
A GRAPH THEORETIC MODEL OF DATA STRUCTURES

J. Heller and Ben Schneiderman
Department of Computer Science

State University of New York at Stony Brook

The widespread development of large shared
data bases has proceeded mainly on empirical no-
tions. Only in the past few years have there been
attempts at formalizing the underlying concepts in-
to a theory of data structures. The present models
have been founded on the well-established mathe-
matical theories of sets, relations and graphs, but
few descriptions have been sufficiently developed
to meet the needs of a complete theory of data
structures. The set theoretic formalism offered by
Childs(I) or Schwartz(2) or the relational model by
Codd(3) are useful but fail to give a complete de-
scription of the complex structures found in modern
data bases. The graph theoretic concepts found in
papers by Harary and Hsiao(4) and Earley(5) are more
appealing but need further elaboration. This paper
is an attempt to develop a graph theoretic model
into a useful formalism for describing and manipu-
lating data structures.

Data existed long before computers were ever
dreamed of and even the first librarian had some
notion of the organization and structure of his data.
Clearly, information has a logical structure inde-
pendent of the physical implementation inside a
computer. A theory of data structures should de-
scribe the logical structure separately from the
implementation but should enable the system de-
signer to evaluate the effectiveness a particular
implementation. Furthermore, the theoretical form-
lation should be intuitively appealing and accept-
able to data managers, such as librarians and
executives, who may not have a sophisticated un-
derstanding of computer technology and techniques.
The computer scientist must provide the data
manager with a "magic genie" for manipulating data
according to this logical view of the data.

To motivate the formal definitions of a graph
theoretic model, we consider three simple examples:
a one-way list with top and bottom pointers, a ring
with one entry node, and a full balanced binary
tree with one entry node.

Since one of the strong arguments in favor
or the graph theoretic model are the visual cues
taken from the picture of the graph, we will make
frequent use of such pictures. Thus a one-way
list with top and bottom pointers looks like:

Figure I

The square nodes E={el,e2}, called entry nodes,
provide access to the data nodes D={dl...dn}. In-
formally, the entry nodes are always instantly ac-
cessible and all searches must begin at an entry
node. The graph describes the logical structure

of the data and the connections among the data nodes.
The nodes can contain any amount of information and
may have a complex substructure which might be an-
other graph. One of the virtues of the graph de-
scribe data at the detailed level and the complex
structure of entire files.

The logical structure given by the graph may
be implemented in a multiplicity of ways. The data
nodes might be maintained in the processor storage
with implicit or explicit pointers. Alternatively,
each node could be a region on a disk file with
region addresses as the pointers.

The relationship among the nodes is described
by a mapping

F:(D U E) + D

where, in our example,

Pel={d I } Pe2={ d n } Pd i =({~i+l} l=ni<n

We can compound the mapping

F2di = F(Fdn) = ({~i+2} i>n-li<n-i

In general

Fnd. = Fn-l(Fdi) = F(Fn-ldi)
l

We further define the inverse map

F-idi = ({~i-l} l<i<ni=l

and an identity or zero map

FOdi = {d i}

In general the mapping is not single valued,
but yields a set of nodes, that is

Fd = A = {d i ,... d. }
1 ik

where k is the out-degree of the node d.

Thus

F2d = FA = Fd.
11 U F%2 U "-- ~J rdik

or more succinctly,

F2d = FA = Q Fd
YdeA

36

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

37

As our second example we consider a ring with
one entry node

Figure 2

The graph consists of the entry node set E={el} and
the data node set D={dl...dn} and the mapping

Fe I {dl}Fd i {di+l} l<i<n
= = {d I } i=--n

Notice that in both our examples there are no nodes
"floating" freely that all nodes are connected and
any data node is reachable by following a path
from one of the entry nodes.

As our third example we consider a fully binary
tree with a single entry node E={el} and D={dl...dn}
where n is 2k-i for some integer k, which represents
the number of levels in the tree.

Figure 3

The mapping F for this structure is defined by

l<2k-l_ 1
Fe I = {dl} Fd i = ~{d2i,$2i+i}

i>2k-i

Clearly, all data nodes are reachable from the
single entry node with a maximum number of steps
equal to k, that is

k =
(.7 Fiel D
i=l

Analysis of these three examples and the study
of a wide variety of commonly used structures moti-
vates the definition of a Well-Formed List Struc-
ture (WDLS). Definition: L=(D,E,F) is a Well-
Formed List Structure if and only if (1) D~E is a
connected set of nodes, that is, if we remove the
direction on the direction on the edges, there is
a path between every pair of nodes.

Formally if A=DLTE = {aili=l...n}
k

¥(i,j)~ a. a.~. ~Fa. , k=+l
alaila12al 3 l£ j- i~+ 1 mR

(2) E is a non-empty set of nodes with each node
having in-degree zero and D is a non-empty set
of nodes with node having an in-degree greater
than zero.

Formally E#~ VeeE F-le=~
D#~ VdcD r-ld#~

(3) Any node in the set D is reachable from at
least one of the nodes in the set E.

