
1

 Issues in Implementing PARKA using the techniques of Chaos

Evan Golub
Department of Computer Science

University of Maryland at College Park

The motivation behind the creation and continuing

development of PARKA (PARallel Knowledge and Association) has

been to demonstrate how parallel machines can be utilized by large

AI systems to achieve the rapid response time required by realistic

applications. PARKA is a symbolic, semantic network knowledge

representation system which has been used to demonstrate the

effects of parallelism on common types of inferencing.

Since property inheritance is a major part of most

representation systems, much of the work done with PARKA has

been related to ISA-hierarchy property inheritance. PARKA's basic

inference mechanism is called activation wave propagation. Each

propagation step consists of every node in the current wave front

simultaneously transmitting the wave to their neighbors.

PARKA was originally implemented on a CM-2, using an

isomorphic mapping between the processors and the nodes of the

2

semantic network. It used pvars to represent the links and the node

names. At each wave, every processor which was being used to

represent a node would receive the names of nodes to be involved,

and would determine if it was one of them. If it wasn't, it would

turn itself off for that stage. This wave propagation would continue

across the network until the wave front became empty. Full details

of this implementation of PARKA can be found in [1].

The CM-2's SIMD architecture and large number of small

memory processors were exploited well by the version of PARKA

which was implemented on it. However, the implementation was

strongly connected to the CM-2's architectural design and the use of

*LISP. Since then, PARKA has been implemented, and continues to

develop, on a CM-5 at the University of Maryland. While the

concepts being developed are portable, the software implementation

is not. This served as the motivation for looking into how PARKA

could be implemented in a way such that it would be highly portable.

Work is also currently being done at Maryland with a portable

parallel library called Chaos. This library is intended to help parallel

system programmers efficiently code irregular problems on

distributed memory machines. The philosophy behind Chaos is to

3

extract interprocessor communication patterns at run time, and use

this information to allow a distributed shared memory to effectively

exist with low communication overhead.

An example of how this is achieved is the taking of a single

logical array of data and distributing it amongst the processors

memories, and accessing the data via an indirection array. Each

element of a data array has a logical position in the global

representation of the array, as well as a physical position in the

array segment stored on the processor that owns it. For example, if

we had an array of characters

index 1 2 3 4 5 6 7 8 9

a r r A B C D E F G H I

Figure 1

which we wanted to store for use on a parallel system with three

processors, we might store it as

local_index 1 2 3 1 2 3 1 2 3

local_arr A B C D E F G H I

processor P0 P1 P2

Figure 2

It is important to note that although the character E is now in the

second position of the array it lives in on processor P1, it is still the

4

fifth element of the complete logical array arr. It is also important to

realize that it would be equally valid to store the data as

local_index 1 2 3 1 2 3 1 2 3

local_arr A D H B C F E G I

processor P0 P1 P2

Figure 3

The character E is still the fifth element of the logical array, but now

resides in the first position of the array portion on P2.

During data initialization, the logical array is allocated across

the processors. Each processors' local array leaves room at the end of

itself to act as a buffer to hold off-processor data which is brought in

by data requests. The reason the buffer space resides in the tail end

of the array will be made clear below.

Prior to a parallel computation block, the indirection arrays

which will be used in that block are inspected. These indices are in

terms of the elements' positions in the complete logical array. The

inspection process accomplishes several things. It determines which

elements that will be accessed reside in off-processor memory, and

generates a schedule to be used to transfer the appropriate data to

the processors which will be using them. It also generates a new

5

indirection array in which references to off-processor data elements

are updated to refer to the buffer position in which it will be placed.

For example, using Figure 1, if processor P0 had an indirection

array, referring to elements of the logical array ÒarrÓ, which was

ind_array 2 5

the data it will be requesting from ÒarrÓ resides in the local array in

position number 2 (logical arr[2]) and in the array on processor P1 in

position number 2 (logical arr[5]). The communication schedule will

do nothing for the data which is already local, but will arrange to

transfer P1.local_arr[2] into P0Õs local array, in the first position of

the buffer space. So, if P0's array was originally

1 2 3 4 5

P0 : loc_arr A B C

data buffer

Figure 4

then after the data is brought in, the array will be

1 2 3 4 5

P0 : loc_arr A B C E

data buffer

Figure 5

6

and the new indirection array which P0 will be using would be

new_ind_array 2 4

where the index values now strictly refer to positions of the local

array, but still refer to the same positions in the global, logical array,

as the original indirection array did. When used with loc_arr on P0,

this will allow the program to access the second and fifth elements of

the logical array via a local memory access.

