before displaying it .

 4 . 6 . 2 . Specification of general boolean queries
 The current PDQ Tree-browser implementation allows users to specify an AND of
 queries on zero to three attributes at each level . An improved interface would allow
 any number of ANDs , ORs and NOTs . But specifying complex boolean queries
 graphically is a challenge , as it may be dif ficult to interpret a set of graphical widgets ,
 boolean operators and parentheses , even for experienced users .

 The PDQ Tree-browser could accommodate complex boolean queries by using
 the Filter-Flow metaphor in which queries are shown as water streams flowing
 through sequential filters for ANDs , parallel filters for ORs , and inverted filters for
 NOTs (Young & Shneiderman , 1993) . The decrease in the breadth of the water
 stream while passing through a filter represents the reduction in the data set due to
 the corresponding query .

 4 . 6 . 3 . Pruning applied to treemaps
 It was in fact , a treemap of a network hub that first highlighted the need for some
 mechanism to hide subsets of nodes / prune sub-trees that were not interesting and
 recapture screen space . Uninteresting leaf nodes had taken up about 40 % of the
 total display space .

 Figure 8 shows how pruning can help treemaps recapture screen space allocated to
 uninteresting sub-trees .

 4 . 6 . 4 . Dynamic queries and pruning applied to cone trees
 Robertson et al . (1991) describe ‘‘gardening operations’’ where the user can
 manually prune and grow the view of the tree . Prune and grow operations are done
 either by menu or by gestures directed at a node . We believe that allowing users to
 make attributes-based subset specifications in addition to these manual subset
 specifications will help make Cone Trees more powerful and useful .

 5 . Usability testing

 In order to assess and improve the PDQ Tree-browser , usability evaluations were
 performed , in which eight subjects were given training and asked to perform
 specified tasks using the PDQ Tree-browser . The UniversityFinder data was used in
 the testing .

 BROWSING HIERARCHICAL DATA 117

A1 C1

A2

C2

C3

C4

A B C A B C

A1 B1 C1

A2
B2

B3

C2

C3

C4

(a) (b)

(c) (d)

 F IGURE 8 . Pruning applied to treemaps . (a) Level 1 , (b) level 1 dynamically queried (c) level 2 without
 pruning , (d) level 2 with pruning .

 5 . 1 . METHODS

 With each subject , the following procedures were followed .

 $ Introduction : the experiment was introduced to the subjects by explaining the
 UniversityFinder scenario (Section 4 . 3) .

 $ Description of features : PDQ Tree-browser features were demonstrated one by
 one and subjects were given the opportunity to try each one .

 $ Tasks : subjects were asked to perform seven tasks . The initial tasks focused on
 specific features , while later tasks were designed to evaluate the tool as a whole
 (See Section 5 . 3 for details) . Subjects were encouraged to think aloud while
 performing the tasks . Comments and suggestions were recorded as they were
 made . Interesting actions and sources of confusion were also recorded .

 $ Subjective evaluation : subjects were asked to rate specific features of the system
 (on a scale of 1 to 9) , identify what they liked and disliked most about the PDQ
 Tree-browser and make suggestions for improvement .

 $ Analysis : finally , all comments and suggestions made by subjects were compiled
 into one list (Section 5 . 4) . The mean and standard deviation were computed for
 each rating and some graphs were plotted .

 H . P . KUMAR ET AL . 118

 5 . 2 . SUBJECTS

 Pilot testing was done with two graduate students , to try out the tasks and get
 preliminary reactions . The tasks were refined , a subjective evaluation questionnaire
 was designed , and the software was tested with six subjects . The subjects were
 familiar with tree structures and pruning , database querying , GUIs and direct
 manipulation widgets . The subjects ranged from graduate students and undergradu-
 ate seniors in Computer Science / Electrical Engineering to a faculty research
 assistant .

 5 . 3 . TASKS

 The range of (seven) tasks included the following .
 (1) Feature-based testing : testing the specific features of the PDQ Tree-browser .

 $ Tight-coupling of overview and detailed view : two-dimensional browsing of the
 node-link diagrams using panning , scrolling and changing levels features only .

