
PRACNIQUES

Designing Computer System Messages
Ben Shneiderman

University of Maryland

In our use of interactive com-
puter systems and studies of their
users, we have become increasingly
aware of the importance of system
messages. Novice users are unim-
pressed with CPU speeds, disk stor-
age capabilities,'or elegant file struc-
tures. For them, the system appears
only in the form of the messages on
their screens or printers. So when
novices encounter violent messages
s u c h as "FATAL ERROR, RUN

ABORTED", vague phases like
"ILLEGAL CMD", o r obscure codes
such as "OC7" or "IEH2191", they
are understandably shaken, con-
fused, dismayed, and discouraged
from continuing. The negative image
that computer systems sometimes
generate is, we believe, largely due to
the difficulties users experience when
they make mistakes or are unsure
about what to do next.

Several attempts at writing sys-
tems to produce more appropriate

The Pracniques section of Computing Practices
presents brief case, method, and problem de-
scriptions of particular interest to the practi-
tioner. See the February 1981 issue of Com-
munications, page 72, for a broader editorial
definition.
CR Categories and Subject Descriptors: D.2
[Software Engineering]; D.2.5 [Software En-
gineering]: Testing and Debugging-error han-
dling and recovery; H. 1.2 [Models and Princi-
ples]: User/Machine Systems-human factors.
General Terms: Human Factors
Additional Key Words and Phrases: error
messages, system messages, human/computer
interaction
Author's present address: B. Sbneiderman,
Dept. of Computer Science, University of
Maryland, College Park, MD 20742.
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
© 1982 ACM 0001-0782/82/0900-0610 75¢.

messages for student programmers
[1, 2, 7] and bibliographic file search-
ers [10] have been made. Golden [5]
pleaded for better messages in oper-
ating system control languages, and
Dwyer [3, 4] offered suggestions on
how to improve messages in typical
commercial applications. Mosteller
[6] reports on error distributions in
job control language use.

There are many kinds of mes-
sages that should come under closer
scrutiny during the design process:
menu selection choices, prompts for
command language or data entry,
feedback indicating completion of a
task, results of database searches,
and error messages.

To explore the impact of error
messages on users, we conducted five
controlled experiments [9]. In one
experiment, Cobol compiler syntac-
tic error messages were modified and
undergraduate novice users asked to
repair the Cobol statements. Mes-
sages with increased specificity gen-
erated 28 percent better repair scores.

Subjects using a text editor with
only a question mark for an error
message made 10.7 errors, but only
6.1 errors when they switched to an
editor offering brief messages. In an-
other experiment, students corrected
4.1 out of 10 erroneous text editor
commands using the standard system
messages. Using improved messages,
the experimental group could correct
7.5 out of the 10 commands.

In a study of the comprehensibil-
ity of job control language error mes-
sages, students receiving messages
from two popular contemporary sys-
tems scored 2.9 and 3.8 out of 6,
while students receiving improved
messages scored 4.8. Subjective pref-
erences also favored the improved
messages.

These initial experiments support

the contention that improving mes-
sages can upgrade performance and
result in greater job satisfaction.
They have led us to make the follow-
ing five recommendations for system
developers.

(1) Increase Attention to Mes-
sage Design: The wording of mes-
sages displayed by a computer sys-
tem should be more carefully consid-
ered. Copy writers or copy editors
should be consulted about the choice
of words and phrasing to improve
both clarity and consistency.

(2) Establish Quality Control:
Messages should be approved by an
appropriate quality control commit-
tee. Changes or additions should be
monitored and recorded.

Since the error messages that a
novice encounters have the most dra-
matic impact because they appear at
a moment of confusion or incom-
plete knowledge, we have made them
the focus of our investigations. In
summary, we believe that error mes-
sages can be easily and substantially
improved.

(3) Develop Guidelines: Error
messages should meet the criteria
outlined in Figure 1. They should

- -have a positive tone indicating
what must be done, rather than con-
demning the user for the error. Re-
duce or eliminate the use of terms
s u c h as "ILLEGAL", "INVALID",

"ERROR", o r "INCORRECT". Instead
o f "ILLEGAL PASSWORD", t r y "Your
password did not match the stored
password. Please try again."

- -be specific and address the
problem in the user's terms. Avoid
the vague "SYNTAX ERROR" o r o b -

s c u r e internal codes. Use variable
names and concepts known to the
user. Instead of "INVALID DATA" in
an inventory application, try "Dress
sizes range from 5 to 16."

