
Direct Manipulation for Comprehensible, Predictable and

Controllable User Interfaces

Ben Shneiderman

Human Computer Interaction Laboratory

Department of Computer Science, Institute for Systems Research

University of Maryland, College Park, MD 20742 USA

tel. +1 (301) 4052680

ben@cs.umd.edu

ABSTRACT
Direct manipulation user interfaces have proven their worth

over two decades, but they are still in their youth. Dramatic

opportunities exist to develop direct manipulation pro-

gramming to create end-user programming tools, dynamic

queries to perform information search in large databases,

and information visualization to support network database

browsing. Direct manipulation depends on visual repre-

sentation of the objects and actions of interest, physical
.

actions or pointing instead of complex syntax, and rapid

incremental reversible operations whose effect on the ob-

ject of interest is immediately visible. This strategy can

lead to user interfaces that are comprehensible, predictable

and controllable. Direct manipulation interfaces are seen as

more likely candidates to influence advanced user inter-

faces than adaptive, autonomous, intelligent agents. User

control and responsibility are highly desirable.

Note: This paper is adapted, with permission of the pub-

lisher, from the forthcoming book: Designing the User Zn-

te~ace: Strategies for Effective Human-Computer Interac-

tion (3rd Edition), Addison Wesley, Reading, MA (1997).

Keywords
User interface, direct manipulation, agents

INTRODUCTION
Certain interactive systems generate a glowing enthusiasm

among users that is in marked contrast with the more com-

mon reaction of grudging acceptance or outright hostility.

The enthusiastic users report the following positive feel-

ings:

“ Mastery of the interface;

o Competence in performing tasks;

Copyright held by author.

● Ease in learning the system originally and in assimilat-

ing advanced features;

● Confidence in the capacity to retain mastery over time;

● Enjoyment in using the system;

“ Eagerness to show the system off to novices;

● Desire to explore more powerful aspects of thes ystem.

These feelings convey an image of the truly pleased user.

The central idea in the systems alluded to above is direct

manipulation of the object of interest—hence, the term di-

rect manipulation [5] [7] [19] [26]. The designers of early

direct manipulation systems had an innovative inspiration

and an intuitive grasp ‘of what users would want. Each

example has features that could be criticized, but it seems

more productive to construct an integrated portrait of direct

manipulation:

1. Continuous representation of the objects and actions of

interes~

2. Physical actions or presses of labeled buttons instead of

complex syntax;

3. Rapid incremental reversible operations whose effect

on the object of interest is immediately visible.

Using these three principles, it is possible to design systems

that have these beneficial attributes:

●

●

✎

●

●

.

Novices can learn basic functionality quickly, usually

through a demonstration by a more experienced user;

Experts can work rapidly to carry out a wide range of

tasks, even defining new functions and features;

Knowledgeable intermittent users can retain opera-

tional concepts;

Error messages are rarely needed;

Users can immediately see if their actions are further-

ing their goals, and, if the actions are counterproduc-

tive, they can simply change the direction of their

activity;

Users experience less anxiety because the system is

33



comprehensible and because actions can be reversed so

easily;

● Users gain confidence and mastery because they are the

initiators of action, they feel in control, and the system
responses are predictable.

The success of direct manipulation stems from the visibility

of the objects of interest so that interface actions are close

to the high-level task domain. There is little need for the

mental decomposition of tasks into multiple interface

commands with a complex syntactic form. On the contrary,

each action produces a comprehensible result in the task

domain that is visible in the interface immediately. The

closeness of the task domain to the interface domain re-

duces operator problem-solving load and stress. This basic

principle is related to stimulus–response compatibility dis-

cussions in the human-factors literature. The task concepts

dominate the users’ concerns, and the distraction of dealing

with tedious interface concepts is reduced.

DIRECT-MANIPULATION PROGRAMMING
Performing tasks by direct manipulation is not the only

goal. It should be possible to do programming by direct

manipulation as well, for at least some problems. Robot

programming is sometimes done by moving the robot arm

through a sequence of steps that are later replayed, possibly

at higher speed. This example seems to be a good candidate

for generalization. How about moving a drill press or a

surgical tool through a complex series of motions that are

then repeated exactly? In fact, these direct-manipulation

programming ideas are implemented in modest ways with

automobile radios: users tune to their desired station and

then press and hold a button to “record” that setting. Later,

when the button is pressed, the radio tunes to the preset

frequency. Some professional television-camera supports

allow the operator to program a sequence of pans or zooms

and then to replay it smoothly when required.

