
TECHNICAL
NOTE

~.,4 ~*,~ ~'

Ben Shneiderman is currently
associate professor and head

of the Human-Computer
Interaction Laboratory.

Richard Miara, Joyce
Musselman, and luan

Navarro were students of
Shneiderman at the time of

writing.
Authors' Present Addresses:

Richard J. Miara, 8807
Enfield Ct., #8, Laurel, MD

20708; Joyce A. Musselman,
Software Architecture and
Engineering, 1401 Wilson

Boulevard, Suite 1220,
Arlington, VA 22209; Juan

Navarro, Engineering
Research Associates, 1517

West Branch Drive, McLean,
VA 22012; Ben Shneiderman,

Department of Computer
Science, University of

Maryland, College Park, MD
20742

Permission to copy without
fee all or part of this material

is granted provided that the
copies are not made or

distributed for direct
commercial advantage, the
ACM copyright notice and
the title of the publication

and its date appear, and
notice is given that copying

is by permission of the
Association for Computing

Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/1100-0861 75¢

PROGRAM INDENTATION AND
COMPREHENSIBILITY

Richard J. Miara,
Joyce A. Musse/man,
Juan A. Navarro,
and Ben Shneiderman
University of Maryland

ABSTRACT: The consensus in the
programming community is that
indentation aids program
comprehension, although many
studies do not back this up. We
tested program comprehension on a
Pascal program. Two styles of
indentation were used--blocked
and nonblocked--in addition to
four passible levels of indentation
(0, 2, 4, 6 spaces). Both experienced
and novice subjects were used.
Although the blocking style made
no difference, the level of identation
had a significant effect on program
comprehension. (2--4 spaces had the
highest mean score for program
comprehension.) We recommend
that a moderate level of indentation
be used to increase program
comprehension and user
satisfaction.

1. INTRODUCTION
Recent studies have concentrated on program indentation
along with other variables such as commenting, blank-line
insertion, and control flow as a factor in program comprehen-
sion. The general consensus is that programs formatted with
indentation are "better," that is, are easier to follow and mod-
ify, although there is experimental evidence showing that
indentation does not always aid program comprehension. Our
experiment focused solely on the effect of indentation on
program comprehension and user satisfaction. Two styles of
indentation were tested--blocked and nonblocked, and four
possible levels of indentation (0, 2, 4, 6 spaces).

Our intention was to gather experimental evidence to sup-
port the notion that intermediate indentation, which we de-
fine to be 2-4 spaces, would provide an optimal level of
program comprehension and user satisfaction. We believe that
minimal and excessive indentation inhibits program compre-
hension and leads to greater programmer dissatisfaction.

Many studies to test the effects of indentation on program
comprehension and user satisfaction have been done. Weiss-
man [21, 22] conducted several studies in this area using PL/I
and 2-space indentation. Weissman tested the interaction be-
tween indentation and commenting. He found that the main
effect of indentation alone was not significant in any of his
measures, but that a significant interaction occurred with
commenting. When comments were absent in the programs,
indentation helped only slightly; when comments were pres-
ent, indentation hurt drastically. Weissman was surprised by
these negative results and tried to explain them by the fact
that the programs had to be split across page boundaries and
that the programs were not split at a reasonable point. Also,
the programs contained GOTO statements that did not lend
themselves to indentation [21]. While Weissman thought this
might partially explain the negative effects of indentation, he
did not think it explained the interaction with commenting.

In another experiment, Weissman tested the interaction be-
tween indentation and control flow. This experiment supports
the hypothesis that indentation aids in program comprehen-
sion and user satisfaction, since in most cases it improved
performance (sometimes significantly) and did not signifi-
cantly hurt performance.

In an experiment conducted by Shneiderman and McKay
[20], subjects were given two programs--one indented and
one not. The subjects were asked to locate and repair a bug in
each program. The data from this experiment suggest that as
program complexity increases, program comprehension is
aided by indentation, although the authors indicate significant
differences were not found.

Clifton [1] states that one of the most important attributes
of a program is readability. A program that is easy to read and
understand is easier to test, maintain, and modify. Clifton also
states that even though structured programming should aid

November 1983 Volume 26 Number 11 Communications of the ACM 861

TECHNICAL NOTE

readability, a structured program can be difficult to under-
stand if the control structures are heavily nested or many
lines separate parts of the control structures.

Indentation is the most popular technique for making con-
trol structures easier to read [1]. However, the usefulness of
indentation diminishes when parts of control structures are
widely separated or heavily nested. Clifton states that this will
make it difficult for a reader to skip around a group of state-
ments or find the path back from the end to the beginning of
a loop.

