
EMastic Windows: improved Spatial Layout and
Rapid MuRipme Window Operations

Eser Kandogan

Department of Computer Science &
Human-Computer Interaction Laboratory

University of Maryland
College Park, MD 20742

Tel: (301) 405-2725
kandogan @cs.umd.edu

Ben Shneiderman

Department of Computer Science,
Human-Computer Interaction Laboratory &

Institute for Systems Research
University of Maryland

College Park, MD 20742
Tel: (301) 405-2680

ben@cs.umd.edu

ABSTRACT
Most windowing systems follow the independent overlap-
ping windows approach, which emerged as an answer to the
needs of the 80s' applications and technology. Advances
in computers, display technology, and the applications de-
mand more functionality from window management systems.
Based on these changes and the problems of current window-
ing approaches, we have updated the requirements for multi-
window systems to guide new methods of window manage-
ment. We propose elastic windows with improved spatial
layout and rapid multi-window operations. Multi-window
operations are achieved by issuing operations on window
groups hierarchically organized in a space-filling tiled lay-
out. Sophisticated multi-window operations and spatial lay-
out dynamics helps users to handle fast task-switching and
to structure their work environment to their rapidly chang-
ing needs. We claim that these multi-window operations and
the improved spatial layout decrease the cognitive load on
users. Users found our prototype system to be comprehensi-
ble and enjoyable as they playfully explored the way multiple
windows are reshaped.

KEYWORDS: Window Manager, CAD, Task Switching,
Multi-window operations, Personal Role Manager, Program-
ruing Environment, Elastic Windows

INTRODUCTION
It is widely believed that windowed environments are su-
perior to non-windowed ones. However, an early study by
Bury et al. [5] (1985) comparing users' performance in win-
dowed systems to non-windowed systems revealed that task-
completion time in windowed systems can be longer due to
window arrangement time. A detailed analysis, however,
showed that actual times spent on solving a task were lower
in windowed environments compared to non-windowed envi-

Permission to make digital/hard copies o f all or part o f this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title o f the publication and its date appear, and notice is
given that copyright is by permission o f the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
A V I '96 , Gubbio Italy

o 1 9 9 6 A C M 0 - 8 9 7 9 1 - 8 3 4 - 7 / 9 6 / 0 5 . . $ 3 . 5 0

ronments. Their experiments also showed that the error rates
in windowed environments were significantly lower. Al-
though systems compared in these experiments were rather
old, the results clearly indicate that benefits of windowing
can be overshadowed by the extra time spent on window
housekeeping activities.

Card et al. [6] analyzed window usage according to tasks and
identified seven functional uses of multiple windows. Among
these, independent control of multiple programs, referred to
here as multitasking, is the most significant. Basically, it
is the ability of users to work on different tasks in separate
windows. Analyses of work flow determined that people deal
with many tasks concurrently with frequent switches among
them [2]. For example, a researcher preparing a paper might
draw the figures in one window while writing the text of the
document using an editor in another window. Multitasking
results in improvements on the overall user performance due
to the decreased average task-completion time. Windowing
systems must provide good mechanisms for task-switching
to make multitasking more beneficial.

Windowing allows access to multiple sources of informa-
tion. It is possible to reduce the cognitive load on users by
allowing them to examine other windows for supplementary
information, or multiple representations for the task at hand
or use task-aids like cut-and-paste.

As stated by Card et al. [6], the computer display is used
not only as a communication medium but also as an external
memory for users. Thus having all the necessary informa-
tion on the screen and filtering out unnecessary windows is
a required property of windowing systems. Malone 116] ob-
served that the way people organize papers on their desk helps
them to structure their Work and reminds them of unfinished
tasks. As Funke et al. [11] suggested, windowing systems
should support users to integrate, organize, compare, distill.
summarize, and apply the information.

MOTIVATION
Today's windowing systems do not differ much in their basic
principles of window management. Almost all systems fol-
low the independent overlapping windows approach, where
windows are allowed to overlap each other, operations on

29

windows are performed one at a time, and size and location
of each window is independent.

With the typical early 80's display resolution (640 x 480)
it was not possible to display two page-sized documents on
the screen simultaneously. Overlapping windows came as
a solution to the small-screen problem by allowing more
windows to be open simultaneously.

Resolutions like 1280 × 1024 are quite common these days,
which is roughly four times the 80's resolution. Besides
the resolution, graphics processing speed increased as well,
which made sophisticated animations feasible. Animations
in windowing systems help users to understand the result of
operations and decrease the cognitive load.