Programming of physical devices by direct manipulation

seems quite natural, but an adequate visual representation

of information may make direct-manipulation program-

ming possible in other domains. Several word processors

allow users to create macros by simply performing a se-

quence of commands that is stored for later use. WordPer-

fect enables the creation of macros that are sequences of

text, special function keys such as TAB, and other Word-

Perfect commands . EMACS allows its rich set of func-

tions, including regular expression searching to be recorded
into macros. Macros can invoke each other, leading to

complex programming possibilities. These and other sys-

tems allow users to create programs with nonvarying action

sequences using direct manipulation; some systems also

allow loops and conditionals. EMACS allows macros to be

encased in a loop with simple repeat factors. By resorting

to textual programming languages, EMACS and WordPer-

fect allow users to attach more general control structures.

Spreadsheet packages, such as LOTUS 1-2-3 and Excel,

have rich programming languages and allow users to create

portions of programs by carrying out standard spreadsheet

operations. The result of the operations is stored in another

part of the spreadsheet and can be edited, printed, and

stored in a textual form.

Macro facilities in graphic user interfaces are more chal-

lenging to design than are macro facilities in traditional

command interfaces. The MACRO command of Direct

Manipulation Disk Operating System (DMDOS) was an

early attempt to support a limited form of programming for

file movement, copying, and directory commands [8].

Smith inspired work in this area with his Pygmalion system

that allowed arithmetic programs to be specified visually

with icons [24]. A number of early research projects have

attempted to create direct manipulation programming sys-

tems [18]. Maulsby and Witten developed a system that

could induce or infer a program from examples, question-

ing the users to resolve ambiguities [13]. In constrained

domains inferences become predictable and useful, but if

the inference is occasionally wrong users will quickly dis-

trust it.

Myers coined the phrase demonstrational programming to

characterize these efforts in which users can create macros

by simply doing their tasks and letting the system construct

the proper generalization automatically [14]. Cypher built

and ran a usability test with seven subjects for his EAGER

system that monitored user actions within HyperCard [4].

When EAGER recognized two similar sequences, a small

smiling cat appeared on the screen to offer the users help in

carrying out further iterations. Cypher’s success with two

specific tasks is encouraging, but it has proven to be diffi-

cult to generalize this approach.

It would be helpful if the computer could reliably recognize

repeated patterns and automatically create a useful macro,

while the user is engaged in performing a repetitive inter-

face task. Then, with the user’s confirmation, the computer

could take over and automatically carTy out the remainder

of the task. This hope for automatic programming is ap-

pealing, but a more effective approach may be to give users

the visual tools to specify and record their intentions. Rule-

based programming with graphical conditions and actions

offers a fresh alternative that may be appealing to children
and adults [25]. The screen is portrayed as a set of tiles and

users specify graphical re-write rules by showing before

and after tile examples. Another innovative environment

conceived of initially for children is ToonTalk [9] which

offers animated cartoon characters who carry out actions in

buildings using a variety of fanciful tools.

34



To create a reliable tool that works in many situations

without unpredictable automatic programming, designers

must meet the five challenges of programming in the user

interface (PITUI) [17]:

1.

2.

3.

4.

5.

Sufficient computational generality (conditionals,

iteration);

Access to the appropriate data structures (file structures

for directories, structural representations of graphical

objects) and operators (selectors, booleans, specialized

operators of applications);

Ease in programming (by specification, by example, or

by demonstration, with modularity, argument passing,

etc.) and editing programs;

Simplicity in invocation and assignment of arguments

(direct manipulation, simple library strategies with

meaningful names or icons, in-context execution, and

availability of result);

Low risk (high probability of bug-free programs, halt

and resume facilities to permit partial executions, undo

operations to enable repair of unanticipated damage).

The goal of PITUI is to allow users easily and reliably to

repeat automatically the actions that they can perform

manually in the user interface. Rather than depending on

unpredictable inferencing, users will be able to indicate

their intentions explicitly by manipulating objects and ac-

tions. The design of direct-manipulation systems will un-

doubtedly be influenced by the need to support PITUI. This

influence will be a positive step that will also facilitate

history keeping, undo, and online help.