Leinbaugh [12] argues that indentation alone is sufficient to
determine the block structure of a program. He states that the
only indentation rule that is needed is that ". . . all statements
directly belonging to a control statement are right indented an
equal amount from the beginning of that control statement."
Leinbaugh claims that if this indentation rule is followed, the
use of compound statements or closing keywords is not neces-
sary to express a program's block structure.

Some new techniques have been used with indentation to
aid in program readability. One of these techniques, proposed
by Clifton, is connector lines. These lines connect parts of
control structures on entire programs. The connector lines
and indentation could be automatically generated on listings
to show the logical structure of programs. The following is an
example of the use of connector lines.

I--IF JUST THEN DO;

I PRINTLINE = "";
7 4
I --DO I =I TO SEP #;

I 2 SEPSPACES = SEPSPACES ;

I ** *** END;

I-- END;

Clifton suggests that the connector-lines technique could be
useful for teaching programming since the lines clearly show
students the relationships among different parts of control
structures.

Another technique, Contour [4], graphically illustrates a
program's structure by bounding the scope of loops and condi-
tionals with solid lines. Gimpel states that Contour has the
advantage that it makes fewer demands on the reader's lin-
guistic expertise and may be used for presenting algorithms in
a language-independent manner.

Conrow and Smith [2] suggest the use of NEATER2 to aid
program readability. As the name implies, this techique nee-
tens up the program source listing. This is useful in detecting
logic errors because it produces unexpected indentation pat-
terns and reveals some syntax errors by peculiarities in in-
dentation patterns or specifically flagging them.

Krall and Harris' [11] experiment yielded some significant
results. This experiment used the two metrics of a compre-
hension quiz and reconstruction to measure the effects that
indentation, no indentation, blank lines, no blank lines would
have on novice undergraduate programmers. Highly signifi-
cant results were found below the .01 level for the compre-
hension quiz. The results clearly show that indentation alone,
over any other combination of the 2 × 2 design, gave the
highest level of comprehension of a Cobol program containing
nested IF statements. This can be explained two ways. First,
with indentation, the corresponding ELSE block of an IF
Statement could easily be found by vertically scanning di-

rect!y beneath the IF. Second, indentation aids in highlighting
the end of a Cobol statement, which is identified by a period.
The location of a period in a Cobol program greatly affects the
program's execution. Lack of indentation creates more confu-
sion for the programmer trying to locate the period. However,
if indentation is used, the period and end-of-statement are
easily found. Furthermore, these results significantly demon-
strate that indentation used with blank lines hinders compre-
hension of the above-mentioned program. However, using a
second metric, memorization/reconstruction, no statistically
significant results were produced within their 2 x 2 design.

Krall [10] extended and expanded the above experiment.
The designer used experienced professional Cobol program-
mers to see if previous results could be applied to experts.
Once again, for the quiz sheet metric, a I percent statistical-
significance level resulted between the indented and nonin-
dented programs with greater comprehension resulting from
indentation. However, this time, no significant interaction was
produced between any form of indentation and the use or
nonuse of blank lines. Overall, both experiments support the
idea that indentation aids program comprehension and not
reconstruction.

An experiment by Norcio and Kerst [15] used program
reconstruction as a metric to test the effects on indentation.
The experimental materials consisted of five unstructured
Fortran programs containing various combinations of docu-
mentation and indentation. The results implied that indenta-
tion and documentation do not enhance the reconstruction
tasks. The authors offered the explanation that "indentation
might interfere with the visual image of the program." Re-
gardless of the reason, indentation did not aid in program
recall.

Norcio [14] conducted two experiments using the Cloze
technique that tested the effects of documentation and inden-
tation on program comprehension. This technique substituted
blank lines for various source statements and required the
subject to supply the missing statements. Norcio used the
same experimental procedures and indented versus nonin-
dented Fortran programs with various levels of documenta-
tion in both experiments. The only difference was the loca-
tion of the missing statements within each logic segment of
code. The first experiment had source statements removed
from the beginning of each logic segment. In the second ex-
periment, the missing statements were within the logic seg-
ments. A multivariate analysis of variance (MANOVA) for
documentation and indentation showed a significant interac-
tion effect (p < .04) in both experiments. The use of indenta-
tion and one line of interspersed documentation resulted in
the highest degree of program comprehension. Norcio also
noted that the use of indentation significantly aided program
comprehension in both experiments.