With advances in computer technology, more demanding ap-
plications come into existence. The amount and variety of
information that users have to deal with increased a lot with
advances in networks and the Internet. The information that
is facing the users is usually unorganized and dynamically
changing, thus users themselves need to do the organization.
Typically when exploring information users want to keep
both detail and overview.

Computer-Aided Design (CAD), Computer-Aided Engineer-
ing, Object-Oriented Development Environments, and Geo-
graphic Information Systems (GIS) are typical multi-window
applications. In these applications, it is typically necessary
to open many windows displaying simultaneously different
parts or representations. Also opening separate windows for
toolboxes, commands, and options is becoming the practice
in complex applications.

With the increase in the number of windows, visualizing si-
multaneously all the necessary information for a task became
difficult. As the number of windows per task increases, task-
switching becomes more time-consuming since more win-
dows need to be opened/closed or moved/resized under the
independent overlapping windows approach. Due to the in-
dependence of windows, each window must be handled sep-
arately. Longer delays due to housekeeping further increase
task-completion time because of the loss of users' mental task
context, kept in short-term memory. Increase in the number
of windows also prevents users to see the overview of their
desktop due to overlapping windows. This might delay users
to switch to unfinished tasks.

Contents of short-term memory are not only affected by the
time that passes, but also by the type of work carried out
during that time period. Since window housekeeping is an
activity related to the computer domain and not to the users'
task [21], the time spent on window management substan-
tially increases the disruptive effect on the short-term mem-
ory, thus implies a non-linear cost curve as the number of
windows per task increases.

Gaylin [12] observed that the number of window operations
that are used to switch the active window set constitutes 63%
of all the operations in an independent overlapped window
manager. This result supports the findings by Bannon et
al. [2] that people switch among tasks frequently forcing
them to change the visible set of windows on the screen.

Bederson and Holtan [3] observed that in traditional window-
based systems there is no graphical depiction of the relation-
ship among windows even when there is a strong semantic
relationship. This problem is most apparent in hyper-text
browsers and CAD systems, where each subwindow is either
a link followed or part of the system under design, tn current
approaches, users have to deal with each window separately
when organizing their desktop.

Kahn et al. [14] observed a similar phenomen(m and called the
presence of too many open windows"Windowitis". They ob-
served that in Windowitis situations the users become quickly
disoriented, lose the relationships that exist between windows
due to loss of spatial cues, and become unproductive in con>
pleting their tasks.

Bly and Rosenberg [4] characterized the requirements of
multi-window systems as the ability of the windows to con-
form to their contents and the ability of the system to relieve
the user of window management.

On the basis of the problems discussed, we have updated
these requirements:

• support users to promote organization and coordination of
windows according to tasks.
, allow fast task-switching and resumption.
® free users' cognitive resources to work on task related op-
erations rather than to window management operations.
, use screen space efficiently and productively t~or the tasks.
, provide a spatial layout that indicates the relationship be-
tween windows.

Earlier research that addresses some of these is described in
the Related Work section at the end of the paper.

PROPOSED SOLUTION: ELASTIC WINDOWS
Our method is based on three principles: hierarchical window
organization, space-filling tiled layout, and multi-window
operations.

Hierarchical Window Organization:
Hierarchical window organization supports users structuring
their work environment according to tasks. The hierarchi-
cal organization of windows allows users to map their task
hierarchy onto the nested rectangle tree structure.

Figure 1 displays the mail-tool application written using
elastic windows principles. The new messages are shown
iconized in the left window. Old messages are displayed
as icons, grouped hierarchically in separate windows on the
right. The hierarchical layout clearly indicates the semantic
relationship between the contents of the windows by the spa-
tial cues in the organization of windows. The layout provides
the user with an overview of all correspondence, where users
can pick any category and work on it.

Multi-window operations:
Typically, people organize papers on their desk as piles, and
move all of them simultaneously. Malone [16] found out that
users like to group items spatially. We claim that providing
multi-window operations on groups of windows can decrease
the cognitive load on users by decreasing the number of
window operations.

30

Figure 1 Mail-tool application: Organization of correspondence in a hierarchical layout gives the user an overview.

In elastic windows multiple operations are achieved by ap-
plying the operation to a group of windows at any level of
the hierarchy. The results of the operations are propagated
to windows inside that group recursively. This way groups
of windows can be packed, resized, or closed with a single
operation.

Another way to achieve multi-window operations is to se-
lect an operation and apply it to windows rapidly in a serial
manner.