The cognitive dimensions framework may help in analyzing

design issues of visual programming environments such as

those needed for PITUI [6]. The framework provides a

vocabulary to facilitate discussion of high-level design is-

sues, for example, “viscosity” is used to describe the diffi-

culty of making changes in a program and progressive

evaluation describes the capacity for execution of partial

programs. Some of the other dimensions are consistency,

diffuseness, hidden dependencies, premature commitment,

and visibility,

Direct manipulation programming is an alternative to the

agent scenarios. Agent promoters believe that the computer

can automatically ascertain the users’ intentions or take

action based on a vague statements of goals. This author is

skeptical that user intentions are so easily determined or

that vague statements are usually effective. However, if

users can specifi what they want with comprehensible ac-

tions selected from a visual display, then they can more

often and more rapidly accomplish their goals while pre-

serving their sense of control and accomplishment.

ADAPTIVE AGENTS AND USER MODELS VERSUS
CONTROL PANELS
Some designers promote the notion of adaptive andlor

anthropomorphic agents that would carry out the users’

intents and anticipate needs [11] [12]. Their scenarios often

show a responsive, butler-like human being to represent the

agent (a bow-tied, helpful young man in Apple Computer’s

1987 video on the Knowledge Navigator), or refer to the

agent on a first-name basis (such as Sue or Bill in Hewlett-

Packard’s 1990 video on future computing). Microsoft’s

unsuccessful BOB program used cartoon characters to cre-

ate onscreen partners. Others have described “knowbots,”

agents that traverse the World Wide Web in search of inter-

esting information or a low price on a trip to Hawaii.

Many people are attracted to the idea of a powerful func-

tionary carrying out their tasks and watching out for their

needs. The wish to create an autonomous agent that knows

people’s likes and dislikes, makes proper inferences, re- -

spends to novel situations, and performs competently with

little guidance is strong for some designers. They believe

that human–human interaction is a good model for human–

computer interaction and seek to create computerized part-

ners, assistants, or agents. They promote their designs as

intelligent and adaptive, and often, they pursue anthropo-

morphic representations of the computer to the point of

having artificial faces talking to users. Anthropomorphic

representations of computers have been unsuccessful in

bank terminals, computer assisted instruction, talking cars,

or postal service stations, but some designers believe that

they can find a way to attract users.

A variant of the agent scenario, which does not include an

anthropomorphic realization, is that the computer employs

a “user model” to guide an adaptive system. The system

keeps track of user performance and adapts its behavior to

suit the users’ needs. For example, several proposals sug-

gest that, as users make menu selections more rapidly, indi-

cating proficiency, advanced menu items or a command-

Iine interface appears. Automatic adaptations have been

proposed for response time, length of messages, density of

feedback, content of menus, order of menu items, type of

feedback (graphic or tabular), and content of help screens.

Advocates point to video games that increase the speed or

number of dangers as users progress though stages of the

game. However, games are quite different from most work

situations, where users have external goals and motivations

to accomplish their tasks. There is much discussion of user

models, but little empirical evidence of their efficacy.

There are some opportunities for adaptive user models to

tailor system responses, but even occasional unexpected

behavior has serious negative side effects that discourage

use. If adaptive systems make surprising changes, users

must pause to see what has happened. Then, users may

35



.

Figure 1. FilmFinder: Films are shown on a “starileld” with colored rectangles to show film type,

x-axis for year, and y-axis for popularity as measured by video store rentals.

Alphasliders on the upper right allow selection of textual attributes [2].

become anxious because they may not be able to predict

the next change, interpret what has happened, or restore the

system to the previous state. Suggestions that users could

be consulted before a change is made are helpful, but such

intrusions may still disrupt problem-solving processes and

annoy users.

The agent metaphor is based on the design philosophy that

assumes users would be attracted to “autonomous,

adaptive, intelligent” systems. Designers believe that they

are creating something lifelike and smart, however users

may feel anxious and unable to control these systems.

Success stories for advocates of adaptive systems include a

few training and help systems that have been extensively

studied and carefully refined to give users appropriate

feedback for the errors that they make. Generalizing from
these systems has proven to be more difficult than

advocates hoped.

The philosophical contrast is with “user-control, responsi-

bility, and accomplishment” Designers who emphasize a

direct manipulation style believe that users have a strong

desire to be in control and to gain mastery over the system.

Then users can accept responsibility for their actions and

derive feelings of accomplishment [10] [20] [22].

Historical evidence suggests that users seek

comprehensible and predictable systems and shy away

from complex unpredictable behavior, such as the pilots

who disengage automatic piloting devices or VCR users

who don’t believe that they can properly program it to

record a future show.

Comprehensible and predictable user interfaces should

mask the underlying computational complexity, in the same

way that turning on an automobile ignition is comprehensi-

ble to the user but invokes complex rdgorithms in the en-

gine-control computer. These algorithms may adapt to

varying engine temperatures or air pressures, but the action

at the user-interface level remains unchanged.