Love [13] conducted a within-subject experiment to test the
effects produced by the independent variables of indentation
of source code and complexity of control flow on program
comprehension. Less complex control-flow structures differ
from complex structures in that they only allow the control
structures of sequence, selection, and repetition. As stated by
Love, "These structures have only one entrance and only one
exit and do not allow unconditional GOTO statements." The
dependent variable was the percentage of lines correctly re-
called from the Fortran programs. The results of this experi-
ment show that programs with less complex control flow are
easier to understand than those with complex forms. How-
ever, the presence or absence of indentation of source code
produced no significant differences.

862 Communications of the ACM November 1983 Volume 26 Number 11

TECHNICAL NOTE

It is generally agreed that programs that are indented,
spaced, and commented are easier to read and edit; the prob-
lem seems to be on what approach to use in accomplishing
this formatting goal. A novel technique for improving the
readability of Pascal programs is the implementation of the
prettyprinting programs that provide a listing of the source
code using semicolons to connect the begin-end blocks [17].
The idea is to connect a begin with its corresponding end by
drawing a line of semicolons from one to the other. Hueras
and Ledgard [8] wrote a prettyprinting program that rear-
ranges the spacing and indentation of certain constructs to
make the logical structure of the program more visually ap-
parent. Unlike other prettyprinting programs, the Hueras and
Ledgard program does no syntax checking and will even
work on program fragments. The authors suggest that the
prettyprinter should be used as an aid in editing and should
not impose rigid syntax checks when the program is in the
development stages. Other research has concentrated on de-
fining a set of rules for programmers to follow when writing
Pascal programs. Crider [3] suggests a style that emphasizes
the structured aspect of the language by having an introduc-
tory phrase such as a while statement followed by all the
dependent clauses indented directlv below. As an example,
he shows the following:

whiler >=dd do begin
r := r -dd;

dd :=dd + dd end;

The while statement is the introductory phrase and the re-
maining assignment statements are the dependent clauses.
The while is the keyword in the phrase and the do and begin
are control information that indicate how the dependent
clauses are carded out. Crider claims that this format clearly
emphasizes the structuring of statements.

Noting that programs have to be written in a form that is
readable and easily modifiable, Peterson [16], suggests that
begin-end blocks be clearly discernable by indenting the
statements that are enclosed within these delimiters. The ef-
fect of this indentation is to provide a programmer with the
ability to quickly identify begin-end blocks and all the state-
ments enclosed within these delimiters. Two examples are
given to show the advantage of separating the statements
within the begin-end blocks:

BEGIN

END;

BEGIN

J:= J + I;

OUTCARD[J] := C

INFO := I ;

LEFT := L ;

RIGHT := R

END;

The first example shows the minimum indentation of five
spaces that account for the number of characters in the begin.
The second example shows Peterson's preferred method of
shifting the following statements sufficiently to the right so
that they stand out and are easily identified as contained
within the encompassing begin-end block.

Richardson et al. [18], say that " . . . the 'classical' structured
programming 'rules' include a set of language-dependent con-
ventions to dictate how to indent program statements which
are designed to make constructions more visible to the

reader." They state that even though manual indentation by
the programmer may initially make the program harder to
write, the indentation helps to simplify the reading and un-
derstanding of the program.

In our experiment, we place the major emphasis on levels
of indentation and which level, if any, yields significantly
better results. The experiment measured whether novice or
experienced undergraduates would be most affected by the
varying degrees of indentation.

2. EXPERIMENTAL PROCEDURES
Hypothesis: Expert and novice Pascal programmers will show
no increase in program comprehension when excessive in-
dentation is used instead of no indentation. Furthermore, we
suggest that there exists a moderate level of indentation
where both experts and novices will show an increase in
performance. Two methods of block indentation will also be
tested.

Independent Variables:

1. Levels of Indentation
a. No Indentation
b. Indentation--Using Two Spaces
c. Indentation--Using Four Spaces
d. Indentation--Using Six Spaces

2. Level of Programmer Experience
a. Novice: Less than three years of programming experi-
ence in school and/or less than two years professionally.
b. Expert: Three or more years of programming experience
in school and/or two years or more professionally.

3. Method of Block Indentation
a. Nonblocked: Indentation after the beginning of a block.
b. Blocked: Body of block flush with beginning of a block.