Formally, O* FiE=D=FE(2F2E iT. • • ~2 Fn*E
i=l

where n* is the smallest intgger for which this
true. Condition (i) is meant to exclude structures
such as

Figure 4

which are two WFLSs which are not connected. Condi-
tion (2) is meant to exclude structures such as

Figure 5

which is a ring without an entry node, and

Figure 6

which is a degenerate one way list with top and
bottom pointers, that is, a structure without data
Notice that this structure also violates condition
(i) concerning connectedness. Further violations
of condition (2) are

Figure 7

since entry nodes may not point to each other and

Figure 8

since data nodes may not point to entry nodes.
Finally condition (3) is meant to exclude structures
such as

Figure 9

which contains a non-reachable ring.
The static description of a data structure is

not sufficient; our model must include a notation
for dynamically manipulating these structures. Con-
sider the static description of a stack S=(D,E,F),

D={dl. • .an}, E={el},

Fel={dn} ' Fdi=~{d~ -I} i=l l<i<n

• **Figure i0"**

This could Just as easily describe a one way list
With a top pointer only. What distinguishes the
above structure as a stack are the dynamic opera-
tions which are defined for a stack: PUSH or POP.
For a stack we define POP (S) as a transformation
which produces a new structures S'=POP(S) where

S'=(D',E',F'), D'={dl...dn_l} , E'={el} ,

F,el={dn_~F,di = <{d~_ I} l<i<n-li=~

Figure ii

Similarly, we define S''=PUSH (S) where
S''=(D",E",F"),

D"={dl...dn+l }, E"={el},

F"el={dn+l} 'F"di= {{d~ -I} i=ll<i<--n+l

***Figure 12"**

A two way list with top and bottom pointers

***Figure 13"**

is identical with a queue or a di-que (deque) when
examined for static structure. Only by observing
the dynamic operations which are permitted can we
distinguish between the structures.

Analogous operations of addition and deletion
of nodes can be defined for other structures and
can easily be described and implemented in terms of
programming language subroutines. Such a discussion,
while useful, would not contribute to the development
of a more profound conceptualization or formaliza-
tion of data structures. We seek a more general,
abstract theory which would subsume each of these

38

II

FIGURE 9

FIGURE 6

I
<

I

) <
FIGURE 7

FIGURE 5

)

FIGURE 8

FICURE I0

FIGURE i]

F IO[~RE 12

• .. --~)

39

discussions as a special case. Thus, we are led to
consider the primitives of graph theoretic opera-
tions.

Certainly we must be able to
i) Add a node and a branch

Example: Add a new leaf to a tree
2) Insert a node and a branch and change at

least one branch
Example: Insert a node in a one-way list

3) Add a branch to connect two already exist-
ing nodes
Example: Add a branch to convert a one-
way list into a ring

and we must be able to perform the delete operations
which are the inverse operations:

i) Delete a node and a branch pointing to that
node
Example: Delete a node of a tree and the
branch pointing to that node

2) Delete an internal node with its outgoing
and incoming branches
Example:. Delete a node in a one-way list

3) Delete a branch which leaves the structure
well formed
Example: Delete a bottom pointer

The key point in these simple operations is
that each transformation must be defined so as to
maintain a WFLS.

Entire structures can be added or deleted. We
might be interested in adding a sub-tree at a leaf
Free or in adding a one way list to a one way list.
Similarly, we might delete large sections of a
structure by creating subgraphs or partial graphs.
A subgraph is created by deleting an edge and
then deleting all unconnected nodes and branches.
A partial graph is created by deleting a node and
then eliminating unconnected nodes and branches.

In addition to transformations of a WFLS we
need to be able to describe the rules for combin-
ing pairs of WFLSs. Two WFLSs can be combined to
form a single WFLS in only two ways

***Figure 14"**

In these two pictures we assume that the nodes
D1 and D2 might represent complicated structures and
that the symmetric combinations of W 2 pointing to
W 1 are possible. Formally, if

W 1 = (Di,Ei,Fi) and W 2 = (D2,E2,F2)

then

W 3

where

= (Di(JD2,Ei~7 E2,Fi(] F2£TFi2)

Fi2: (DitT E I) + D 2

Two structures which are frequently used for
information retrieval systems, indexed sequential
and a one-way list of one-way lists, can be easily
represented in graph theoretic terms. An indexed
sequential file has two entry nodes, one to the in-
dex and one to the file, and two types of data nodes;
index nodes and record nodes. We have assumed that
each index branch references the beginning of
• strings of equal length (in this case 3). The
graph and the graph theoretic notation to describe

it are:

***Figure 15"**

As a more complex example, let us consider the
GRIPHOS system; an information retrieval system
which deals with sets of tagged strings. The data
nodes are ordered pairs referred to as fields. Con-
sider a tag

T = { t o] O = 1 . . . #T}

and a string taken from the set:

s = { s ~ l ~ = 1 . . . # s } I

We define a field as an ordered pair <t,s> of
the set T X S. In a given data base the set of all
fields will be:

F = { f o] o = i . . . # F } ~ T x S

A record in the GRIPHOS system is a set of fields:

r = { f I ~ = l . . . # r }

and the data base is viewed as a set of records.
The records are organized by the input program

so that each record can be searched for the fields
it contains or for the next record entered into
the data base. When records are entered into that
data base pointers are entered so that fields can
be added to any record at a future time with a
minimal amount of searching. If we designate the
~th input record as ri containing fields fig and a
dummy record r 0 containing a top and bottom pointer,
the organized records have the mapping F:

Fr0={rl,rn}

Fri={ri+l,fil,fi#r" } i<n
1

Frn={fnl,fn# r }
n

Ffi~={fio+l} ~<#r i

Ffi#r. =
1

***Figure 16"**

It is possible to search out each field and
tell which record contains a given field by se-
quentially searching for the next record and then
sequentially searching for the next field. Since
this mode of retrieval is very time consuming, the
GRIPHOS system supports search strategies based on
inverted files. The inverted files are based on a
hashing function for all fields with a given tag.

We form a partition of the set of fields F by

tag tiET:

Fi={fioltiefi~,~=l...#F} i=l...#T

The hashing function h(f) further subdivides the
set of fields F by partitioning the set Fi:

F.13 "= fij~ ItigfijO'h(fijO)=j'O=l'''#Fij~j=l''"

#h(fij ~)

Associated with every field f~4~EFi4, there is a
J

set of integers ~iJ _~j{l...#r~ of w~ich each ele-

40

P
J

FIGURE 13

P

FIGURF 14

\

FIGURE 15a

41

h"

i
/ [

q

YL~,

.~d:l

i

FIGURE 15b

P

FIGURE 16

42

ment corresponds to a record containing a field with
a tag ti whose hash value is j:

~ij = {£oltiefijo,h(fijo)=J, fEr£ ,
e

o=l...#Fij , 0=l...#~ij }

The above partitioning of the fields is used
by the GRIPHOS system to form a "tree searchable"
index to the records {r i} of the data base. The
entry nodes to the index portion of the data base
is that set of tags {to}~ T for which a user con-
structs an index. The mapping F which speci-
fies the file organization is given by:

Fti={fijllti~fiJl' h(fijl)=j }

Ffij 1 ={ fiJ 2' f iJ #FiJ' ~i }

Ffijo={fijo+l,£ I l<°<#Fij

Ffij#Fij={£1 }

F£1={~o+l,r£o } l<£o<#~ij

FZ#~ij={r~#~ij}

***Figure 17"**

The GRIPHOS system has a data base organiza-
tion which supports selective searching for records
containing a given field or subset of fields and
then a complete search of the record.

This paper is an introduction to the graph
theoretic model of data structures. The follow-
ing ideas will be more formally developed in up-
coming reports:

i) By affixing a numerical value to each of
the edges we can study the properties of particu-
lar implementations. The values represent the
time necessary to traverse that branch. Thus the
efficiency of various organizations and indexes
can be Compared.

2) The topology of a graph can be studies
independent of any interpretation in the same
way that flowchart schemata are studied. We
are interested in considering teachability,
connectivity and cyclicity. The length, dia-
meter and other metrics are used to describe
various graphs. Then an interpretation of the
graph can be made by assuming that each node
has information which influences our search
techniques. For example, we can distinguish
between the properties of a search on an or-
dered list and an unordered list.

3) The possibility of using "colored"
branches further enhances the richness of
structure. A single may contain several
structures each of which can be visualized
as having different colored branches. This
further delineates the nature of structure
and requires a redefinition of some of the proper-
ties of such structures.

4) By assigning values to each node, reflect-
ing the probabilities of each node being accessed,
we can more closely define optimum organizations.

5) Most interesting of all, are the proper-
ties of dynamic graphs, that is, graphs which
change with time. We are interested in studying
operations of addition, deletion and combination
of WFLSs and how these operations of addition, de-

letion and combination of WFLSs and how these
operations affect properties of the graph. There
is very little work in graph theory on graph trans-
formations, most of the effort has been devoted to
describing the properties of an already existing
graph. We would like to describe techniques for
creating a graph so that it has certain properties,
such as a maximum search length or freedom from
cycles.

BIBLIOGRAPHY

i. Childs, D.C. Feasibility of a set-theoretic data
structure. Proc. IFIP Congress 1968, Vol. i,
North Holland Pub. Co., Amsterdam, pp. 420-430.

2. Schwartz, J. Set theory as a language for pro-
gram specification and programming. New York
University, 1970.

3. Codd, E.F. A relational model of data for large
shared data banks, Comm, ACM 13, 6 (June 1970),
377-387.

4. Hsiao, D. and Harary, F. A Formal System for
Information Retrieval from Files. Comm. ACM 13,
2 (February 1970), pp. 67-73.

5. Earley, J. Toward an Understanding of Data
Structures. Comm. ACM 14, i0 (October 1971),
pp. 617-627.

43

O
O B

FIGURE 17

44