A critical issue for designers is the clear placement of re-

sponsibility for failures. Agent advocates usually avoid

discussing responsibility. Their designs rarely allow for

monitoring the agent’s performance, and feedback to users

about the current user model is often given little attention.

However, most human operators recognize and accept their

36



Figure 2. Visible Human: Built for the National Library of Medicine and available for downloading

from their website. It allows rapid user traversal of the large database of images [15].

responsibility for the operation of the computer, and there-

fore designers of financial, medical, or military systems

ensure that detailed feedback is provided.

An alternative to agents and user models may be to expand

the control-panel metaphor. Current control panels are used

to set physical parameters, such as the speed of cursor

blinking, rate of mouse tracking, or loudness of a speaker,

and to establish personal preferences such as time, date

formats, placement and format of menus, or color schemes.

Some software packages allow users to set parameters such

as the speed in games or the usage level as in HyperCard

(from browsing to editing buttons to writing scripts and

creating graphics). Users start at level 1, and can then
choose when to progress to higher levels. Often, users are

content remaining experts at level 1 of a complex system,

rather than dealing with the uncertainties of higher levels.

More elaborate control panels exist in style sheets of word

processors, specification boxes of query facilities, and

scheduling software that carries out processes at regular

intervals or when triggered by other processes.

Computer control panels, like cruise-control in automobiles

and remote controllers for televisions, are designed to con-

vey the sense of control that users seem to expect. Increas-

ingly, complex processes are specified by direct-manipula-

tion programming or by graphical specifications of sched-

uled procedures, style sheets, and templates.

37



PmiemNmw Cd4Lem
Dmeof Bii-c 1O-OCT-7S Ad&w 34Oekstrm

mw 2 m UU /mr.

w?.

--- -. .. --,..—
FSS 3.5 IWL

bl+-’?l%

MEGlwis:(MAcqf.inilmfomiies 1%%

QTAhIecia esfimiaoD. fwdincmd w

Figure 3. Lifelines: The medical case history of a person can be shown on a single screen
with zooming, filtering and selection to get details-on-demand [16].

DYNAMIC QUERIES AND INFORMATION
VISUALIZATION
The remarkable human visual perception seems underutil-

ized by today’s graphical user interfaces, Seeing 40-60

icons on the screen seems like a modest ambition when the

megapixel displays can easily show 4000-6000 glyphs and

allow rapid user controlled animation on task-relevant ani-

mations [21] [23]. Our work on the HomeFinder [1] and

the FilmFinder [2] demonstrated that users could find in-

formation faster than with natural language queries and that

user comprehension and satisfaction was high for these

interfaces. Double-boxed sliders [3] enabled users to select

ranges, for example the desired range of bedrooms in a

house or length of a movie, and buttons allowed selection

of binary attributes or from sets with small cardinality

(Drama, Action, Mystery, Musical, etc.) (see Figure 1).

We applied the same sliding control for the National Li-
brary of Medicine’s 50-gigabyte image database of the

Visible Human (http://www.nlm.nih.gov) [15]. Sliders

over the body rapidly (less than 100 ms) reveal the slice

images that are available for downloading (see Figure 2)

Medical patient histories are another difficult domain for

which a user-controlled overview with dynamic queries to

support zooming and filtering is proving to be effective

[16]. Figure 3 illustrates the user interface.

CONCLUSION
Direct manipulation and its descendants are thriving. Vis-

ual overviews accompanied by user interfaces that permit

zooming, filtering, extraction, viewing relations, history

keeping, and detaiIs-on-demand can provide users with

appealing and powerful environments to accomplish their

tasks. I believe that most users want comprehensible, pre-

dictable and controllable interfaces that give them the feel-

ing of accomplishment and responsibility.

REFERENCES

1,

2.

Ahlberg, Christopher, Williamson, Christopher, and

Shneiderman, Ben, “Dynamic queries for information

exploration: an implementation and evaluation,” Proc.
ACM CHI’92 Conference (1992), 619-626.

Ahlberg, Christopher and Shneiderman, Ben, “Visual
information seeking: tight coupling of dynamic query

filters with starfield displays:’ Proc. ACM CHZ’94

Conference (1994), 313-3 17+ color plates. Reprinted

in Baecker, R. M., Grudin, J., Buxton, W. A. S., and

Greenberg, S. (Editors), Readings in Human-Computer
Interaction: Toward the Year 2000, Second Edition,

Morgan Kaufmann Publishers, Inc., San Francisco, CA

38



3,

4.

