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1
Introduction

Background

There are several interesting comparison based problems that are looked at in

computer science: searching, selection, merging and sorting.  These questions can be

phrased as :

Searching :
ÒIf we are given a list of n ordered values, how many
comparisons would be needed to determine whether a
specific value was included in that list?Ó

Selection :
ÒIf we are given n values and a integer k , how many
comparisons would be needed to find the kth smallest
value?Ó

Merging :
ÒIf we are given two ordered lists each having n values,
how many comparisons would be needed to combine
them into a single ordered list?Ó

Sorting :
ÒIf we are given n values in a list, how many
comparisons would be needed to order those values?Ó

The ability to solve these questions quickly is an important one across many

applications of computer science [Knuth1].  As the number of values being worked

with grows, it is important to avoid having the run-time grow too quickly.  This has

been the motivation behind the desire to develop the most efficient possible
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algorithms for these problems.  It should be noted that by ÒefficientÓ algorithms, we

are only concerned with the number of comparisons done during the process.

These questions have been well studied in the sequential case (one processor

working on the problem).  For searching, the upper and lower bounds are known

(trivially) to be n .  For selection, the bounds do not yet match, but the upper and

lower bounds have been brought quite close to each other: 2 97. n Ê[DZ1], [DZ2] and

( )2 1

240+ n [DZ3].  For merging, the upper and lower bounds are (trivially) 2 1n - .

For the comparison based sorting problem, the upper and lower bounds are

n n nlog ( )+ Q  [see Knuth1].

These problems can be solved much faster when using parallel processing.

When given multiple processors that can work together to solve these problems, two

factors are often discussed: the number of processors used and the number of rounds

used.  In each round, each processor is able to execute a single comparison.  Between

rounds, the processors communicate their findings with one another.  Within this

domain, there are two standard optimization problems: (1) given a fixed number of

values and processors minimize the number of rounds; (2) given a fixed number of

values and rounds minimize the number of processors.  While this model may not be

realistic as it ignores the computation and communications between rounds, it is a
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well studied model.  Since it is a well studied model, it serves as a good testing

ground for the philosophies which I later present.

When solving these problems using multiple processors, a division can also

be made between the situation where you have fewer processors p than you do

values n (pón) and when you expect to have more processors than values (p>n).

There is also the case in which you expect to have many more processors than

values (p>>n) and therefore consider how many processors would be required to

accomplish a job in a fixed number of rounds.  These last two case are obviously

related.

The following good upper and lower bounds are known for these problems in

the first case:

póóóón

Searching
Q

log( )

log( )

n

p

+

+

æ

è
ç

ö

ø
÷

1

1
[Krus1]

Minimum Q( )log logn

p
n+  [Val1]

Selection O( )log log logn

p
n n+ [Vish1][AKSS1], W( )log logn

p
n+ [Val1]

Merging Q( )log logn

p
n+ [Val1]
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Sorting

Q
n n

p

logæ

è
ç

ö

ø
÷ [AKS1][Cole1]

Figure I.1

When we move to the cases where p>n the searching problem becomes trivial

(we canÕt use more than n processors to accomplish the task quicker than in a single

round).  Exact results are known to minimum finding and merging and can be inverted

to determine the number of processors which would be required in a specific number

of rounds.

p>n

Minimum log log log log ( )n
p

n
- + Q 1  [Val1]

Merging log log log log ( )n
p

n
- + Q 1  [Krus2]

Figure I.2

As an example of how one of these algorithms works in rounds, we can look

at finding the minimum of a group of n values in two rounds using O n
4

3
æ

è
ç

ö

ø
÷

processors.  For the first round, we partition the original n values into n
2

3  groups of

n
1

3  values.
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Figure I.3

In the first round, we compare all elements within a subgroup with all other

elements in that subgroup.  They can be represented as a complete graph connecting

the values within a group.  Each processor will be responsible for one of the

comparisons represented by the edges of the graph.

