
A GRAPH THEORETIC MODEL OF DATA STRUCTURES 

J. Heller and Ben Schneiderman 
Department of Computer Science 

State University of New York at Stony Brook 

The widespread development of large shared 
data bases has proceeded mainly on empirical no- 
tions. Only in the past few years have there been 
attempts at formalizing the underlying concepts in- 
to a theory of data structures. The present models 
have been founded on the well-established mathe- 
matical theories of sets, relations and graphs, but 
few descriptions have been sufficiently developed 
to meet the needs of a complete theory of data 
structures. The set theoretic formalism offered by 
Childs(I) or Schwartz(2) or the relational model by 
Codd(3) are useful but fail to give a complete de- 
scription of the complex structures found in modern 
data bases. The graph theoretic concepts found in 
papers by Harary and Hsiao(4) and Earley(5) are more 
appealing but need further elaboration. This paper 
is an attempt to develop a graph theoretic model 
into a useful formalism for describing and manipu- 
lating data structures. 

Data existed long before computers were ever 
dreamed of and even the first librarian had some 
notion of the organization and structure of his data. 
Clearly, information has a logical structure inde- 
pendent of the physical implementation inside a 
computer. A theory of data structures should de- 
scribe the logical structure separately from the 
implementation but should enable the system de- 
signer to evaluate the effectiveness a particular 
implementation. Furthermore, the theoretical form- 
lation should be intuitively appealing and accept- 
able to data managers, such as librarians and 
executives, who may not have a sophisticated un- 
derstanding of computer technology and techniques. 
The computer scientist must provide the data 
manager with a "magic genie" for manipulating data 
according to this logical view of the data. 

To motivate the formal definitions of a graph 
theoretic model, we consider three simple examples: 
a one-way list with top and bottom pointers, a ring 
with one entry node, and a full balanced binary 
tree with one entry node. 

Since one of the strong arguments in favor 
or the graph theoretic model are the visual cues 
taken from the picture of the graph, we will make 
frequent use of such pictures. Thus a one-way 
list with top and bottom pointers looks like: 

***Figure I*** 

The square nodes E={el,e2}, called entry nodes, 
provide access to the data nodes D={dl...dn}. In- 
formally, the entry nodes are always instantly ac- 
cessible and all searches must begin at an entry 
node. The graph describes the logical structure 

of the data and the connections among the data nodes. 
The nodes can contain any amount of information and 
may have a complex substructure which might be an- 
other graph. One of the virtues of the graph de- 
scribe data at the detailed level and the complex 
structure of entire files. 

The logical structure given by the graph may 
be implemented in a multiplicity of ways. The data 
nodes might be maintained in the processor storage 
with implicit or explicit pointers. Alternatively, 
each node could be a region on a disk file with 
region addresses as the pointers. 

The relationship among the nodes is described 
by a mapping 

F:(D U E) + D 

where, in our example, 

Pel={d I } Pe2={ d n } Pd i =({~i+l} l=ni<n 

We can compound the mapping 

F2di = F(Fdn) = ({~i+2} i>n-li<n-i 

In general 

Fnd. = Fn-l(Fdi) = F(Fn-ldi) 
l 

We further define the inverse map 

F-idi = ({~i-l} l<i<ni=l 

and an identity or zero map 

FOdi = {d i} 

In general the mapping is not single valued, 
but yields a set of nodes, that is 

Fd = A = {d i ,... d. } 
1 ik 

where k is the out-degree of the node d. 

Thus 

F2d = FA = Fd. 
11 U F%2 U "-- ~J rdik 

or more succinctly, 

F2d = FA = Q Fd 
YdeA 
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As our second example we consider a ring with 
one entry node 

***Figure 2*** 

The graph consists of the entry node set E={el} and 
the data node set D={dl...dn} and the mapping 

Fe I {dl}Fd i {di+l} l<i<n 
= = {d I } i=--n 

Notice that in both our examples there are no nodes 
"floating" freely that all nodes are connected and 
any data node is reachable by following a path 
from one of the entry nodes. 

As our third example we consider a fully binary 
tree with a single entry node E={el} and D={dl...dn} 
where n is 2k-i for some integer k, which represents 
the number of levels in the tree. 

***Figure 3*** 

The mapping F for this structure is defined by 

l<2k-l_ 1 
Fe I = {dl} Fd i = ~{d2i,$2i+i} 

i>2k-i 

Clearly, all data nodes are reachable from the 
single entry node with a maximum number of steps 
equal to k, that is 

k = 
(.7 Fiel D 
i=l 

Analysis of these three examples and the study 
of a wide variety of commonly used structures moti- 
vates the definition of a Well-Formed List Struc- 
ture (WDLS). Definition: L=(D,E,F) is a Well- 
Formed List Structure if and only if (1) D~E is a 
connected set of nodes, that is, if we remove the 
direction on the direction on the edges, there is 
a path between every pair of nodes. 