5.

6,

57.

8,

9,

(1995), 450-456.

Ahlberg, Christopher and Shneiderman, Ben,

“AlphaSlider: a compact and rapid selector;’ Proc.

ACM CHI’94 Conference (1994), 365-371,

Cypher, Allen, “EAGER: programming repetitive tasks
by example~’ Proc. ACM CHZ’91 Conference (1991),

33-39.

Frohlich, David M., “The history and future of direct

manipulation,” Behaviour & Information Technology

12,6 (1993), 315-329.

Green, T. R. G. and Petre, M., “Usability analysis of

visual programming environments: a ‘cognitive dimen-

sions’ framework,” Journal of Visual Languages and

Computing 7 (1996), 131-174.

Hutchins, Edwin L., Hollan, James D., and Norman,
Don A., “Direct manipulation interfaces;’ in Norman,

Don A. and Draper, Stephen W. (Editors), User Cen-

tered System Design: New Perspectives on Human–

Computer Interaction, Lawrence Erlbaum Associates,

Hillsdale, NJ (1986), 87-124.

Iseki, Osamu and Shneiderman, Ben, “Applying direct

manipulation concepts: Direct Manipulation Disk Oper-

ating System (DMDOS),” Software Engineering Notes

11,2, (March 1986), 22-26.

Kahn, Ken, “Drawings on napkins, video-game anima-

tion, and other ways ~o progr&n computer;,” Communi-

cations of the ACM 38, 8 (August 1996), 49-59.

10. Lanier, Jaron, “Agents of alienation,” ACM interactions

2,3 (1995), 66-72

11. Maes, Pattie, “Agents that reduce work and information

overload,” Communications of the ACM 37, 7 (July

1994), 31-40.

1’2.Maes, Pattie, “Artificial life meets entertainment: life-

like autonomous agents,” Communications of the ACM

38, 11 (November 1995), 108-114.

1:3.Maulsby, David L. and Witten, Ian H., “Inducing pro-

grams in a direct-manipulation environment,” Proc.

ACM CHI’89 Conference (1989), 57-62.

14. Myers, Brad A., “Demonstrational interfaces: a step

beyond direct manipulation,” IEEE Computer 25, 8
(August 1992), 61-73.

15. North, C., Shneiderman, B., and Plaisant, C., “User

controlled overviews of an image library: a case study

of the Visible Human,” Proc. 1st A CM International

Conference on Digital Libraries (1996), 74-82.

16. Plaisant, C., Rose, A., Milash, B., Widoff, S., and

Shneiderman, B., “LifeLines: visualizing personal histo-
ries,” Proc. ACM CHZ’96 Conference (1996), 221-227,

518.

17. Potter, Richard, “Just in Time Programming:’ in

Cypher, Allen (Editor), Watch What I Do: Program-

ming by Demonstration, MIT Press, Cambridge, MA

(1993), 513-526.

18. Rubin, Robert V., Golin, Eric J., and Reiss, Steven P.,

“Thinkpad: a graphics system for programming by dem-

onstrations,” IEEE Software 2, 2 (March 1985), 73-79.

19. Shneiderman, Ben, “Direct manipulation: a step beyond

programming languages,” IEEE Computer 16,8

(August 1983), 57-69.

20. Shneiderman, B., “Beyond intelligent machines: Just Do

It!,” IEEE Software 20, 1 (January 1993), 100-103.

21. Shneiderman, B., “Dynamic queries for visual informa-

tion seeking,” IEEE Sofmare 11,6 (June 1994), 70-77.

22. Shneiderman, Ben, “Looking for the bright side of

agents,” ACM Interactions 2, 1 (January 1995), 13-15.

23. Shneiderman, B., “The eyes have it: a task by data type

taxonomy of information visualizations,” Proc. IEEE

Symposium on Visual Languages ’96, IEEE, Los

Alarnitos, CA (1996), 336-343.

24. Smith, David Can field, Pygmalion: A Computer Pro-

gram to Model and Stimulate Creative Thought,

Birkhauser Verlag, Basel, Switzerland (1977).

25. Smith, D.C., Cypher, A. & Spohrer, J. “KidSim:

Programming Agents Without a Programming Lan-

guage”. In Communications of the ACM, 37(7), July

1994, pp. 54-67

26. Ziegler, J. E. and Fiilmrich, K.-P., “Direct
manipulation,” in Helander, M. (Editor), Handbook of

Human–Computer Interaction, Elsevier Science

Publishers, Amsterdam, The Netherlands (1988), 123–

133.

39