Dependent Variables:

1. Comprehension Quiz Scores
2. Subjective Rating of the Program Difficulty

2.1. Subjects
Our novice subjects had less than three years of programming
experience in school and/or less than two years of profes-
sional programming experience. They were selected from an
intermediate-level programming class in Pascal at the Univer-
sity of Maryland. The experiment was administered in the
tenth week of the semester. By this time, the students had
already written several Pascal programs beyond the complex-
ity of the program they were given for the experiment. In
general, these subjects tended to be freshmen or sophomores.

Our expert subjects had three or more years of program-
ming in school and/or more than two years of professional
programming experience. These subjects were selected by ad-
ministering our experiment to a senior-level computer-science
class. Generally, these students were graduating computer-
science majors. The majority of these students qualified as
experts.

2.2. Materials
A Pascal program (Appendix A) from Grogono's book, Pro-
gramming in Pascal [5] was modified to produce seven differ-
ent versions. Our program was a text-concordance program

November1983 Volume26 Number11 Communications of the ACM 863

that calculated the number of occurrences of a word for a
given string of input. The output was each unique word with
its frequency of occurrence. Individual letters were accepted
as words and numbers and blanks ~nct ioned as delimiters.
Each version had 102 statements and contained no blank
lines or comments. Each version of the two-page program was
divided at the same location. A wide range of syntactical
structures were used, (that is, sets, records, packed-arrays,
while-loops, and if-then-elses. All of the syntactical struc-
tures in the program had already been taught to the students.
The semantics of this concordance program could be consid-
ered challenging for both novices and experts. Finally, the
programs distributed to the students were produced on com-
puter paper from a line printer and were easy to read.

The difference among versions of the concordance program
was indentation. In order to test a wide range of indentation
levels, four degrees of indentation were separately tested. The
four levels were 0, 2, 4, and 6 spaces. For the nonindented
version, each statement began in column one. For the in-
dented versions, indentation was used to highlight each se-
mantically related block of codes.

Another factor tested for in each level of indentation was
blocked and nonblocked structuring. Blocked structures are
defined as begin-end blocks of code with inner statements
starting in the same column as the begin and end. Non-
blocked structures are defined as begin-end blocks of code
with inner statements starting at least one level (2, 4, 6 spaces)
of indentation to the right of the begin and end. For each

PROGRAM TEST ;
CONST

TABLESIZE = 1000;
MAXWORDLEN = 20;

TYPE
CHARINDEX = 1 .. MAXWORDLEN;
COUNTTYPE = I .. MAXINT;
TABLEINDEX = 1 .. TABLESIZE;
WORDTYPE = PACKED ARRAY [CHARINDEX] OF CHAR;
ENTRITYPE =

RECORD
WORD : WORDTYPE;
COUNT : COUNTTYPE

END ;
TABLETYPE = ARRAY [TABLEINDEX] OF ENTRITYPE;

VAR
TABLE : TABLETYPE;
ENTRI, ~EXTENTRI : TABLEINDEX;
TABLEFULL : BOOLEAN;
LETTERS : SET OF CHAR;

PROCEDURE READWORD (VAR PACKEDWORD : WORDTYPE);
CONST

BLANK = ' "
VAR

BUFFER : ARRAY [CHARINDEX] OF CHAR;
CHARCOUNT : 0 .. MAXWORDLEN;
CH : CHAR ;

BEGIN
IF NOT EOF

THEN
REPEAT

READ(CH)
UNTIL EOF OR (CH IN LETTERS);

IF NOT EOF
THEN

BEGIN
CHARCOUNT := O;
WHILE CH IN LETTERS DO

BEGIN
IF CHARCOUNT < MAXWORDLEN

THEN
BEGIN

CHARCOUNT := CHARCOUNT + I;
BUFFER[CHARCOUNT] := CH

END;
IF EOF

THEN
CH := BLANK

ELSE READ(CH)
END;

FOR CHARCOUNT := CHARCOUNT + 1 TO MAXWORDLEN DO
BUFFER[CHARCOUNT] := BLANK;

PAC K (B UFF ER, I , PAC KEDWORD)
END

END;
PROCEDURE PRINTWORD (PACKEDWORD : WORDTYPE);

CONST
BLANK = ' ")

VAR
BUFFER : ARRAY [CHARINDEX] OF CHAR;
CHARPOS : 1 .. MAXWORDLEN;

BEGIN
UNPAC K (PAC KEDWORD,B UFFER, 1) ;
FOR CHARPOS := I TO MAXWORDLEN DO

WRITE (B UFFER[CHARPOS])
END;