Operations like multi-window open, close, resize, pack, and
unpack enable users to change the window organization quickly
to compare, filter, and apply the information. Pack and un-
pack operations on groups of windows help users to filter-
out unnecessary information as well as enable fast task-
switching. Packed windows still appear in the same location
preserving the spatial cues. This helps users to recall the win-
dow contents and reminds them of unfinished tasks. When a
packed window is unpacked all the windows in the group are
restored to their previous sizes, so that users can reconstruct
their previous working environments easily.

Hierarchical organization and applicability of window oper-
ations at any level allow rapid task-switching, even when the
number of windows is large.

Space-filling Tiled Layout:

We have taken a space-filling tiled approach in order to use
screen space productively, avoiding the wasted background
of the overlapped windows approach. Groups of windows
stretch like an elastic material as they are being resized, and
other windows shrink to make space. Figure 2 shows an ex-
ample resizing of the HCIL window under the UMD group
window in the former example pushing the surrounding win-
dows to the sides proportional to their sizes.

z

m

m

Figure 2: Elastic resizing of the HCIL window in the
space-filling tiled layout of elastic windows.

31

We have chosen the tiled window layout as our window orga-
nization style in order to maximize the visibility of windows
for a task. People typically try to organize windows to be non-
overlapping while working on a task, even when overlapping
windows are allowed. Other windows are left beneath the
working set of windows.

As Cohen et al. [8] stated, overlapping window layouts are
difficult to handle when large numbers of windows must all
be visible at once, and they come and go rapidly.

In tiled layouts, hierarchies of windows can be easily repre-
sented by the borders surrounding the subwindows. Users
are quite flexible in the placement of subwindows in a group
window. There is no strict horizontal or vertical placement
rule. This feature allows some flexibility in the placement
of windows under the same hierarchy and allows windows
to conform to their content. The content of windows is an
important constraint on which users determine the shape and
size of windows.

THE ELASTIC WINDOW DECORATION
In elastic windows window contents area is surrounded by
borders on four sides. The top border is thicker than others,
containing the title, a gadget to the left of the title, and a pump
gadget at the rightmost position.

The left gadget is used to invoke a menu for some of the
window operations, whereas the borders are mainly used for
resize operations. Basically, the border is dragged using the
mouse, until the appropriate size is reached. Immediate visual
feedback is provided during the operation using animations
that slowly stretch the border. The comers of the border are
used tbr diagonal resizing, while the rest of the border is used
for one-dimensional resizing.

Borders are also used to indicate hierarchical groupings of
windows. Border coloring gradually changes as shown in
Figure 1 according to the level of the window in the hierar-
chy to make groupings recognizable. Border thickness may
result in more space being used for borders instead of useful
information. During our design, we have found that borders
as thin as 4-5 pixels are easily operable.

Pressing the left (right) button on the pump gadget causes
the window size to be enlarged (reduced) in all directions
according to the direction of the press.

Only windows at the leaf level contain information. Windows
at higher levels are group windows containing subwindows.

L A Y O U T D Y N A M I C S

Due to the space-filling tiled nature of the layout, window
size changes affect size of other windows as well. In elastic
windows the proximity of effect is limited only to windows
under the same group and their subwindows.

Effect of the changes in the window size under the same
group is split proportionally according to the window sizes.
Depending on the border dragged and the direction of drag,
it results in either a push or pull as shown in Figure 3.a and b.
In both of these cases, window sizes are updated proportional
to the sizes, but the set of windows affected changes.

B ~ . c D e

i I
: A
. i

• F ~ '

-a-

A I B c Ii D I E ,I ! , / iii!
i i_a_

w' w~ w; t
- ° I - - I : C] O E l :

-b-

1

c,,,o 1
i ,

Figure 3: Effect of resize operations on other windows:
a) Pull effect b) Push effect c) Recovering proportions
on resize with minimum size windows.

Referring to Figure 3.a, Window C pulls windows A and B,
since the left border of Window C is dragged to the right. In
Figure 3.b, Window B pushes wi ndows C, D, and E, si nee the
right border of Window B is dragged to the right. Windows
not affected are grayed in the figure. New window sizes are
calculated as follows:

Pull Push

, , = + wb)
, /
w~ = w ~ * (l + A * r)

Wtc = 'W c - - ,~

'W~f . ~ W d

U J e = 7.1¢ e

'w~ = zub -F A

/
w d = w(z * (1 - ~X * r)

Changes in the upper levels are propagated down to their sub-
windows recursively. For example, subwindows of Window
A, B, and C in 3.a adjust their width accordingly.

Each elastic window has a default minimum window size,
but users can set a different value for each window. This way
users can protect a window from unwanted size updates.