610 Communications
of
the ACM

September 1982
Volume 25
Number 9

I

i
SHOULD NOT

SYSTEM MESSAGES

i BE
I --WORDY
i

[--NEGATIVE IN TONE
--CRITICAL OF ERRORS
--GENERAL

I --CRYPTIC
! SUGGEST SYSTEM CONTROL OVER

THE USER

SHOULD

BE
--BRIEF
--POSITIVE
--CONSTRUCTIVE
--SPECIFIC
--COMPREHENSIBLE

EMPHASIZE USER CONTROL OVER THE SYS-
TEM

I

/ Fig. 1. Summary of System Message Design Guidelines.

i , , i , , i , i i

OTHER CONSIDERATIONS
--UPPER- AND LOWERCASE LETTERS ARE PREFERRED TO UPPERCASE ONLY

(EXCEPT IN EXTREME SITUATIONS)
--ASTERISKS SHOULD BE USED ONLY IN SPECIAL CIRCUMSTANCES
--ERROR NUMBERS, IF NEEDED AT ALL, SHOULD APPEAR AT THE END OF THE

MESSAGE
--USER-MODIFIABLE MESSAGE FILE
--TWO OR MORE LEVELS OF MESSAGES
--REDUCE THE USE OF TERMS LIKE "ILLEGAL", "INVALID", "ERROR"

--place the user in control of the
situation and provide him/her with
enough information to take action.
Instead, of "INCORRECT COMMAND",
try "Permissible commands are:
SAVE, LOAD, o r EXPLAIN."

- -have a neat, consistent, and
comprehensible format. Avoid
lengthy numeric codes, obscure mne-
monics, and cluttered displays.

Writing good messages, like writ-
ing poems, essays, or advertisements,
requires experience, practice, and a
sensitivity to how the reader will
react. It is a skill that can be acquired
and refined by programmers/design-
ers who are intent on serving the
user. However, perfection is impos-
sible and humility is the mark of the
true professional.

(4) Carry Out Acceptance Test:
System messages should be subjected
to an acceptance test with an appro-
priate user community to determine
if they are comprehensible [8]. The
test could range from a rigorous ex-
periment with realistic situations (for
life-critical or high reliability sys-
tems) to an informal reading and
review by interested users (for per-
sonal computing or low-threat appli-
cations).

Complex interactive systems,
which involve thousands of users, are
never really complete until they are
obsolete. Under these conditions, the
most effective designs are those that

facilitate evolutionary refinement. If
designers, maintainers, and opera-
tors of interactive systems are genu-
inely interested in building "user-
friendly" systems, they must under-
stand users' problems.

(5) Collect User Performance
Data: Frequency counts should be
collected for each error condition on
a regular basis. If possible, the user's
command should be captured for a
more detailed study. If you know
where users run into difficulties, you
can then revise the message, improve
the training, modify the manual, or
change the system. The error rate per
thousand commands should be used
as a metric of system quality and a
gauge of how improvements effect
performance. An error counting op-
tion is useful for internal systems and
can be a marketing feature for soft-
ware products.

Improved messages will be of the
greatest benefit to novice users, but
regular users and experienced profes-
sionals will also profit. As examples
of excellence proliferate, obscure,
complex, and harsh systems will
seem more and more out of place.
The crude programming environ-
ments of the past will gradually be
replaced by systems designed with
the user in mind. Resistance to such
a transition should not be allowed to
impede progress toward the goal of
serving the growing user community.

References
1. Conway, R.W., and Wilcox, T.R. Design
and implementation of a diagnostiC compiler
for PL/I. Comm. ACM 16, 3 (March 1973),
169-179. Description of the PL/I student-
oriented compiler at Cornell University.

2. Cress, P., Dirksen, P., and Graham, J.W.
FORTRAN I V with WA TFOR and WA T-
FIV. Prentice Hall, Englewood Cliffs, N.J.,
1970. Textbook for the student-oriented
compiler developed at Waterloo University.
Includes full set of error messages.

3. Dwyer, B. Programming for users: A bit
of psychology. Comptrs. and People 30, 1 and
2 (1981), 11-14, 26. Appealing review with
many examples of how messages might be
improved.

4. Dwyer, B. A user-friendly algorithm.
Comm. ACM 24, 9 (Sept. 1981), 556-561.
Specific suggestions for improving interactive
user interfaces using Cobol examples.

5. Golden, D. A plea for friendly software.
Software Engineering Notes 5, 4 (Oct. 1980),
4-5. A passionate request for improving job
control language and system messages.

6. Mosteller, W. Job entry control language
errors. Proc. SHARE 57, SHARE, Inc., Chi-
cago, I11., 1981, pp. 149-155. A report on a
data collection study which reveals the pat-
terns of user errors for the IBM JES2 system.

7. Moulton, P.G., and Muller, M.E. DI-
TRAN--a compiler emphasizing diagnostics.
Comm. ACM 10, (Jan. 1967), 45-52. An
early report on an attempt to build a stu-
dent-oriented Fortran compiler.

8. Shneiderman, B. Software Psychology:
Human Factors in Computer and Information
Systems. Little, Brown & Co., Boston, Mass.,
1980. Professional book which makes the
case for controlled, psychologically oriented
experimentation in programming, database
use, and interactive systems.

9. Shneiderman, B. System message design:
Guidelines and experimental results. In Di-
rections in Human-Computer Interaction, A.
Badre and B. Shneiderman, Eds., Ablex Pub-
lishing Co., Norwood, N.J., 1982. A more in-
depth discussion of system message design,
presents five brief experiments comparing al-
ternate messages for Cobol syntax checking,
text editors, and job control language.

10. Woody, C.A., et al. A subject-content
oriented retriever for processing information
on-line (SCORPIO). 1977 Nat. Comptr.
Conf., Vol. 46, AFIPS, Arlington, Va., 1977,
pp. 449-454.

611 Communications
of
the ACM

September 1982
Volume 25
Number 9