Figure I.4

This will require O n
2

3
æ

è
ç

ö

ø
÷  processors per group, or O n

4

3
æ

è
ç

ö

ø
÷  processors overall.

After the first round, we will have enough information to find a minimum value for

each group.
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Figure I.5

We can then use the same O n
4

3
æ

è
ç

ö

ø
÷  processors in the second round to compare

all of these local minimums to one another in a single round to obtain the minimum

value across the original n values.

Figure I.6

If more than k>2 rounds are made available, then the elements will be divided

into groups based on the number of rounds.  The first k-1 rounds will be used to find
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the minimum in each of these groups using this same algorithm recursively.  The

final round will again be used to find the minimum of these minimums.

As an example of this, in the case of 3 rounds we would use an initial groups

of size n
3

7 .  This would use the 2 round minimum finding algorithm on each of the

groups, requiring n n n
4

7

3

7

4

3 8

7×
æ
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÷O O  processors.  We would then find the

minimum of these minimums in the final round, requiring 

n

n

4

7
8

7

2
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processors.  We could similarly show that minimum finding in 4 rounds would

require O n
16

15
æ

è
ç

ö

ø
÷  processors.  This generalizes as k rounds requiring O n

k
k

2
2 1-æ

è
ç

ö
ø
÷

processors.

In the case where you have more processors available than values, the

bounds are not as well defined for general selection or sorting.

The case of sorting is the one which will be the primary focus of this work.

We will look at the question:
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ÒIf we are given k rounds, and in each round each
processor can ask one question, how many processors
would be needed to sort n values?Ó

The answer to this question will be a function of the number of values n and

the number of rounds k.  This is the problem in which we are interested.  With vast

enough resources, we would like to be able to sort a group of values in very few

rounds.  Again, if an exact result were found for this, it could be inverted to answer

the question of number of rounds for a fixed number of processors.

Previous results in area of interest

All of the algorithms which I will be discussing follow the same basic

approach to sorting: within a given round elements are compared (one processor

does one comparison) and between rounds information is extended using some form

of transitive closure.  In most of these algorithms, the comparisons to be executed

during each round (except for the final round) are represented by a graph such that

the vertices are the values and an edge existing between two vertices indicates that

the two corresponding values will be compared during that round.

The results can also be divided into two basic categories; constructive and

non-constructive.  In the case of a constructive algorithm, an explicit set of

instructions is given to construct the graphs (that in turn represent the comparisons

that need to be done).  In the case of a non-constructive algorithm, the existence of
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the required graph is proven (usually probabilistically) but instructions are not given

for building the actual graph.  In computer science, a constructive proof has

traditionally been preferred since it can be used to create a program that will be able

to solve the given problem.  It has been felt that non-constructive proofs may not be

easily translated into a program.  I intend to challenge this viewpoint.

Another issue that merits attention is the work done between rounds in most

of the above mentioned results.  While each processor evaluates a single comparison

within a round, the processors must communicate their results to one another and

execute a transitive closure of these results to fully realize the information they have

learned with those comparisons.  While transitive closure does not involve any

comparisons, in the implementation of these algorithms it represents a significant

amount of computing time.  Several papers discuss algorithms that do not require

full transitive closure between rounds.  While the number of processors required is

slightly higher, the between-round processing time could be considerably less.

In the following summary of past results in this area Sort(n,k) denotes that

we are ordering n values using k rounds of comparisons and full transitive closure

between rounds while Sort(n,k,d) denotes that we are ordering n values using k

rounds of comparisons and only d-level transitive closure between rounds.
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· The algorithm is non-constructive.

· This is the first algorithm in the area.

Figure I.7

H
H
2
-
8
2

Merge(n,k) =Q n

k

k

2

2 1-
æ

è
ç

ö

ø
÷

Sort(n,k) =O n k
1

2

2
+æ

è
ç

ö

ø
÷

· The algorithm is constructive.