Formally if A=DLTE = {aili=l...n} 
k 

¥(i,j)~ . . . . . .  a. a.~. ~Fa. , k=+l 
alaila12al 3 l£ j- i~+ 1 mR 

(2) E is a non-empty set of nodes with each node 
having in-degree zero and D is a non-empty set 
of nodes with node having an in-degree greater 
than zero. 

Formally E#~ VeeE F-le=~ 
D#~ VdcD r-ld#~ 

(3) Any node in the set D is reachable from at 
least one of the nodes in the set E. 

Formally, O* FiE=D=FE(2F2E iT. • • ~2 Fn*E 
i=l 

where n* is the smallest intgger for which this 
true. Condition (i) is meant to exclude structures 
such as 

***Figure 4*** 

which are two WFLSs which are not connected. Condi- 
tion (2) is meant to exclude structures such as 

***Figure 5*** 

which is a ring without an entry node, and 

***Figure 6*** 

which is a degenerate one way list with top and 
bottom pointers, that is, a structure without data 
Notice that this structure also violates condition 
(i) concerning connectedness. Further violations 
of condition (2) are 

***Figure 7*** 

since entry nodes may not point to each other and 

***Figure 8*** 

since data nodes may not point to entry nodes. 
Finally condition (3) is meant to exclude structures 
such as 

***Figure 9*** 

which contains a non-reachable ring. 
The static description of a data structure is 

not sufficient; our model must include a notation 
for dynamically manipulating these structures. Con- 
sider the static description of a stack S=(D,E,F), 

D={dl. • .an}, E={el}, 

Fel={dn} ' Fdi=~{d~ -I} i=l l<i<n 

• **Figure i0"** 

This could Just as easily describe a one way list 
With a top pointer only. What distinguishes the 
above structure as a stack are the dynamic opera- 
tions which are defined for a stack: PUSH or POP. 
For a stack we define POP (S) as a transformation 
which produces a new structures S'=POP(S) where 

S'=(D',E',F'), D'={dl...dn_l} , E'={el} , 

F,el={dn_~F,di = <{d~_ I} l<i<n-li=~ 

***Figure ii*** 

Similarly, we define S''=PUSH (S) where 
S''=(D",E",F"), 

D"={dl...dn+l }, E"={el}, 

F"el={dn+l} 'F"di= {{d~ -I} i=ll<i<--n+l 

***Figure 12"** 

A two way list with top and bottom pointers 

***Figure 13"** 

is identical with a queue or a di-que (deque) when 
examined for static structure. Only by observing 
the dynamic operations which are permitted can we 
distinguish between the structures. 

Analogous operations of addition and deletion 
of nodes can be defined for other structures and 
can easily be described and implemented in terms of 
programming language subroutines. Such a discussion, 
while useful, would not contribute to the development 
of a more profound conceptualization or formaliza- 
tion of data structures. We seek a more general, 
abstract theory which would subsume each of these 
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discussions as a special case. Thus, we are led to 
consider the primitives of graph theoretic opera- 
tions. 

Certainly we must be able to 
i) Add a node and a branch 

Example: Add a new leaf to a tree 
2) Insert a node and a branch and change at 

least one branch 
Example: Insert a node in a one-way list 

3) Add a branch to connect two already exist- 
ing nodes 
Example: Add a branch to convert a one- 
way list into a ring 

and we must be able to perform the delete operations 
which are the inverse operations: 

i) Delete a node and a branch pointing to that 
node 
Example: Delete a node of a tree and the 
branch pointing to that node 

2) Delete an internal node with its outgoing 
and incoming branches 
Example:. Delete a node in a one-way list 

3) Delete a branch which leaves the structure 
well formed 
Example: Delete a bottom pointer 

The key point in these simple operations is 
that each transformation must be defined so as to 
maintain a WFLS. 

Entire structures can be added or deleted. We 
might be interested in adding a sub-tree at a leaf 
Free or in adding a one way list to a one way list. 
Similarly, we might delete large sections of a 
structure by creating subgraphs or partial graphs. 
A subgraph is created by deleting an edge and 
then deleting all unconnected nodes and branches. 
A partial graph is created by deleting a node and 
then eliminating unconnected nodes and branches. 

In addition to transformations of a WFLS we 
need to be able to describe the rules for combin- 
ing pairs of WFLSs. Two WFLSs can be combined to 
form a single WFLS in only two ways 

***Figure 14"** 

In these two pictures we assume that the nodes 
D1 and D2 might represent complicated structures and 
that the symmetric combinations of W 2 pointing to 
W 1 are possible. Formally, if 

W 1 = (Di,Ei,Fi) and W 2 = (D2,E2,F2) 

then 

W 3 

where 

= (Di(JD2,Ei~7 E2,Fi(] F2£TFi2) 

Fi2: (DitT E I) + D 2 

Two structures which are frequently used for 
information retrieval systems, indexed sequential 
and a one-way list of one-way lists, can be easily 
represented in graph theoretic terms. An indexed 
sequential file has two entry nodes, one to the in- 
dex and one to the file, and two types of data nodes; 
index nodes and record nodes. We have assumed that 
each index branch references the beginning of 
• strings of equal length (in this case 3). The 
graph and the graph theoretic notation to describe 

it are: 