 $ Dynamic Query Environments : building and modifying dynamic query panels
 using drags-and-drops . Directly manipulating the widgets to produce real-time
 color updates of the nodes .

 $ Tree Dynamics : tree pruning and associated structure and layout changes . Issues
 relating to getting familiar with the tree structure and disorientation due to
 structural changes . Ability to iteratively refine queries , by jumping back and forth
 between levels .

 (2) Task-based testing : testing queries of varying complexity and type . This
 classification of queries is general and independent of this particular PDQ
 Tree-browser design and implementation .

 $ Simple ‘‘attributes-based’’ queries : for example , how many states have a level of
 violence index , 5 60 and good traf fic conditions?

 $ Complex associative ‘‘structure-based’’ queries : for example , how many states
 satisfy all the following constraints : regions with standard of living . 5 50 but
 , 5 95 , states with population density , 5 72 and good traf fic conditions , public
 universities with out-of-state full-time tuition , 5 $3000 per semester and average
 SAT scores of . 5 1100 and at least one department .

 5 . 4 . RESULTS

 The subjective evaluations revealed which features were liked and which needed
 improvement as follows .

 5 . 4 . 1 . Most liked features
 When asked what was the one thing they liked the most about the PDQ
 Tree-browser , subjects responses included the following .

 $ ‘‘Dynamic querying and pruning to get multiple views based on current interests . ’’
 $ ‘‘Easy to learn , convenient and straight-forward to use . ’’
 $ ‘‘The ability to locate interesting parts of large trees . ’’
 $ ‘‘Easy to create complex multi-level queries . ’’
 $ ‘‘I liked seeing the tree structure of the data , which would usually be tabular . ’’

 BROWSING HIERARCHICAL DATA 119

 $ ‘‘Shows adequate information . ’’
 $ ‘‘Tightly-coupled overview and detailed view . ’’

 5 . 4 . 2 Subjecti y e ratings
 Users rated 22 aspects of the PDQ Tree-browser on scales of 1 to 9 , where 1 was the
 worst rating and 9 the best rating . They also rated three possible features . For
 example , users gave a mean rating of 8 . 7 (S . D . 5 0 . 5) to the usefulness of pruning , a
 mean rating of 8 . 2 (S . D . 5 1 . 0) to the usefulness of dynamic queries , while the ease
 of range-slider manipulation got a mean rating of only 4 . 8 (S . D . 5 2 . 4) .

 5 . 4 . 3 Suggestions for impro y ement
 Subjects were also asked to make suggestions for improvement and possible new
 features . All the suggestions were tabulated , resulting in 19 possible enhancements
 to the system . Some of these are obvious ones that would be inexpensive to
 incorporate into the system , while others would require more ef fort as follows .
 (1) Ability to manually add or remove one or more nodes to the selection subset
 resulting from the dynamic queries (by clicking , marquee , etc .) . Thus , the ideal
 subset specification mechanism would allow both query-based specification as well as
 manual specification . Some issues relating to keeping track of these nodes and
 avoiding complications later in the query process need to be addressed .
 (2) Pruning and the Hide Grey Leaves feature were clearly well liked by the
 subjects . Most of them used the latter frequently to recapture screen space from
 uninteresting grey nodes and focus the search . Removing nodes like this also made
 the system faster . Many subjects agreed that a Hide All Grey Nodes feature would
 be very useful . Some subjects also felt that the default behavior could be to hide
 grey nodes (when levels changed) and users could ask to see grey nodes (for
 context) if they were interested . This suggestion should help make the views even
 more compact . But the preferred default behavior depends on the structure of the
 tree (fan-out at each level) and also the type of tasks ; therefore this requires more
 investigation . In fact , one subject liked seeing the grey nodes at higher levels and
 used the Hide Grey Leaves feature only once . He said the presence of the grey
 nodes at higher levels helped in visually separating disjoint groups of nodes .
 (3) Subjects found the response time of some PDQ Tree-browser features to be
 slow , especially increasing levels when the number of nodes was high .
 (4) It was observed that subjects get somewhat disoriented when the level of the
 tree was changed . This is because the layout algorithm generates a fresh layout
 whenever the tree structure changes , i . e . whenever more or less levels are requested
 to be seen . It is felt that this problem can be significantly alleviated by retaining the
 same current focus . For example , if the user asks to see the University level while
 the state Florida is near the center , the new view should be initialized to show
 universities within Florida .
 (5) Panning the detailed view by dragging the field-of-view in the overview was
 found useful , but some improvements to the design are required . One subject
 emphasized the need to always fit the overview into one screen only , so that no
 scrolling of the overview is required . As mentioned before , this is what we had
 designed , but it was not enforced in this implementation . Another subject suggested
 that users should be able to click anywhere in the overview and have the