· Better time asymptotically than HH81

results although the algebra is inexact.

· k³3 for sorting

Figure I.8
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  k=2m-1

· The algorithm is non-constructive.

· Gives a 2 round algorithm that only

requires d-steps worth of transitive

closure.  If you plug in d=2, you get

O n n
5

3

1

3(log )æ
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· Gives an algorithm that only requires

2-step transitive closure (direct

implication) for an odd number of

rounds.

Figure I.9
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· The algorithm is constructive.

· It uses techniques in projective

geometry to build graphs that can be

used to sort fast.

· It only requires direct implications

rather than a full transitive closure.

Figure I.10
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· Gives a good lower bound for the

problem.

· Gives a constructive randomized

algorithm.

Figure I.11
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   constructive

· This paper is a good reference due to

its references to other works

· The constructive upper bound uses

Ramanujan graphs [LPS1].

· This was the first known subquadratic

constructive solution (though it was

published after Alon86).

Figure I.12
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· Non-constructive algorithm.

· Gives a slight improvement over Pip87
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Figure I.13
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· Gives only slight improvement over

Pip87 but does it for general case

rather than just 2 rounds as AA88 does.

Figure I.14
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1

1
1+ +æ

è
ç

ö

ø
÷

o( ) · Gives better constructive expanding

graphs that can be used with

PippengerÕs algorithm.

Figure I.15

My contribution

I will address both the utility of non-constructive proofs and the impact of

full versus partial transitive closure through empirical studies.  I will discuss whether

non-constructive proofs based upon the probability of the existence of a certain

graph are any more difficult to code as computer programs than constructive

algorithms.
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There are two major philosophies that I wish to demonstrate:

· Non-constructive proofs built upon probabilistic techniques can be just

as good as, if not better than, constructive ones.

· Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.

Rather than using actual parallel machines to execute these experiments (since

we do not currently have machines with the required number of processors to do so)

I will simulate these machines on a single processor system.  In the implementation

of the algorithms, a comparison done in an iteration of a loop will be considered to

be an iteration done on an individual processor.  The information obtained in each

loop will be stored and used in such a way that later iterations of a loop will not gain

information from the earlier ones.  This preserves the behavior of each iteration

actually being done at the same instant on different processors.

I generate between 25 and 100 inputs for each algorithm for each

configuration tested.  In the case of probabilistic algorithms where graphs are

generated at random, these 25 to 100 inputs will be a graph-data pair.  After running

the programs on these inputs, I take the maximum number of processors required

over these runs for each configuration.  I look at the individual runs for the first few
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configurations fed to each algorithm to determine whether there appears to be a need

for more than the planned number of inputs.

In the following chapters I will address several of the algorithms that are

mentioned in the earlier table.  I will look at how the empirical results compare to the

theoretical ones, discuss some of the limitations and even raise a few new questions.
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Chapter 1 : PippengerÕs K-Round Sorting Algorithm

Section 1.1: Sketch of algorithm

Pippenger [Pip1] presents non-constructive proofs of the following upper

bounds :

Select(n,k) = O n n
k k

1
1

2 1
2

2

2 1
+

-
-

-
æ

è
ç

ö

ø
÷(log )

Sort(n,k) = O n nk k
1

1
2

2
+ -æ

è
ç

ö

ø
÷(log )

These algorithms use a-expanding graphs to represent the comparisons to be

done in each round (except the final round that needs to compare all remaining

unordered elements to each other).  Pippenger shows two important things: (1) that

after answering the questions represented by the a-expanding graphs, there are

relatively few values whose position is not known, and (2) that relatively small

a-expanding graphs exist.  This work also has the advantage that it is shown that

there is a high probability that a graph built using the techniques discussed will be an

a-expanding graph.
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Definition 1.1:   a  -expanding graphs