BEGIN
LETTERS := ['A ' . . ' Z '] ;
TABLEF ULL : = FALSE ;
NEXTENTRI := I ;
WHILE NOT (EOF OR TABLEFLEL) DO

BEGIN
READWORD (TABLE[NEXTENTRI] . WORD);
IF NOT EOF

THEN
BEGIN

ENTRI := 1;
WHILE TABLE [ENTR I] .WORD <> TABLE [NE XTENTR I].WORD

ENTRI := ENTRI + 1;
IF ENTRI < NEXIENTRI

THEN
TABLE[ENTRI].COUNT := TABLE[ENTRI].COUNT + I

ELSE IF NEXTENTRI < TABLESIZE
THEN

BEGIN
NEXTENTRI := NEXTENTRI + 1;
TABLE[ENTRI].COUNT := I

END
ELSE TABLEFULL := TRUE

END
END;

IF TABLEF ULL
THEN

WRITELN('THE TABLE IS NOT LARGE ENOUGH')
ELSE

FOR ENTRI := 1 TO NEXTENTRI - I DO
WITH TABLE[ENTRI] DO

BEGIN
PR I NTW ORD (WORD) ;
WR ITELN (COUNT)

END
END.

Appendix A. Program UstJng with 2-Space Indentabon in Nonblocked FonTs.
(From P. Grogono's Programming in Pascal.)

864 Communications of the ACM November 1983 Volume 26 Number 11

TECHNICAL NOTE

program containing an unique level of indentation, there was
a blocked and nonblocked version. This resulted in seven
unique programs being produced. There were not eight differ-
ent programs because the nonindented blocked program is
exactly the same as the nonindented, nonblocked program.
However, in order not to complicate matters, all eight cells of
the design were used in the experiment.

The dependent variables consisted of a comprehension quiz
and a subjective rating of how difficult the program was to
comprehend. The quiz sheet consisted of 13 questions. The
first nine questions were multiple choice (e.g., "The maxi-
mum number of input records is?" or "The output is? fol-
lowed by choices") or true/false (e.g., "All variables in this
program are global.") Question 10 was a short essay question
that asked the subjects to describe what the program did.
Partial credit was assigned in the following manner: one-third
counted occurrence of words, one-third prints each unique
word, and one-third credit for answering that the program
prints the number of occurrence next to each word on the
output. Question 11 was a subjective rating from I to 7 of the
difficulty encountered in comprehending the program, with 1
being very easy, 4 moderate, and 7 very hard. Questions 12
and 13 ask how many years of programming experience each
subject had in school and professionally. All questions were
printed on 81/2 x 11 sheets that were clear and easy to read.
The 20 rain time limit for the test was printed in the instruc-
tions at the top of the first page.

2.3. Administration
The administration of the experiment to the novice group
went well. We began by introducing ourselves and explaining
that we were conducting an experiment. No details of the
experiment were explained. The novices were told that they
would be given a consent form, program, and a quiz. We
asked them to sign the consent form but not to attach it to
their quiz to insure their anonymity. A few students asked if
this would affect their course grade. We explained that it
would not have any bearing on their grade. We told them to
answer the questions to the best of their ability and that they
could write any comments on the programs or quiz sheets.
Finally, we told them they would have a maximum time
limit of 20 minutes. Then, we asked them to begin.

At the beginning of the experiment, a few students said the
program would not execute because the INPUT and OUT-
PUT parameters were missing. To avoid any possible confu-
sion, we explained to the entire class that these are default
values and that the programs are correct and will execute. A
comfortable room temperature was maintained throughout
the experiment. There was proper lighting, and outside noise
was minimized by keeping the classroom doors closed. None
of the students for the next class was allowed to enter until
the experiment was over. Five minutes before the end of the
test, the subjects were advised of the remaining time.

The administration of our experiment to the expert group
also proceeded well. We used the same introductory format
for the expert group. However, before the experts began, we
explained that the INPUT and OUTPUT parameters were not
needed and that the programs were correct and would exe-
cute. Once again, temperature, lighting, and lack of noise
produced a proper environment for testing The subjects were
advised when five minutes were left. Once again, no students
for the next class were allowed to enter and disrupt the class
until the experiment was complete.

For both subject groups, the experiment was conducted
during the last portion of the class. The desk space for each

student was extremely limited. There was not sufficient room
for a student to spread out the program and quiz sheets.
However, both groups had exactly the same type of desks.
Consequently, this bias was controlled for both groups. In
both groups, we also noticed that approximately one-third of
the subjects completed the experiment before the end of the
designated time period.