 H . P . KUMAR ET AL . 120

 field-of-view jump to that position . This would enable fast coarse navigation .
 Fine-tuning could then be accomplished by dragging the field-of-view .
 (6) The catchiest quote received from one of the subjects was this : ‘‘Drag-and-drop
 becomes a drag for experienced users , so drop it!’’ . Some other subjects also echoed
 the feeling that it might be easier and faster to just replace each drop area with a
 menu of attributes at that level . Some other subjects enjoyed the drag-and-drop
 mechanism to create and modify query panels .
 (7) Ability to specify complex boolean queries involving ORs and NOTs , in
 addition to the ANDs allowed currently .
 (8) One task (Task 6) required subjects to look for departments within three states ,
 Wyoming , Wisconsin and Washington . This is basically restricting states to Wyoming
 OR Wisconsin OR Washington . The menu allows users to select 1-of- n textual
 values . A widget to select m -of- n textual values needs to be designed and
 implemented .
 (9) One subject wished that there was a way to search upwards in the tree , i . e . to be
 able to query on universities and then see the states which contained the selected
 universities . Another subject made an interesting suggestion , that the PDQ
 Tree-browser should allow users to hide certain levels on demand . For example , if
 users are interested in looking at all universities in USA , and do not care about the
 states they are in , it should be possible to remove the State level totally and then get
 it back when desired .

 6 . A controlled experiment

 With our guidance , three students , Robert Ross , Zhijun Zhang and Eun-Mi Choi ,
 conducted a controlled experiment to compare three behavior alternatives for the
 PDQ Tree-browser . The UniversityFinder database was used in this experiment .
 These behavior alternatives related to pruning subtrees of nodes that did not match
 the query at their own levels . The three treatments were as follows (two of these
 were discussed in Section 4 . 5) .

 Full-tree : Sub-trees of unselected nodes are shown in their entirety , but are colored
 grey .
 Partially-pruned : Sub-trees of unselected nodes are pruned out but the nodes
 themselves are shown in grey . (This is the behavior option that the PDQ
 tree-browser currently uses .)
 Fully-pruned : Sub-trees of unselected nodes and the unselected nodes themselves
 are pruned out .

 It was hypothesized that subjects using the full-tree interface would take longer
 than those using the partially or fully-pruned interfaces . Although the full-tree
 allows for a static display of the tree , its inclusion of all irrelevant nodes would
 probably slow down the response time , add too much useless information to the
 user’s visual field , and create a need for excessive scrolling / panning of the displays
 to get to relevant nodes . Due to the longer task completion times and more
 dif ficult / complex searching required , users would also have lower subjective ratings
 for the full-tree interface than for the pruned interfaces . Further , the completion
 times and subjective ratings for the pruned interfaces would be approximately equal

 BROWSING HIERARCHICAL DATA 121

 T ABLE 1
 Mean task completion times (in s) with S .D .s in

 parentheses

 Full-tree Partially-pruned Fully-pruned

 1917
 (609)

 883
 (121)

 705
 (139)

 (dif ferences would not be significant) . It was postulated that the fully-pruned
 interface promised the most compact views , while the partially-pruned interface
 of fered additional context feedback that might help in tasks requiring several
 iterations (to refine the query) .