An a-expanding graph is defined as a graph in which for any two sets of

vertices of size a+1, there is at least one edge between the two sets. ¨

Theorem 1.2[Pip1]:   a  -expanding graphs generate a great deal of information

Pippenger shows that if n elements are compared according to the edges of an

a-expanding graph, then there will be at most O a nlog( ) candidates remaining

for any given rank. ¨

Theorem 1.3[Pip1]: Small a-expanding graphs exist

Pippenger shows that small a-expanding graphs exist using a probabilistic

argument.  He shows that for large values of n, there is a high probability that

a graph created by adding each possible edge with a probability of p=
2 lnn

a

will be an a-expanding graph.  This translates to a high probability that

a-expanding graphs with O
n n

a

2 logæ

è
ç

ö

ø
÷  edges exist. ¨

It should be noted at this point that the value of p is set without using order

notation, but the results based upon it are.  This implies that a constant factor might
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be used to fine tune the value of p in actual usage.  This type of fine tuning will be

discussed later.

Theorem 1.4[Pip1]: Selection in    k    rounds can be done with

O n n
k k

1
1

2 1
2

2

2 1
+

-
-

-
æ

è
ç

ö

ø
÷(log ) processors

With the existence of small a-expanding graphs proven, Pippenger goes on to

show that for selection a good value for a is 
n

n

k

k

1
1

2 1

1
2

2 1

-
-

-
-(ln )

.  This gives us a

graph with O n n
k k

1
1

2 1
2

2

2 1
+

-
-

-
æ

è
ç

ö

ø
÷(log )  edges.  After comparing elements based

on an a-expanding graph based on this value of a (and doing transitive closure

based on the results) there will be O n n
k k

1
1

2 1

2

2 1
-

- -
æ

è
ç

ö

ø
÷(log )  candidates left in the

selection problem.  The values that have been eliminated have been

determined to have either too many values above or below them for them to

be in the position for which we are selecting.  We do not know the order of

the non-candidates relative to each other, just that they cannot be in the

desired position.  Since the selection problem takes two parameters (the

values and the position you wish to select) it does not matter if the number

of values that have been eliminated as candidates above and below is equal.
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We can adjust the second parameter accordingly.  By recursively doing

selection based on the remaining candidates the result of select(n,k) =

O n n
k k

1
1

2 1
2

2

2 1
+

-
-

-
æ

è
ç

ö

ø
÷(log )  is obtained. ¨

Theorem 1.5[Pip1]: Sorting in    k    rounds can be done with O n nk k
1 2

1 2
+ -æ

è
ö
ø(log )

processors

For sorting, Pippenger shows that a good value of a is 
n

n

k

k

1

1

1

2

-

-
(ln )

.  After

comparing elements based on an a-expanding graph built with this value of a,

the values can be partially ordered in such a way that there will be

O
n

n

k

k

1

2

(log )

æ

è
çç

ö

ø
÷÷

 groups, each having O n nk k
1

1 2
-æ

è
ç

ö

ø
÷(log ) values, so that for any two

groups ai and aj (i<j) all the values in ai will be less than the values in aj.

Therefore, once each group is sorted, the entire set of values will be sorted.

Again, by recursively sorting the remaining groups using the a-expanding

graphs, the result of sort (n,k) = O n nk k
1 2

1 2
+ -æ

è
ö
ø(log )  is obtained.¨
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Section 1.2: Implementation of algorithms

Both the non-constructive selection and sorting algorithms are built using

a-expanding graphs.  The difference between the specific a-expanding graphs is the

probability p that is used to place edges into the graph.  I began by implementing the

selection algorithm, then moved on to the sorting algorithm.  Although my main

interest is in sorting, the selection problem looked as though it would serve as a good

testbed for my approach.

Section 1.2.1: Implementation of selection algorithm

I first implemented selection (specifically median finding) in two rounds,

using the first round to compare the values using the a-expanding graph (based on

a=
n

n

k

k

1
1

2 1

1
2

2 1

-
-

-
-(ln )

), and then using the second round to compare all of the remaining

candidates to one another.