3. RESULTS
A pilot study was conducted using approximately one subject
per cell. Although no statistical analysis was done on the
results, several changes were made on the quiz after consider-
ing the feedback from the subjects. The changes consisted of
rewording several questions for clarity, discarding questions
that were trivial or irrelevant, and adding questions that were
more challenging.

For the experiment, several of the subjects tested in the
expert group were categorized as novices by predefined crite-
ria and, as a result, there were approximately 30 percent
fewer expert subjects than novice. A total of 86 subjects were
used in the final analysis of the data. Seven quizzes were
excluded from the analysis for the following reasons: two
subjects had seen the program before and were familiar with
its function, three subjects did not know Pascal, and two
subjects were observed not participating in the task. See Table
I for the breakdown of subjects per cell.

The novices were more critical about what they termed
"poor" programming practices than the experts. Many of the
novices wrote comments on their program listings and
quizzes complaining about the lack of indentation, comment-
ing, and spacing in the programs. The experts made very few
comments about the program's structure.

A significant number of the subjects who received the non-
indented version of the program spent much of the 20-minute
time limit blocking the program off into control blocks (50
percent of the novices and 62 percent of the experts). An
interesting observation was made with the novice subjects: In
the group that received the nonblocked, 6-space indentation
version, none of the returned program listings were marked
off into control blocks. Of those who received the blocked, 6-
space indentation version, 50 percent of the returned listings
were marked off into control blocks.

Overall, the experts did better on the quizzes than the
novices. The mean score was 6.7 for experts and 4.9 for
novices, out of a possible 10 points. Both the novices and
experts had the highest mean scores for the program with the
2-space indentation; 7.5 for experts and 6.0 for novices. Both

TABLE I. Subjects Per Cell

Novice

(s4)
Indention Level (Spaces)

0 2 4 6
Nonblocked 9 7 5 5
Blocked 8 7 7 6

Expert

(32)
Indention Level (Spaces)

0 2 4 6
Nonblocked 3 5 4 6
Blocked 3 3 2 6

November 1983 Volume 26 Number 11 Communications of the ACM 865

TECHNICAL NOTE

10

<=
W4'

MEAN SCORES OF NOVICES AND EXPERTS

'2" "'.. # ~ " <

RGURE 1.

LEGEND

EXPERT, NON-BLOCKED
~ ~ EXPERT, BLOCKED

. NOVICE, NON - BL(X;KED
- ~ NOVICE, BLOCKED

I I
2 4

INDENTATION LEVEL

Mean Scores of Novices and Experts.

VERY 7
HARD

VERY
6 EASY

MEAN SUBJECTIVE RATINGS OF NOVICES AND EXPERTS

\\ Y . . . J

LEGEND
EXPERT, NON-BLOCKED

. . . . EXPERT, BLOCKED
. NOVIGE, NON-BLOCKED

- ~ NOVICE, BLOCKED

I I
0 2 4 6

INDENTATION LEVEL

RGURE 2. Mean Program Ratings of Novices and Expects.

also had significantly lower mean scores on the nonindented
program, with 6.3 for experts and 4.5 for novices. The mean
scores for nonblocked and blocked styles of indentation were
very close. For novices, the nonblocked mean score was 4.8
and the blocked mean score was 5.0. For experts, the non-
blocked and blocked mean scores were 6.7 and 6.7, respec-
tively. Figure 1 represents the mean scores of novices and
experts.

Generally, novices rated all versions of the program to be
more difficult to comprehend than the experts (5.4 and 4.0,
respectively, with 7 being the most difficult). The nonin-
dented program was rated more difficult to comprehend than
indented versions of the program by both novices and ex-
perts, except for the experts who received the nonblocked,
nonindented program. Between the nonhlocked and blocked
styles of indentation, there was no significant difference in the
rating of program comprehensibility. Figure 2 represents the
mean program ratings of novices and experts.

The combined results ran about the same as for the groups
separately. Those subjects who received the nonindented pro-
gram had a lower mean score than other subjects. Those
subjects who received the program with the 2-space indenta-
tion had a higher mean score than the other subjects. The
mean scores for the nonblocked versus blocked styles of in-
dentation were very close; 5.6 for the norLblocked and 5.6 for
the blocked. The program rating of the combined subjects ran
about the same as for the separate groups.

The analysis of variance (ANOVA) of the quiz scores
showed that experience level had an effect on program com-
prehension at the p < 0.001 significance level. The ANOVA
also showed that the level of indentation had a significant
effect on the mean scores at the p = 0.013 level. No significant
effect was found with the nonblocked versus blocked styles of
indentation and in any of the 2-way or 3-way interactions.
Approximately 36 percent of the variance of the quiz scores
were explained.