 Twenty-four subjects were randomly assigned to use one (and only one) of these
 three treatments (between-groups experimental design) . They performed a set of
 seven tasks . Afterwards , they filled out an electronic questionnaire (QUIS) to
 subjectively evaluate the treatment that they had used . The results (Tables 1 and 2)
 showed that the times to complete the set of seven tasks were significantly dif ferent
 at the 0 . 05 level with full-tree being slower than partially-pruned , which was slower
 than fully-pruned . In terms of subjective satisfaction , partially-pruned rated higher
 than fully-pruned , which was preferred to full-tree .

 For total task completion time , an ANOVA gave F (2 , 21) 5 25 . 2 which was
 significant at the 0 . 01 level . Then , using pairwise t -tests , it was found that all results
 were significant at the 0 . 05 level . Therefore , in this controlled experiment , the
 fully-pruned interface was the fastest , while the full-tree interface was the slowest .
 The dif ferences between the full-tree and the pruned interfaces were also significant
 at the 0 . 01 level , but the dif ferences between the partially and fully-pruned
 interfaces were not . For subjective ratings also , the ANOVA produced an F that was
 significant at the 0 . 01 level . Also , all of the pairwise t -tests were significant at the
 0 . 05 level . Users liked the partially-pruned interface the best and disliked the
 full-tree interface the most . Dif ferences between the full-tree and the two pruned
 interfaces were also significant at the 0 . 01 level although dif ferences between the
 partially and fully-pruned interfaces were not . In addition to the overall times for
 each interface , the times to complete each task were also compared .

 The poor performance times of subjects using the full-tree interface might be
 partly due to poor system response times . Specifically , that interface had consistently
 (noticeably) slower response times , especially when expanding to the lower levels
 (‘‘University’’ and ‘‘Department’’ levels) .

 T ABLE 2
 Mean subjecti y e satisfaction ratings (normalized

 to 0 – 1 , 1 being best) with S .D .s in parentheses

 Full-tree Partially-pruned Fully-pruned

 0 . 42
 (0 . 12)

 0 . 71
 (0 . 08)

 0 . 64
 (0 . 07)

 H . P . KUMAR ET AL . 122

 The dif ferences between the two pruned interfaces were not as clear cut ; task
 performance was faster with the fully-pruned interface but the partially-pruned
 interface got higher subjective ratings . The fan-out of the particular tree used
 probably increased the dif ferences between these two interfaces . Specifically , the
 UniversityFinder tree has a large fan-out (50 states in USA) from the Region level
 to the State level , and this might help explain why the fully-pruned interface had
 faster performance times than the partially-pruned interface (a significant proportion
 of states were grey and thus took up a significant proportion of screen space) . It
 would be interesting to repeat the experiment with trees of varying fan-out .

 This controlled experiment clearly showed the advantages of pruning . The choice
 of whether nodes not matching the query should be greyed or removed is best
 provided via the interface to the users .

 7 . Conclusions

 The PDQ Tree-browser visualization tool presents trees in two tightly-coupled
 views , one a detailed view and the other an overview . Users can use dynamic queries
 to filter nodes at each level of the tree . The dynamic query panels are user-
 customizable . Sub-trees of unselected nodes are pruned out , a feature that usability
 testing and a controlled experiment , showed to be very useful . Possible enhance-
 ments to the PDQ Tree-browser were identified .

 The concepts of dynamic querying and pruning are general enough that they can
 be applied ef fectively to other existing tree visualizations like treemaps and Cone
 Trees . These concepts are also extensible to graph structures , but that would require
 careful thinking and design .

 7 . 1 . FUTURE DIRECTIONS

 (1) PDQ Tree-browser refinements

 $ Implementing the improvements that were identified in the usability testing
 (Section 5 . 4 . 3) .

 $ The PDQ Tree-browser interface has been ‘‘fine-tuned’’ for a tree of depth 5 (See
 Section 4 . 4 for details) . The interface could be extended to cope with varying
 structure and growing size by following the suggestions in Section 4 . 6 . 1 or
 otherwise .