To implement the algorithm, I needed the probability p which was to be used

to generate the a-expanding graphs.  This was based on the value for a that was in

turn based on n.  As a starting point, I took p to be the exact value specified in the

paper.  After gathering results on 2-round median finding for values of n ranging

between 100 and 5000 (using that value), I charted the number of processors used in

each of the two rounds in the worst case (over approximately 100 different inputs
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per size of n) and found that more work was being done in the first round than in the

second.  This implied that smaller graphs might be better.  I generated results based

on p multiplied by a constant factor between 0.1 and 2.0.  These results led me to

conclude that a good value would be somewhere between 0.2 and 0.4.  I generated

results more finely between 0.2 and 0.4 to find this value.

Median Finding in 2 Rounds : N=750
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Figure 1.5

Figure 1.5 shows that when the graphs were generated with each edge being

placed with a probability of .32p, the first and second rounds used roughly the same

number of processors.  Experiments showed that the number of processors used was
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consistent with the formula.  Since my real interest was in the sorting results, I did

not pursue testing for k round selection.

Section 1.2.2: Implementation of sorting algorithm

For sorting, the value for a is 
n

n

k

k

1

1

1

2

-

-
(ln )

.  Since the value for p is based on the

criteria for an a-expanding graph rather than its use (sorting -vs- selection), that value

remains 
2 lnn

a
.  In 2 round sorting, the first round of comparisons (based on the

a-expanding graph) would be used to partially rank the values, and the second round

would be used to fully sort each sub-group.  The fact that the number of groups

were Òorder ofÓ rather than exact values posed an interesting question of how to

identify the sub-groups that could then be sorted.  An approach that worked well

was to identify the groups by the values it ÒshouldÓ have within it.  Each group

could then be built by determining which values were candidates for that group.

While this did lead to some values being placed into more than one group, the

amount of overlap appeared small and once each group was fully ordered, it was

easy to discard the values that did not belong.

With the algorithm implemented, I again took p to be the exact value

specified in the paper.  Not surprisingly, using this value for p caused the rounds to

do an uneven amount of work.  As in the case of median finding, I varied a
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multiplicative constant factor (Cp) between 0.2 and 0.4 in an attempt to find an ideal

one.

Sorting In 2 Rounds
Finding a Good Graph Size

N = 1 0 0 0
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Figure 1.6

What I found was that when the graphs were generated with each edge being

placed with a probability of .36p (Cp=.36), the first and second rounds used roughly

the same number of processors.  With this factor chosen, I went on to run more tests

on a range of values for n and chart these results against the predicted requirements

for 2 rounds of O n n
3

2 (log )æ
è

ö
ø  processors.
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Figures 1.7 and 1.8 show the predicted required number of processors and

the actual number used in the simulations.  Figure 1.7 shows the number of

processors used as n increases.  Figure 1.8 shows the relative growth rate as n

increases.  The simulated results (based on the maximum of Round 1 or Round 2

over repeated trials) showed that the number of processors used has the same

growth rate as the formula.  We can use these empirical results to demonstrate that

the growth rate predicted by the formula is accurate.

With these results affirming the validity of my implementation, I moved

forward to implement a general k round algorithm.  I implemented the k round

algorithm by making the number of rounds to use a parameter of the function and

then having it call itself (with the number of round left reduced by one) recursively

on the individual groups.  I experimented with the value of Cp and found that using

.36 for the a-expanding graphs generated at the 3 round level worked well.  Since the

probability p was not based on the number of rounds or any other factor specific to

the use of the a-expanding graphs, it is reasonable to have found a single constant

factor that works well regardless of how many rounds are being used.
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Figure 1.10 shows that once n starts to get large (around 2000), the relative

growth rate of the number of processors required (empirical results versus the

formula derived from the proof) is nearly constant.