The ANOVA of the program difficulty ratings showed sev-

eral significant effects. Again, both experience levels and in-
dentation levels show an effect at significant levels of p <
0.001 and p = 0.072, respectively. Another result was a signifi-
cant interaction between the indentation level and non-
blocked and blocked styles of indentation at the p = 0.093
level. There was a modest 3-way interaction between experi-
ence, indentation levels, and blocking styles at the p = 0.099
level. Approximately 40 percent of the variance in the subjec-
tive ratings was explained.

4. DISCUSSION
The results indicate that the level of indentation has a statisti-
cally significant effect on program comprehension and that
deeper indentation could become more of a hindrance than
an aid. The level of indentation that seems to produce optimal
results in comprehension is between 2 and 4 spaces; as the
number of spaces increase, the comprehension level de-
creases. The decreasing level of comprehension might be at-
tributed to the fact that as the nesting level in a deeply
indented program (i.e., 6 spaces or more) increases, the pro-
gram is shifted so far to the right of the page that scanning
becomes difficult. In the nonblocked, 6-space version, it be-
came necessary to continue statements on the next line when
the nesting level brought the text to the 80-column limit of
the compiler. With 2--4-space indentation levels, however, the
program is more compact and the control blocks do not be-
come obscured by increased nesting levels.

Novices showed great displeasure with the nonindented
version of the program and had significantly lower scores on
that version. Their best overall performance was with the
version that they rated the least difficult (2 spaces). Novices
seemed more concerned with the program style than whether
it would run. We feel this bias is a result of the requirements
placed upon the novices in their programming class; they
were required to write programs that were indented, spaced,
and commented. Also, most Pascal textbooks, including the
one being used by the subjects' professor, show programs that

866 Communications of the ACM November 1983 Volume 26 Number 11

TECHNICAL NOTE

are indented. Novices consider indentation to be a "good"
programming practice and the lack of indentation produced
negative feelings towards the program comprehension task as
noted by the comments on the quiz. These negative feelings
towards the nonindented versions explain the quiz results.

Experts, on the other hand, did not express any negative
opinion towards the nonindented version of the program. We
feel that experienced programmers will generally approach a
comprehension task without much consideration of the style
in which the program was written. Very few comments were
received by the experts when the experiment was imple-
mented.

Fifty percent of the novices and 62 percent of the experts
with nonindented programs marked their listings to connect
the control blocks. This result indicates that some form of
indentation is needed to clearly distinguish control segments
in the program. However, when the program is deeply in-
dented, control blocks might not be clearly identifiable; some
subjects marked their 6ospaced version to reflect the control-
block structure.

The blocked and nonblocked styles of the program yielded
no significant differences between the experts or the novices.
We are not sure why this result occurred because we ex-
pected a significant difference in comprehension with the
type of blocking used for control structures. It may be possible
that comprehension scores for a longer and more complex
program would show a greater difference with the type of
blocking used for the control structures.

Overall, experts did better on the comprehension task and
rated the program less difficult than the novices. These results
were reassuring because we expected the experts to do better
and to rate this type of task less difficult than novices.

Finally, the combined results of the expert and novice sub-
jects showed the highest mean scores in the 2-space indent
programs. It is interesting to note, however, that the 6-space
indent programs were rated as least difficult to use. We feel
that this result occurs because programmers find a deeply
indented program visually pleasing since it seems to spread
out neatly the constructs of the language. However, w h e n a
comprehension task is assigned, this exaggerated spacing
causes problems w h e n control blocks become harder to locate
with deep indentation, thus resulting in lower scores. The fact
that some subjects marked their 6-space version with block-
connecting lines provides evidence that control blocks do be-
come harder to distinguish with deep indentation.

5. CONCLUSION
This experiment tested the effects of indentation on program
comprehension. The levels of indentation we tested (0-6
spaces) gave strong results favoring 2 or 4 spaces. We believe
future experiments should employ the metric of program
comprehension, and recommend that nine indentation levels
(0 to 8 spaces) be studied. It would be interesting to see how
significantly comprehension would be affected beyond the 6-
space indentation level.