When windows are being resized some of the windows may
reach their minimum window size. For example, in Fig-
ure 3.b, when pushing windows C, D, and E, window D may
reach its minimum size, while others don't. In that case the
resize operation is allowed until all of the affected windows
are fully compacted i.e. all reach their minimum sizes. Since
window D is kept at its minimum size, proportions do change.
However, in elastic windows the old proportions are kept, so
that the resize operation is reversible. Figure 3.c shows an
example.

32

Even when the window is so small that its contents are not
fi~lly visible, it still gives users some information about its
content because of the spatial placement and reminds users
of unfinished tasks; and it can be enlarged rapidly and easily

if needed.

The effect of changes in window size on the content depends
on the application. For example, upon down-sizing a window
used {'or viewing a document, it might be preferable to see the
same content but with smaller font sizes; but when designing
a system in a CAD system, keeping the same zooming factor
and clipping might be preferable. When clipping is used,
facilities like scrollbars are needed to move the viewing area.
Similar arguments can be made for other content types like
images and icons, The choice is made by the application
program, based on users' preference initiated by the window
manager upon a window size update.

ELASTIC WINDOW OPERATIONS
In elastic windows, all window operations can be applied to
individual windows as well as group of windows. Window
operations supported are:

• Group e Multiple Open/Close
• Multiple Resize • Multiple Pack/Unpack
• Multiple Slide/Relocate • Multiple Maximize

Creating Window Groups and Hierarchies:
Window groups can be created by opening an empty win-
dow by double-clicking on the border of an existing window.
Dragging and dropping selected items in this empty window
will open as many windows as the cardinality of the selec-
tion all grouped inside the empty window. Figure 4 shows
the result of creating a window group for visualizing all new
incoming mails from a person. Users can add more windows
into a group later as well. A window can be removed from a
group by simply closing that window.

Hierarchies of windows can be created similarly by opening
an empty window inside another empty window. This is done
by selecting the operation from the menu on the left gadget.

Figure 4: Creation of a window grouping visualizing
new incoming mails from a person.

Multiple Open/Close Operations:
In elastic windows items selected are associated with win-
dows. These windows generally contain some information
related to the selected item e.g. a detailed view or another rep-
resentation. The current system only supports iconic items
and textual list items.

Once an item or group of items have been selected all of them
can be opened with a single open operation by dragging and
dropping on the border of an existing window. The existing
window is pushed according to the position of the border
to open space for the newly created window or windows.
Double-clicking on the border achieves the same effect.

Selecting and opening a group of objects is primarily done to
add a number of windows to an existing window group. This
way multiple windows can be opened with a single operation.

A window is closed by selecting the Close operation from
the menu. When a window is closed, the freed space is
partitioned to other windows at the same level proportional
to their previous sizes. The Close operation can also be
applied to windows at any level of the hierarchy. Closing a
higher level window will close all its subwindows as well.

Multiple Resize Operations:
Windows at any level of the hierarchy can be resized by
dragging on the border. All four borders of a window can
be used in resizing. The drag direction and the border being
dragged determines the effect as explained in the Layout
Dynamics section.

The corners of a window is used for diagonal resizing. The
sides are used for either horizontal or vertical resizing de-
pending on the border.

Inside a group window with many windows open, typically
users need to focus on one of these windows for a certain
time. Bidirectional resizing becomes handy in such situa-
tions. This operation resizes a window in both directions by
pushing/pulling the opposing borders by the same amount.
Figure 5 shows the result of bidirectional resizing to see more
of the contents of the middle window inside the group win-
dow.

Figure 5: Bidirectional resizing is used to enlarge a
window belonging to a group easily.

33

A window can be resized in all directions simultaneously by
the pump operation, Pumping a window resizes the window
pushing all the surrounding windows to the sides. The opera-
tion can be invoked by pressing either the left or right button
of the mouse on the pump gadget. Pressing the left (right)
button causes window size to be enlarged (reduced) in all
directions according to the duration of press.

Multiple Pack/Unpack Operations:
Windows at any level of the hierarchy can be packed by
selecting from the menu. Windows packed appear in the same
location, but with only their title shown as a bar appropriately
placed in the !ayout. This avoids the spatial disorientation
which is typically the case in the iconify operation in most
of the windowing system. In Figure 6, the group window
used to view incoming mail messages is packed vertically,
whereas the Administrative Window under UMD window is
packed horizontally. The placement of the packed windows
in the same position of the layout keeps the same spatial cues
formed by the user when these windows are all open. This
helps users to locate these windows easily.

H i

i f . I

Figure 6: The Group window used to view incoming
e-mails and the Administrative Window under UMD
window are packed.