 $ Further study of which approach is better in terms of hiding vs . showing grey
 nodes (at higher levels) by default is needed (to extend the work of Ross et al .,
 1994) . This investigation should take into consideration dif ferent types of tasks ,
 applications and tree structures (fan-out , depth , breadth , size) and attempt to
 identify when either approach will yield superior performance .

 (2) General GUI extensions
 Newer widgets need to be developed to enable users to specify multiple selections
 on textual attributes easily . Another useful widget would be an extension of the
 2-box slider to a n -box slider .
 (3) Extension to graph structures
 The PDQ Tree-browser extended dynamic queries to one class of non-flat data sets ,
 i . e . hierarchical data sets . The most general form of any data set , is the arbitrary

 BROWSING HIERARCHICAL DATA 123

 graph . Graphs have nodes connected via an arbitrary number of links of dif ferent
 types . Each link represents a relationship between (among) the connected nodes .
 We believe that PDQ Tree-browser concepts of dynamic querying and
 pruning / selective growing can be extended to graph structures as well . Instead of
 distinct levels in the hierarchy , we would then think of distinct classes of nodes (and
 even links) .

 7 . 2 . OTHER TREE-BROWSING RESEARCH ISSUES

 (1) Semantics-based browsing
 Generic two-dimensional browsers (Plaisant et al ., 1995) treat the information space
 being browsed as images only . We believe that browsing of trees can be facilitated
 by taking advantage of the underlying structure of the tree . Fast navigation between
 siblings , up to parents and grandparents , etc ., without having to manually scroll and
 pan would be useful options . Traversal of the tree in preorder , postorder and
 inorder , and guided tours of nodes marked either manually or by a query are
 interesting topics for investigation .
 (2) Layout issues
 There is a clear need for layout guidelines for tightly-coupled overviews and detailed
 views , as the size and fan-out of trees vary . For example , if the tree is wider than
 deep (as was the case in the UniversityFinder scenario) then it makes sense to have
 the tree drawn from left-to-right (or right-to-left) and the overview to the left (or
 right) of the detailed view . On the other hand , if the tree is deeper than it is wide ,
 then it might be better to have the tree drawn from top to bottom and the overview
 below the detailed view . If the tree structure changes frequently and has to be
 redrawn , then it might be a good strategy to utilize the overview optimally by
 making the remaining tree occupy the entire overview space . But this might lead to
 some disorientation , as the zoom ratio will keep varying .

 We are thankful to Dr . Michael Ball for his insightful suggestions , to Robert Ross , Zhijun
 Zhang and Eun-Mi Choi for designing and running the controlled experiment that was
 described in this paper , and to all the usability testing subjects who provided us with
 invaluable feedback . Thanks also to Edward Johnson for suggesting the name ‘‘PDQ Trees’’
 for our system .

 This project was supported in part by Hughes Network Systems , Maryland Industrial
 Partnerships (MIPS) , the Center for Satellite and Hybrid Communication Networks , and the
 National Science Foundation grants NSFD CD 8803012 and NSF-EEC 94-02384 .

 References

 A HLBERG , C . & S HNEIDERMAN , B . (1994) . Visual information seeking : tight coupling of
 dynamic queries with starfield displays . Proceedings of the ACM Conference on Human
 Factors in Computing Systems , pp . 313 – 317 , New York : ACM .

 B ATTISTA , G . D ., E ADES , P ., T AMASSIA , R . & T OLLIS , I . G . (1989) . Algorithms for drawing
 graphs : an annotated bibliography . Technical Report , Brown University , Computer
 Science Department .

 B EARD , D . V . & W ALKER II , J . Q . (1990) . Navigational techniques to improve the display of
 large two-dimensional spaces . Beha y ior & Information Technology 9 , 451 – 466 .

 B UJA , A ., M C D ONALD , J . A ., M ICHALAK , J . & S TUETZLE , W . (1991) . Interactive data

 H . P . KUMAR ET AL . 124

 visualization using focusing and linking . Proceedings of the IEEE Visualization ‘ 9 1
 Conference , pp . 156 – 163 . San Diego , CA : IEEE Computer Society Press .