In summary, we conclude that some indentation does aid
program comprehension. From our results, we suggest that
the optimal level of indentation is 2--4 spaces. No indentation
produced significantly lower mean scores and the subjects
found working with this program difficult. We conclude that
in a large program, no indentation would be a real hindrance
and very difficult to use. The same is true for overly indented
programs. With large programs, overindentation may make it
difficult for the user to easily scan the program for a particular
structure block because the program statements are spread

across the page instead of being in a compact format. Al-
though no significant differences were found between the
blocked and nonblocked program styles, we suggest that other
blocking styles may aid program comprehension and increase
user satisfaction. In any case, the blocking style should be
consistent throughout the program so that users can easily
find the statement or statement segment they are trying to
locate. In closing, we agree with Kernighan and Plauger [9]
who stated that, "Indentation must be done carefully, how-
ever, lest you confuse rather than enlighten."

REFERENCES
1. Clifton, M. H. A technique for making structured programs more

readable. ACM SIGPLAN Notices 13, 4 (April 78), 58-63.
2. Conrow, K. and Smith, R. G. NEATER2: A PL/I source statement

reformatter. Comm. ACM 13, 11 (Nov. 70), 669-675.
3. Crider, J. E. Structured formatting of Pascal programs. ACM SIGPLAN

Notices 13, 11 (Nov. 78), 15-22.
4. Gimpel, J. F. Contour, a method of preparing structured flow charts.

ACM SIGPLAN Notices 15, 10 (Oct. 1980), 35-41.
5. Grogono, P. Programming in PASCAL. Addision-Wesley Publishing

Company, Inc., Reading, MA, 1978, 186-188.
6. Grouse, P. Flowblocks--A technique for structured programming.

ACM SIGPLAN Notices 13, 2 (Feb. 78), 46-56.
7. Gustafson, G. G. Some practical experiences formatting Pascal pro-

grams. ACM SIGPLAN Notices 14, 9 (Sept. 79), 42-49.
8. Hueras, J. and Ledgard, H. An automatic formatting program for PAS-

CAL. ACM SIGPLAN Notices 12, 7 (July 77), 82-84.
9. Kernighan, B. W. and Plaugher, P. J. The Elements of Programming

Style. McGraw-Hill Book Company, 1978.
10. Krall. A. An investigation of program style on the readability/under-

standability of a complex COBOL conditional structure. Unpublished
research project rpt., Univ. of Maryland, Dec. 11, 1980.
Krall, A. and Harris, W. An investigation of program style on the
readability/understandability of a simple COBOL program: The ef-
fects of indentation and vertical spacing. Unpublished research proj-
ect rpt., Univ. of Maryland, Dec. 11, 1980.
Leinbaugh, D. W. Indenting for the Computer. ACM SIGPLAN Notices
15, 5 (May 1980), 41-48.
Love, T. An experimental investigation of the effect of program struc-
ture on program understanding. Proc. ACM Conference on Language
Design for Reliable Software. March 1977, 105-113.
Novcio, A. F. Indentation, documentation and programmer compre-
hension, Proceedings of Human Factors in Computer Systems. ACM
Washington, DC, Chapter, 1981. 118-120.
Norcio, A. F. and Kerst, S. M. Human Memory Organization for Com-
puter Programs. Catholic University of America, unpublished manu-
script (1978).
Peterson, J. L. On formatting of Pascal programs. ACM SIGPLAN No-
tices 12, 12 (Dec. 77), 83-86.
Ramsdell, J. Prettyprinting structured programs with connector lines.
ACM SIGPLAN Notices 14, 9 (Sept. 79), 74-75.
Richardson, G. L., Butler, C. W., and Tomlinson, J. D. A Primer on
Structured Program Design. Petrocelli Books, Inc., New York, 1980.
Shneiderman, B. Software Psychology: Human Factors in Computer
and Information Systems. Little, Brown and Co., Boston, 1980.
Shneiderman, B. and McKay, D. Experimental investigations of com-
puter program debugging and modification. Proc. 6th International
Congress of the International Ergonomics Association. July 1976, Col-
lege Park, MD.
Weissman, L. M. A methodology for studying the psychological com-
plexity of computer programs. Technical Report CSRG-37, University
of Toronto, Ph,D. Dissertation, August, 1974.
Weissman, L. M. Psychological complexity of computer programs: An
experimental methodology. ACM SIGPLAN Notices 15, 6 (June 1974),
25-36.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CR Categories and Subject Descriptors: D.2.3 [Software]: Software
Engineering--coding; D.M. [SOFTWARE]: Miscellaneous--software psy-
chology

General Terms: human factors, experimentation, languages
Addit ional Key Words and Phrases: indentation, program format, pro-

gram readability

Received 11/82; revised 12/82; accepted 4/83

November 1983 Volume 26 Number I1 Communications of the ACM 867