This manner of storing and accessing data allows a program to

utilize the combined memory space of all processors assigned to the

job while limiting the amount of communication done. If it is

possible for each processor to be assigned data in such a way that

many or most of its data requests will be on-processor ones,

communication costs can be reduced even further. Since the data can

be distributed in an irregular way, as shown in Figure 3, it is possible

to do this for many programs.

The Chaos library provides routines for both generating

schedules and translation tables as well as ones for executing the

data transfers in an organized fashion. These are described in detail

in the Chaos manual [2]. The library currently runs on a variety of

machines such as the Intel Paragon, Thinking Machines CM-5 and

7

IBM SP-2. Additional ports are currently underway, including one to

the Cray T3D.

The philosophy behind Chaos, as well as the library itself, is to

be portable between parallel supercomputers. The fact that a

version of PARKA implemented using these techniques would be

portable is a nice benefit, but not the original inspiration for this

implementation. The Chaos library is currently being used in the

solving of irregular problems such as structured mesh sweeps and

upper triangular solves[3]. The computation patterns associated with

the basic inference mechanism of PARKA, activation wave

propagation, appears to be one which will access data in a structured

yet irregular order which can not be known until run time.

Implementing PARKA using the ideas of Chaos is not simply a

matter of converting *LISP code into C. While the basic algorithm

concepts remain the same, the data representation system has to be

designed in such a way that the data in our semantic network are

stored in arrays, and accesses to it are done via indirection arrays.

The second of these two requirements is the simpler, since

array positions have unique values as did the node addresses in the

8

CM-2 implementation. The more challenging goal is the choice of a

structure or set of structures to use to hold the network. This

structure needs to have the ability to grow in three ways. The first

is that as new nodes are added, the network must integrate them

into itself. The second is that if a new property is added, the

appropriate links must be added for that new property for nodes

which will now use it. The last is that the number of ISA links for a

single node is not known at design time. These ISA links have to be

represented in a structure that can expand non-uniformly, since not

all nodes will have the same number of ISA links. Additionally, since

it is these ISA links which will be followed during the wave front

activation, it is important to be able to utilize the structure in a

highly parallel fashion.

The following traces through the design process as it occurred.

While the first idea presented is clearly not a good choice, it served

as a starting point upon which the final structure was based. The

first structure which was considered was a two-dimensional array in

which each column would represent a frame or property, and each

row would represent a property link or ISA link. Columns would be

added for new frames and rows would be added when new

properties or ISA links were defined. While this structure would

9

work conceptually, the costs of maintaining a two-dimensional array

which would need to be expanded in both directions were not

acceptable.

The next structure which was considered was also a two-

dimensional array, but one which would only expand in one

dimension. The idea was to have each column be associated with

some frame. Each frame would have its "origin" column. There

would be some fixed number of rows, R. In the "origin" column, row

R-1 would be a pointer to either another column of to NULL. If it

was to another column, this would signify that there were more

properties than could be fit in a column, so this next column was a

continuation of the property links. Since all frames have the same

number of potential property links, a table could be kept telling us

how many auxiliary property columns would need to be traversed to

get to a specific property link's position.

Similarly, row R would be a pointer to the next column of ISA

links. The link type ISA needs to be treated separately since the

number of ISA links which a given frame has is unrelated to the

number which the other frames have. Using this column linking,

each frame could have its own custom allocation of ISA links.

10

With this structure, the network could be represented with a

good utilization of space, and with a fairly easy method of traversing

the links. However, even though the two-dimensional array would

only grow in one dimension, it would still be costly to do these

expansions. While looking at ways to make this structure work, a

different method was realized, and eventually used to store the

network. This structure is a set of two one-dimensional arrays.