 C ARR , D ., J OG , N . K ., K UMAR , H ., T EITTINEN , M . & A HLBERG , C . (1994) . Using interaction
 object graphs to specify and de y elop graphical widgets . Technical report CS-TR-3344 ,
 Department of Computer Science , University of Maryland , MD , U . S . A .

 C HIGNELL , M . H ., Z UBEREC , S . & P OBLETE , F . (1993) . An exploration in the design space of
 three dimensional hierarchies . Proceedings of the Human Factors Society , Santa Monica ,
 CA .

 G EDYE , D . (1988) . Browsing the tangled web . Master’s Thesis report , Division of Computer
 Science , University of California at Berkeley .

 H ENRY , T . (1992) . Interacti y e graph layout : the exploration of large graphs . Ph . D . Thesis ,
 University of Arizona , Tucson , AZ , U . S . A .

 H ENRY , T . R . & H UDSON , S . E . (1991) . Interactive graph layout . In Proceedings of the ACM
 SIGGRAPH Symposium on User Interface Software and Technology , pp . 55 – 64 , New
 York : ACM .

 H OLLANDS , J . G ., C AREY , T . T ., M ATTHEWS , M . L . & M C C ANN , C . A . (1989) . Presenting a
 graphical network : a comparison of performance using fisheye and scrolling views . In G .
 S ALVENDY & M . J . S MITH , Eds . Designing and Using Human – Computer Interfaces and
 Knowledge Based Systems , pp . 313 – 320 . Amsterdam : Elsevier Science .

 K UMAR , H . (1995) . Visualizing hierarchical data with dynamic queries and pruning—the
 Tree-browser . In C . P LAISANT , Ed . HCIL Open House 9 9 5 Video , Human – Computer
 Interaction Laboratory , University of Maryland , MD , U . S . A .

 K UMAR , H ., P LAISANT , C ., T EITTINEN , M . & S HNEIDERMAN , B . (1994) Visual information
 management for network configuration . Technical Report CS-TR-3288 , Department of
 Computer Science , University of Maryland , MD , U . S . A .

 L AMPING , J ., R AO , R . & P IROLLI , P . (1995) . A focus and context technique based on
 hyperbolic geometry for visualizing large hierarchies . Proceedings of the ACM CHI ’ 9 5
 Conference : Human Factors in Computing Systems , pp . 401 – 408 . New York : ACM .

 M ARCHIONINI , G . (1995) . Information Seeking in Electronic En y ironments . Cambridge :
 Cambridge University Press .

 P LAISANT , C ., C ARR , D . & H ASEGAWA , H . (1992) . When an intermediate y iew matters — A
 2 D - browser experiment . Technical Report CS-TR-2980 , Department of Computer
 Science , University of Maryland MD , U . S . A .

 P LAISANT , C ., C ARR , D . & S HNEIDERMAN , B . (1995) . Image browser taxonomy and
 guidelines for designers . IEEE Software 12 , 21 – 32 .

 R OBERTSON , G . G ., M AC K INLAY , J . D . & C ARD , S . K . (1991) . Cone trees : animated 3d
 visualizations of hierarchical information . Proceedings of the ACM Conference on Human
 Factors in Computing Systems , pp . 189 – 194 . New York : ACM .

 S CHAFFER , D ., Z UO , Z ., B ARTRUM , L ., D ILL , J ., D UBS , S ., G REENBERG , S . & R OSEMAN , M .
 (1996) . Comparing fisheye and full-zoom techniques for navigation of hierarchically
 clustered networks . ACM Transactions on Information Systems 14 .

 S HNEIDERMAN , B . (1992) . Tree visualization with treemaps : 2-d space-filling approach . ACM
 Transactions on Graphics , 11 , 92 – 99 .

 S HNEIDERMAN , B . (1994) . Dynamic queries for visual information seeking . IEEE Software ,
 11 , 70 – 77 .

 Y OUNG , D . & S HNEIDERMAN , B . (1993) . A graphical filter / flow representation of boolean
 queries : a prototype implementation and evaluation . Journal of the American Society for
 Information Science , 44 , 327 – 339 .

 Paper accepted for publication by Associate Editor , Dr . C . McKnight .