The Pack/Unpack operations are primarily used to abandon
a task for a while and open up space for other tasks. Packed
windows can be restored to their previous sizes with a single
Unpack operation. It is invoked by double-clicking on the
packed window. Hence, Pack/Unpack operations allow fast
task-switching and resumption.

Multiple Slide/Relocate Operations:
The Slide operation changes the position of a window or hier-
archy of windows without changing the size. This operation
can be visualized as shifting a window without changing its
position relative to its siblings. It operation is accomplished
by dragging with the middle button pressed.

The Relocate operation is used to relocate a window or group
of windows to any position in the hierarchy. The Relocate
operation is accomplished by first selecting from the menu
and then double-clicking on a border as in the Open operation
(Figure 7).

Figure 7: NewMail window is relocated to the top of
the OIdMaii window.

Multiple Maximize Operation:
Users can focus on a set of windows and maximize them
to cover the whole screen. This is particularly useful when
users are expecting to work on a set of windows for a long
time. With the maximize operation, users can use more of
the screen estate, avoiding the loss of screen space due to
nesting.

In Figure 8, the user maximizes the UMD window under
OldMail group window.

Figure 8: UMD window is maximized to work more
easily.

Other operations:
Users can fix the width or height of a window in order to
protect the window from unwanted resizing. This constraint
on the window width or height can be removed by the appro-
priate release operation.

The layout can be saved and retrieved any time later to allow
users to switch back and forth among different work layouts
easily.

Users can undo or redo operations at any time. This makes
the window operations reversible. Not all operations are
undo-able e.g. close operation.

34

Figure 9: Hierarchical organization of different roles of a student: CourseWork window on the left holds all the information
related to the two courses Software Engineering and Computer Networks that the student is enrolled in. Housework
window contains windows related to the responsibilities at home, and Job window contains the two projects that the
student is responsible at work.

Multiple window operations can also be achieved by serial
application of a window operation to a number of windows.
Once the users selects the operation, it can be applied to
any window by clicking on the window. This operation
is particularly useful when removing a number of windows
from a group.

SCENARIOS
Personal Role Manager:
The Personal Role Manager (PRM) provides users with a
role-centered environment, where people can structure the
screen layout and the interface tools to match their roles [22,
19]. The goal is to simplify and speed the coordination of
tasks. Thus, fast access to partners, schedules, tools, and
documents regarding each role, and fast switching between
roles is a requirement of PRM.

Figure 9 shows an example mapping of different roles of a
student onto a hierarchical window organization. This stu-
dent takes two courses this semester: Software Engineering
and Computer Networks. Project materials and partners,
homeworks, and correspondence with the professor, TA's,
and classmates are organized in a hierarchical fashion for
each course. This student has a number of other roles like
the organization of a birthday party, home duties, and job

Figure 10: Layout customized to reference the code
for Networks project at school, while working on the
code for the Multimedia project at work.

responsibilities. Partners, schedules, tools, and documents
regarding each of these roles are mapped hierarchically into
different windows. The layout clearly indicates the seman-
tic relationship between the contents of the windows by the
spatial cues in the organization of windows.

35

(l a ~ £laSIl (ulr~l~t~{

VO'J~J C l ¢ ~ e D g Of'&t] ~II{¥B'~ d~ ~
vo id ~ d a t ~ O ~ a t i ~ (v o i d) ;

voi~ Idd~(Int t) ;

ve td pattat]Rel~vet d) ;
vo id P a i a t ~ s ~ v e i d) ;

Rig~t~vi~l~uB~r~ "q~OIB;

£har ~Obj~(tF i leNa~e;
~esl~to~ =¢nr~
l n t A~So(la t te~v t~ l~ IO = ~1;

l ~ t x~,rin 'a,,ll~,

~ a t t o ~ i ~ i ~ t h , ~ u t t o n g ~ l ~ h t ;
f l e a t ~O~E P, FACTO~ ;

i~t d~jree;

vlo lor - ~ ' d ~ r c o l o l ' ;
v c o l o r - T i t l e , B l o t ;
l~g HI
3;

l; eb l ~ (:

vl es~ab3 ~INLI NILCO~[~UET~g(T~CN] ~d~o~t N t, et ~cxtvi~) ;

/ / ¢ v ~ r l r i ~ I r a Ykln~TVBe~
vRl~dlry~E B F ~ L ~ f OLAf.]] g ~ (T ~ l ~WCO~I~=~C) ;