The first is an array, Òframe_tbl,Ó of strings which holds the

frame and property names. A property name is identified through a

character ÒPÓ prefixed to the name, and a frame through the

character ÒF.Ó The second array, Ònetwork,Ó is a variable sized array

which is conceptually composed of multiple fixed length arrays. Each

element of this array is a pointer to a frame, and these pointers

represent the links which form the network. For array position i,

where i is even, positions i and i+1 form the link between two frames

of the network. The arrays Òframe_tblÓ and ÒnetworkÓ are used as

parallel arrays, with each frame or property name being aligned with

one of the fixed length arrays.

11

Each of the arrays used in the representation of the network is

conceptually a single array. The Òframe_tblÓ array is replicated

across all processors being used in the system. However, when

implemented on an N-processor system, the ÒnetworkÓ array is

actually N sets of local arrays. There are two phases associated with

this distribution, the construction of the distributed network, and the

use of the network in a search request.

Initially, the network was built and used on a single processor.

Once that version was working, the task was to move to a multiple

processor setup. This was first done by having one of the processors

act as the startup host. The entire network was loaded and built on

the single processor. Once that was done, the network was

"re"distributed amongst all of the processors. This was accomplished

by creating an initial mapping which showed all frames held by P0,

and a new mapping which had the frames distributed, and then

calling the appropriate Chaos routines to effect the redistribution :

tt=init_ttable_with_proc(1, NewDistribution, myNetsize);
remap(tt, InitialDistribution, &sch, NewDistribution,

&myNewNetsize);
tt=build_translation_table(1, NewDistribution, myNewNetsize);
PARTI_gather(sch, newNetwork, network, FRAME_SIZE);

12

While this method worked well, it did limit the size of the

network which could be easily loaded to the size of a network which

could be loaded into a single processor's memory. In later versions,

the network is built in a distributed fashion.

Once the network exists in the distributed arrays, it must be

possible to search the network. The first specific search which was

implemented was based on TouretskyÕs Inferential Distance Ordering

(IDO) inheritance system[4]. This system is designed to deal with

ambiguities over which property value to choose, caused by a frame

being connected to several other frames via ISA links, which are

explicitly valued for that property. It tells the system that in the

event that a frame can inherit a property from one of several other

frames, to choose the frame which is semantically closest. A formal

definition of TouretskyÕs IDO inheritance scheme is given by Matt

Evett in [5] as :

Assume the frame in question, X, is not explicitly valued for the
given property, P(if it is, the explicit value is XÕs value for P). Let B
be the set of ancestors {B1, B2, ...} of X that are explicitly valued for P.
X takes BiÕs value for P as its own, provided Bi is an element of B
such that there is no Bj, j¹i, that is an IS-A descendant of Bi. If more
than one element of B meets this criterion, X is said to be
ambiguously valued for property P.

13

As an example of a semantic network of ISA links where there

is potential for ambiguity, we can look at the following :

In this case, the frame Object can either get itÕs value for

ÒColorÓ from frame X2 or X3. According to the IDO rules, since X2 is

semantically closer to the object, it will inherit the ÒColorÓ value of

ÒA.Ó

In order to accomplish this, PARKA must be able to know the

semantic distance between two nodes in a knowledge base. The way

in which this has been done in the CM implementation is through a

topological ordering of the frames. This technique leads to different

results than those which would be obtained if using TouretskyÕs

exact algorithm in some rare cases, but [5] states that these

exceptions do not seem to appear in typical knowledge bases, and as

a result, this difference should have little impact on most inferences.

Object

X2
Color : A X1

X3
Color : B

X4

14

In the new version, the distances are calculated based upon the wave

front in which an ISA-attached frame which is explicitly valued for

the property in question is an element of, rather than the topological

ordering. This distance metric should not lead to any additional

differences from the ÒpureÓ IDO system.