***Figure 15"** 

As a more complex example, let us consider the 
GRIPHOS system; an information retrieval system 
which deals with sets of tagged strings. The data 
nodes are ordered pairs referred to as fields. Con- 
sider a tag 

T = { t o ] O  = 1 . . .  #T} 

and a string taken from the set: 

s = { s ~ l ~  = 1 . . .  # s }  I 

We define a field as an ordered pair <t,s> of 
the set T X S. In a given data base the set of all 
fields will be: 

F = { f o ] o = i . . . # F } ~ T x S  

A record in the GRIPHOS system is a set of fields: 

r = { f  I ~ = l . . . # r }  

and the data base is viewed as a set of records. 
The records are organized by the input program 

so that each record can be searched for the fields 
it contains or for the next record entered into 
the data base. When records are entered into that 
data base pointers are entered so that fields can 
be added to any record at a future time with a 
minimal amount of searching. If we designate the 
~th input record as ri containing fields fig and a 
dummy record r 0 containing a top and bottom pointer, 
the organized records have the mapping F: 

Fr0={rl,rn} 

Fri={ri+l,fil,fi#r" } i<n 
1 

Frn={fnl,fn# r } 
n 

Ffi~={fio+l} ~<#r i 

Ffi#r. = 
1 

***Figure 16"** 

It is possible to search out each field and 
tell which record contains a given field by se- 
quentially searching for the next record and then 
sequentially searching for the next field. Since 
this mode of retrieval is very time consuming, the 
GRIPHOS system supports search strategies based on 
inverted files. The inverted files are based on a 
hashing function for all fields with a given tag. 

We form a partition of the set of fields F by 

tag tiET: 

Fi={fioltiefi~,~=l...#F} i=l...#T 

The hashing function h(f) further subdivides the 
set of fields F by partitioning the set Fi: 

F.13 "= fij~ ItigfijO'h(fijO )=j'O=l'''#Fij~j=l''" 

#h(fij ~) 

Associated with every field f~4~EFi4, there is a 
J 

set of integers ~iJ _~j{l...#r~ of w~ich each ele- 
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ment corresponds to a record containing a field with 
a tag ti whose hash value is j: 

~ij = {£oltiefijo,h(fijo)=J, fEr£ , 
e 

o=l...#Fij , 0=l...#~ij } 

The above partitioning of the fields is used 
by the GRIPHOS system to form a "tree searchable" 
index to the records {r i} of the data base. The 
entry nodes to the index portion of the data base 
is that set of tags {to}~ T for which a user con- 
structs an index. The mapping F which speci- 
fies the file organization is given by: 

Fti={fijllti~fiJl' h(fijl )=j } 

Ffij 1 ={ fiJ 2' f iJ #FiJ' ~i } 

Ffijo={fijo+l,£ I l<°<#Fij 

Ffij#Fij={£1 } 

F£1={~o+l,r£o } l<£o<#~ij 

FZ#~ij={r~#~ij} 

***Figure 17"** 

The GRIPHOS system has a data base organiza- 
tion which supports selective searching for records 
containing a given field or subset of fields and 
then a complete search of the record. 

This paper is an introduction to the graph 
theoretic model of data structures. The follow- 
ing ideas will be more formally developed in up- 
coming reports: 

i) By affixing a numerical value to each of 
the edges we can study the properties of particu- 
lar implementations. The values represent the 
time necessary to traverse that branch. Thus the 
efficiency of various organizations and indexes 
can be Compared. 

2) The topology of a graph can be studies 
independent of any interpretation in the same 
way that flowchart schemata are studied. We 
are interested in considering teachability, 
connectivity and cyclicity. The length, dia- 
meter and other metrics are used to describe 
various graphs. Then an interpretation of the 
graph can be made by assuming that each node 
has information which influences our search 
techniques. For example, we can distinguish 
between the properties of a search on an or- 
dered list and an unordered list. 

3) The possibility of using "colored" 
branches further enhances the richness of 
structure. A single may contain several 
structures each of which can be visualized 
as having different colored branches. This 
further delineates the nature of structure 
and requires a redefinition of some of the proper- 
ties of such structures. 

4) By assigning values to each node, reflect- 
ing the probabilities of each node being accessed, 
we can more closely define optimum organizations. 

5) Most interesting of all, are the proper- 
ties of dynamic graphs, that is, graphs which 
change with time. We are interested in studying 
operations of addition, deletion and combination 
of WFLSs and how these operations of addition, de- 

letion and combination of WFLSs and how these 
operations affect properties of the graph. There 
is very little work in graph theory on graph trans- 
formations, most of the effort has been devoted to 
describing the properties of an already existing 
graph. We would like to describe techniques for 
creating a graph so that it has certain properties, 
such as a maximum search length or freedom from 
cycles. 
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