/ / v i r t u a l m ~ r ~ r ~u~c~lo~ m, ,~ ' l dd~

p t~ l i { :
71 ~ ¢ ~ for ~v~ride~ ?ton vki~,~Typ~a

/1 ~ a ~ f e r the ~ta~da.vd v e r ~ i ~ o~ t ~
/ / t ~ e c ~ a ~ y (otu~tru£te~$ a ~ defltr~.tet~¢~
v] N~I i ~3 8 I NL I NI~_C@NCg'TRt.~TgR S(f c I~,~.V~i I1 tt ¢~v£ e,~l t er~ t , y i CO~lvi,e'~') ;

/~vetd @bjarv~$~lact(~i(o~cle~l(#~ " i (e~l , reVUE ~eV~B~, vbc, o] ~elB{ta~);

{ l a ~ t i~t~inOeN~t~at : ~] i (~ i n ~ t ~ . t , p ~ l i c v l i ~ t v i ~ {

pld~l ic :
/ / m~re for e-verrides f r o vk i~ t tW,~d

/ / micre for the ~taad~rd versI~a~ of the
/ / ~ e s s C y ¢ ~ t r e . ~ t ~ r ~ aN d e s t r u (t ~ $
v l N a b l e l N L I N I L g O N R J O g f ~ 1 (e t ~t~I~'.~¢mlt~t • Vi(~vIe~);

/ h e l d @~servl$elect(vi{e~viewI(~a ~ l t l m , veven t " w e n t , v~oo] ~-ele(ted):

: :5:; ; p~u. [-i I I1

ili!! 'iii iiiii iii!i; i i iiii!i; : L " - ' " / 1 ~i(ll:re f a r ~ s t a ~ d velrsloas Of tbQ
H necessary (o ~ t ~ t m ' s a ~ d ~ t l ~ c t ~ r ~
Vl ei~dtbt e l N L I N L C O N N I D ~ f , (I (I~.l~wt nd~0a'C ~ t ~le t , Vt~e~V~-'~) :

Figure 11" Programming Environment for object oriented programming: Class and subclass declarations organ ized in
multiple windows

Approach II Resize Open Pack Move

Independent 6 2 1 4 6 % 6
Elastic 2 2

Table 1 : Comparison of the number of window opera-
tions in the PRM example

The layout provides users with an overview of the roles, in
which they can pick any task regarding a role easily and cus-
tomize the layout for that task. Figure 10 shows an example
customization of the layout to enable the student to reference
the code of the Network project at school while working on
the code for the Multimedia project at work. While work-
ing on the code, the user still has an overview of the roles
since the packed windows keep the same spatial relationship.
This layout can be considered as an example of detail within
overview technique, where users are relieved from the burden
of merging the overview and detail mentally. Comparison of
the elastic windows approach with the independent overlap-
ping windows approach shows the substantial reduction in
the number of operations (Table 1).

With the use of multiple window operations, as well as re-
size, pack, and unpack operations, users can focus on their
roles rather than arranging windows. Fast switching among

roles enables users to work at their own pace, with minimum
distraction due to window housekeeping.

Object Oriented Programing Environment:
Developing and maintaining large complex software systems
is a difficult task. Generally many programmers work to-
gether on different pieces of the software and then integrate
these pieces to build the system. In large software develop-
ment projects where the applications, tools, code, and data
are distributed across the network, programmers typically
loose track of where the application code lies. Productivity
will certainly increase when access to individual parts of the
software components becomes easier and faster.

Most of the software development environments i n use today
are file-based. In these environments, programmers orga-
nize code as separate windows for each file. Programmers
typically need to reference different parts of the code, such
as data declarations, procedure declarations, bodies, and in-
vocations, as well as related documentation like execution
charts, and reports. It is beneficial to provide programmers
with environments that enable them to group infl~rmation and
manage multiple windows easily on the desktop.

Object oriented technology is widely used in industry to over-
come problems of large complex sofkware development. Be.-
low we will describe possible benefits of an object oriented

36

software development environment using elastic windows
principles.

Figure 11 displays a view of a large project as seen by a pro-
grammer. On the left, top-level object classes are displayed
as icons, where programmers can pick any of them to see
their declarations, related documentation, or subclasses de-
rived from them. The top middle window displays a class
declaration, whereas the bottom middle window displays the
subclasses derived from a base class. Icons representing
these subclasses can further be selected to view declarations
grouped in a single window as shown in the rightmost win-
dow.

As shown in Figure 12 documentation regarding a class can
be viewed easily while updating the declarations for that
class. To use more of the screen estate, windows or groups of
windows can be packed as in Figure 12. Managing multiple
windows at a time saves time when organizing windows to
meet new screen space requirements of the current task.