The sweep across the network was implemented by using an

owner-computes philosophy at each wave front. For a given wave

front Wi, each processor knows which of the frames that it has locally

are involved. It then computes the list of frames which will be

involved in the next wave front Wi+1 based on the frames which it

examined. The processors then communicate to each other the

partial information they have about wave front Wi+1 and as a result,

each processor will know which of its frames will be involved in that

front. This essentially gives us the same information as a separate

topological ordering sweep across the network would have given us,

but it is done in-progress rather than in advance.

In order for this technique to work well, for each wave front

the frames involved must be well distributed across the processes.

The initial networks which were used for testing were of a constant

branching factor and created a tree-like network. For this reason, it

15

was relatively straight forward to choose a cyclic distribution which

would spread out each level of the network, and therefore each wave

front, across all processors. When dealing with an actual knowledge

base, however, it may not be as simple to determine a distribution,

and it is most likely that an irregular distribution pattern would be

required.

The task of choosing a distribution which will serve our

purpose has two levels to it. The first of these is the need to develop

an appropriate heuristic which will distribute the network in an

advantageous way. One idea as to how to proceed on this is to use

the topological ordering of the network to identify the wave fronts,

and then distribute each front in a way to minimize cross edges

between waves Wi and Wi+1. However, since the network needs to

be initially created in a distributed manner so as to take advantage

of all of the involved processors' memory, there will need to be a

way for all processors to collaborate on deciding how to redistribute

the data.

This could be a very costly procedure depending on the amount

of interprocessor communication which would be required. This

analysis would need to be done in two situations. The first would be

16

upon initial creation of the network. Once it was read in, the initial

distribution would need to be chosen. However, we would also need

to deal with the situation where new nodes and/or links were added

to the network after it was initially built. While it should be possible

to add to the network without having to re-analyze the distribution

each time, we would most likely want to either used a modified

version of the algorithm to place new elements, or establish a

condition which would cause us to re-analyze and re-distribute the

network. Examples of algorithms for data partitioning exist for other

problems to which the Chaos library has been applied[6].

In the first set of experiments done with our partial

implementation of PARKA, knowledge bases were generated with the

following characteristics : A network described as B x D represents a

knowledge base composed strictly of frames and ISA links. Each

non-leaf frame has B ISA links coming out of it, each connecting to a

distinct frame one level down. There are a total of D levels in the

network associated with the generated knowledge base.

Once a network is generated, it is distributed across the

processors using a CYCLIC distribution. For the first few levels, this

causes an uneven distribution of work. The number of levels for

17

which the work is unevenly distributed depends on both the

branching factor B, the period of the cycle used and the number of

processors being used. However, for networks of reasonable size, the

amount of work which is distributed fairly is exponentially larger

than that which is not.

The first tests have shown promising empirical results. This

version of PARKA was run on networks of dimensions (and sizes) of

9x3(29524), 10x3(88573), 11x3(265720) and 12x3(797161). It

yielded the following results when run on the local SP-2 on 1, 2, 4, 8

and 16 processors :

 # nodes
size of 1 2 4 8 16
ne twork
 9x3 0.115 0.060 0.033 0.021 0.017
 10x3 0.345 0.175 0.091 0.050 0 .031
 11x3 1.037 0.523 0.256 0.137 0 .088
 12x3 -.--- 1 .557 0.783 0.403 0 .216

18

Reference Notes

1 ÒParallel Knowledge Representation on the Connection MachineÓ
- Matt Evett, James Hendler, Lee Spector

2 The Chaos Manual

3 ÒRuntime Support and Dynamic Load Balancing Strategies for
Structured Adaptive ApplicationsÓ

- Bongki Moon, Gopal Patnaik, Robert Bennett, David Fyfe, Alan
Sussman, Craig Douglas, Joel Saltz, K. Kailasanath.

4 The Mathematics of Inheritance Systems
- D.S. Touretsky, 1986.

5 PARKA : A System for Massively Parallel Knowledge
Representation

- Matt Evett

6 ÒParallelizing Molecular Dynamics Programs for Distributed
Memory Machines: An Application of the CHAOS Runtime Support
LibraryÓ

- Yuan-Shin Hwang, Raja Das, Joel Saltz, Bernard Brooks, Milan
Hodoscek.