I then continued to test the results for 4 and 5 round sorting, assuming that

.36 was a good Cp factor to use in all sorting cases.  The results showed that the

number of processors required decreased in accordance with the given formula.
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Figure 1.12 shows that for each of the cases which were simulated, once n

starts to get large, the relative growth rate of the number of processors required

(empirical results versus the formula derived from the proof) is nearly constant.

These experiences have shown that PippengerÕs non-constructive algorithm

can be used to create a computer usable implementation of the algorithm.

Additionally, through empirical experimentation, it was shown that smaller graphs

(nearly one third the size) could be constructed that would still greatly reduce the

number of processors needed in later rounds.
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Section 1.3: Investigating impact of block size

I considered experimenting with the size of the groups.  The paper said that

groups of size O n nk k
1

1 2
-æ

è
ç

ö

ø
÷(log )  would exist.  As I read the paper, I noticed that it

was possible that using the same exact size for all of the groups would not work

well.  My first thought was to build the groups in a way that no two groups would

share any members.  I quickly found that this would be difficult if not impossible to

do.  The values are only partially ordered (for any element we know there are some

number of elements below it and above it, giving it a range in which it belongs) and

the algorithm does not guarantee exact dividing points between groups.  With this, I

had the program create sets of candidates for each group.  Each set of candidates was

slightly larger than the size of the group, but as the group sizes grew, this overflow

(and in turn overlap of work) did not appear to grow.  After the preliminary results

matched the growth rate of the formula, I varied the size of the groups, but found

that using exactly n nk k
1

1 2
-

(log )  for the group size worked best.

The final thing that was highlighted by these experiments was the cost of

taking the transitive closure of the ordering information between rounds.  The work

done here would also be spread across all processors being used. While this work

done between rounds is not considered by the literature when discussing the run

time of the various parallel algorithms, it might be advantageous to use slightly more
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processors if this transitive closure work could be reduced.  The real time overhead

of doing transitive closure while simulating a massively multiprocessor machine on a

single processor also made experiments on larger values of n prohibitive.

Section 1.4: Are the graphs being used really a-expander graphs?

While the graphs that were generated using the stated probability p did

perform well, two questions exist: are they really a-expander graphs and can a

smaller formula for p be used to still obtain graphs that work well.

There are techniques to test whether a given graph is an a-expanding graph.

However, even if a graph is not a perfect a-expander graph, it may still perform well

in the algorithm.  As the probability p was being fine tuned, we saw that the number

of questions (or comparisons) remaining for later rounds did change.  In the

following graph we see that as the constant factor applied to p is increased from .01 to

.60 there is at first a steep drop off in the number of remaining questions, and then a

more gradual decrease.
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The point at which the decrease becomes more gradual represents the point at

which we begin to get ÒgoodÓ graphs.  These graphs might not technically be

a-expanders, but they possess enough of the associated properties to perform well in

their given task.  These results appear to correspond to the findings of [BT2] which

discuss how when building certain types of graphs, an absolute breakpoint can be

found before which the graphs are not useful but after which they are.
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Section 1.5: Summary of empirical results

Through these experiments I can address both of the philosophies that I

presented earlier:

Philosophy 1: Non-constructive proofs built upon probabilistic techniques can be

just as good as, if not better than, constructive ones.

I have shown that this non-constructive proof can be used as the basis for

the design of a computer program that would in fact sort a given set of values in a

given number of rounds using the stated number of processors.  There is some

preprocessing required (specifically the generation and confirmation of the a-

expanding graph), but this would only be required once for a given input size.  Once

a suitable graph has been generated, it can be reused.  The generation of a usable

graph with the given factor of p should be accomplished quickly (polynomial time)

as it is likely that the first graph generated will work well in practice.

Philosophy 2: Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.