Providing programmers capabilities to organize information
and easy access to related information increases manageabil-
ity of a complex system. This example also demonstrates the
use of multi-window operations to reduce the burden of win-
dow management and the use of the Pack/Unpack operations
to meet changing screen space needs.

Figure 12: Window organization quickly changed to
view documentation regarding a component of the sys-
tem.

RELATED WORK
The Rooms system [13] uses multiple virtual workspaces,
where the overlapping window strategy is used in each of
these single-screen workspaces. Each task is devoted to a
workspace, where users can switch to other tasks using ei-
ther the overview or the doors between workspaces for rapid
transitions. Basically, the Rooms system tries to overcome
the problems due to the increase in the number of windows
by increasing the total screen space, by introducing multi-
ple virtual workspaces, and by techniques which allow fast
switching between workspaces. Also, it allows users to or-
ganize tasks into workspaces, where all windows belonging
to a single task exist. Windows belonging to a task are re-
stricted to fit in a single screen. Although it is possible to

partition tasks into subtasks and place each subtask in dif-
ferent workspaces and utilize doors for efficient transitions
between these workspaces, users can easily lose task context
since information for a task is distributed to multiple screens.
There is no mechanism which allows multi-window opera-
tions. Tasks are restricted to fit in a two-level hierarchy: the
overview level, and the workspace level.

The Cedar [24] system also uses tiling, where windows are
organized in two columns of arbitrary number of windows. It
also uses space-filling tiled layout, but proportional resizing
is not provided. Windows can not be grouped hierarchically
and multiple window operations are not provided. Windows
minimized are iconized at the bottom of the desktop, possibly
causing disorientation if the number of windows is high.

The Dylan programming environment uses a pane-based win-
dow system [10], which allows both horizontal and vertical
panes, with a mechanism to create links between panes. The
Dylan programming environment does not support multiple
window operations and hierarchical organization of windows.

Xerox/Star [23], RTL/CRTL [8, 9], and Windows 1.0 also
used tiling, but hierarchical organization and multiple opera-
tions were not provided. CIWM [111 uses automated window
management. Although automatic strategies in window man-
agement relieve the burden of window management, direct
user control is preferable as in most HCI artifacts. Myers
has an excellent taxonomy of these early windowing sys-
tems [17].

CONCLUSION
We have attempted to determine the extended requirements of
multi-window systems adjusted for today's applications and
technology. Characteristics of modern applications demand
more functionality than what is available in today's window-
ing environments. Multi-window operations, organization
of windows by tasks, and capability to handle frequent task-
switching without demanding extensive cognitive abilities
are some of the requirements of future windowing systems.

Elastic windows is a space-filling hierarchical tiled approach
that we believe satisfies the requirements. We believe it
is particularly useful for complex systems like CAD/CAM
systems, and Object Oriented Software Development sys-
tems. Application of elastic window ideas in WWW Brows-
ing seems promising by the introduction of textual objects
which can be associated with windows or hierarchies of win-
dows. Coordination of windows by task, like synchronized
scrolling, hierarchical browsing, and direct selection, will be
studied. Both the usability of the window management op-
erations and their comprehensibility need experimentation,
but users are attracted to the graceful animations of elastic
window interactions.

The possibility of using overlapping windows to provide
multi-window operations and providing a layout that enable
users to group windows and apply operations on them is on
our agenda of future research directions.

37

A video demo on elastic windows is available as part Qf the
HCIL Open House'96 video report.
Contact hcil-info @ cs. umd. edu Jbr ordering info rnzation.
Refer to http://www.cs.umd.edu/projects/hcil/:?)r ji~rther in-
formation on the project.

ACKNOWLEDGEMENT
We appreciate comments from Catherine Plaisant during
the project. We are grateful to Kent L. Norman, Charles
Goodrich, Gary Marchionini, Khoa Doan, Brett Milash, Kasim
S. Candan, and Egemen Tanin for their comments on the draft
of this paper. This research is supported by a grant from the
National Science Foundation under Grant No. NSF EEC
94-02384.

REFERENCES
1. Asahi, T., Turo, D., Shneiderman, B., Using treemaps

to visualize the analytic hierarchy process, to appear in
Information Systems Research, (Dec 1995).

. Bannon, L., Cypher, A., Greenspan, S., Monty, M. L.,
Evaluation and analysis of users' activity organization,
Proc. of the CHI'83, Human Factors in Computing Sys-
tems Conference, ACM, New York, NY, (1983), pp. 54-57.

. Bederson, B., B., Hollan, J., D., Pad++: A zooming graph-
ical interface for exploring alternate interface physics,
Proc. of the UIST'94, User Interface Software and Tech-
nology Conference, pp. 17-26.

4. Bly, S., Rosenberg, J., A comparison of tiled and over-
lapping windows, Proc. CHI '86 Conference - Human
Factors in Computing Systems, ACM, New York, NY,
(1986), pp. 101-106.

. Bury, K. E, Davies, S. E., and Darnell, M. J., Window
management: A review of issues and some results from
user testing, IBM Human Factors" Center Report HFC-53,
San Jose, CA, (June 1985), 36 pages.

. Card, S. K., Pavel, M., and Farrell, J. E., Window-based
computer dialogues, INTERACT '84, First IFIP Con-
ference on Human-Computer Interaction, London, UK,
(1984), pp. 355-359.

. Card, S. K.,Henderson, A., A multiple virtual-workspace
interface to support task switching, Proc. Cttl '87 Confer-
ence - Human Factors in Computing Systems, ACM, New
York, NY, (1987), pp. 53-59.

. Cohen, E. S., Smith, E. T., Iverson, L. A., Constraint-
based tiled windows, IEEE Computer Graphics and Ap-
plications 6, 5, (May 1986).

9. Cohen, E. S., Berman, A. M., Biggers, M. R., Camaratta,
J. C., Kelly, K. M., Automatic strategies in the Siemens
RTL tiled window manager, Proc. IEEE 2nd International
Conference on Computer Workstations, IEEE, Piscataway,
NJ, (1988), pp. 111-119.

10. Dumas, J., Parsons, P., Discovering the way program-
mers think about new programming environments, Com-
munications of the ACM, (June 1995), 38, 6, pp. 45-56.

11. Funke, D. J., Neal, J. G., Paul, R. D., An approach to
intelligent automated window management, IHtert~atiozml
Journal of Man-Machine Studies 38, (1993). pp. 949-983.

t2. Gaylin, K., B., How are windows used ? Some notes
on creating empirically-based windowing be,tchmark task,
Proc. CHI '86 Co@re~zce - Human Factors i:~ C()mputing
Systems, ACM, New York, NY, (1986), pp, 96-100.

13. Henderson, A., Card, S, K., Rooms: The use of mul-
tiple virtual workspaces to reduce space contention in
a window-based graphical user interface, ACM 7}ansac-
tions on Graphics 5, 3, (1986), pp. 211-243.

14. Kahn, M., J., Charnock, E., }-tow to prevent "Window-
its" in your Graphical Interface ?, Proc. Silico~z ~lley Er-
gonomics Conference & Exposition, EtNoCo~z '95, (1995),
pp. 18-25.

15. Lifshitz, J., Shneiderman, B., Multi-window browsing
strategies for hypertext traversal, Proc. 30th Amzual Tech-
nical Symposium of the Washington, DC Chapter of the
ACM, (1991), pp. t21-131.

16. Malone, T. W., How do people organize their desks?
Implications for the design of office automation systems,
ACM Transactions on Office Information Systems, 1, pp.
99-112.

t7. Myers, B., Window interfaces: A taxonomy of window
manager user interfaces, IEEE Computer Graphics and
Application;# 8, 5, (September 1988), pp. 65-84.

18. Norman, K. L., Weldon, L. J., Shneiderman, B., Cog-
nitive layouts of windows and multiple screens for user
interfaces, International Journal of Man-Machine Studies
25, (1986), pp. 229-248.

19. Plaisant, C., Shneiderman, B., Organization overviews
and role management: Inspiration for future desktop en-
vironments, Proc. IEEE 4th Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises,
(April 1995), pp. 14-22.

20. Plaisant, C., Carr, D., Shneiderman, B., Image browsers
taxonomy and design guidelines, 1EEE Software 12, 2,
(March 1995), pp. 21-32.

21. Shneiderman, B., Designing the User Interface: Strate-
gies for Effective Human-Computer lnterzwtion: Second
Edition, Addison Wesley PuN. Co., Reading, MA, (1992),
Ch.9.

22. Shneiderman, B., Plaisant, C., The future of graphic user
interfaces: Personal role managers, People and Com?ut-
ers IX, Cambridge University Press, (Aug 1994), pp. 3-8.

23. Smith, D. C. et al., The Star user interface: An overview,
Proc. National Computer Coe~, AFIPS Press, Arlington,
VA, (1982), pp. 515-528.

24. Teitelman, W., A tour through CEDAR, IEEE Software,
1,2, (Apr 1984), pp. 44-73.

38