In these empirical studies, the value of p was fine tuned in a way that was

not predicted by PippengerÕs proof.  Additionally, the performance of the graphs as

the constant factor was changed implies that there is a breakpoint before which

graphs that are not quite a-expanders do not work well and after which they do.
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While this might be obtainable by extending previous theoretical results in other

areas [BT2] it is interesting to observe the actual performance here.  The empirical

results also showed that there was not a large constant being hidden in the order

notation when discussing the number of porcessors which would be required.
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Chapter 2 : H����ggkvist and HellÕs K-Round Sorting Algorithm

Section 2.1: Sketch of algorithm

H�ggkvist and Hell [HH2] present constructive proofs for the following

upper bounds :

Merge(n,k) = Q n

k

k

2

2 1-
æ

è
ç

ö

ø
÷

Sort(n,k) = O n k
1

2

2
+æ

è
ç

ö

ø
÷

The sorting algorithm heavily depends upon the use of parallel merging.  As a

result of this, merging itself became an object of interest in the paper.  The paper

gives matching upper and lower bounds for merging.  While all that was needed was

an upper bound for merging, knowing the exact bound allows us to know that the

sorting algorithm cannot be improved upon via an improvement to the bound on

merging.

The algorithm given for merging two ordered lists of n elements is to

partition each list into groups, and then do a pairwise comparison of the first

element of each group in the first list with the first element of each group in the
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second list.  After doing these comparisons, there will be a (small) limited number of

groups whose members are still unordered relative to one another.  The proof of this

builds on the fact that if you cluster the elements into nodes of a graph in a certain

way, and only add edges between two cluster nodes if there is an uncompared pair

of elements across the two clusters, this graph is planar (and thus linear in size).

Theorem 2.1[HH2]: Merging in    k    rounds can be done with O n

k

k

2

2 1-
æ

è
ç

ö

ø
÷  processors

H�ggkvist and Hell establish that a group size of O n
1

3
æ

è
ç

ö

ø
÷  is optimal for two

round parallel merging, giving Merge(n,2)=O n
4

3
æ

è
ç

ö

ø
÷ .  By applying inductive

methods on the merging of the groups whose orientation was not previously

determined by the comparison of the first elements of each group, they

derive the generalization Merge(n,k)Ê=ÊO n

k

k

2

2 1-
æ

è
ç

ö

ø
÷ . ¨

Theorem 2.2[HH2]: Merging in k rounds requires W n

k

k

2

2 1-
æ

è
ç

ö

ø
÷  processors

As with the upper bound proof, the lower bound proof begins with a proof

on two rounds and is then extended by induction.  The following is a sketch
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of H�ggkvist and HellÕs proof that merging in 2 rounds requires W n
4

3
æ

è
ç

ö

ø
÷

processors:

· Assume you could merge two lists in two rounds with fewer than 
1

4

4

3n

processors.

· Let G be the bipartite graph representing the first round of comparisons.

· Build GÕ representing clusters of uncompared pairs after that first round

and show that there are more than 
1

4

4

3n  comparisons remaining.

This can then be extended through induction to the result of

Merge(n,k)Ê=ÊW n

k

k

2

2 1-
æ

è
ç

ö

ø
÷ . ¨

Theorem 2.3[HH2]: Sorting in 3 rounds can be done with O n
8

5
æ

è
ç

ö

ø
÷  processors

The algorithm to sort a list of values in k rounds is based on using some

number of rounds (j) to partition the list and sort each partition, and then use

the remaining k-j rounds to do a pairwise merge of those partitions.  In the 3

round case, the list is partitioned into n
2

5  groups of size n
3

5  and each

partition is then sorted in one round using n
6

5  processors per partition, or a
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total of n
8

5  processors.  Then in the two remaining rounds, a pairwise

merging of the n
2

5  groups would produce all information required to fully

order the original n values. ¨

They give a set of formulas that can be used to determine how many rounds

to use on each stage (sorting/merging) based on the number of rounds that you have

available.  They then go on to give estimates based on this information for three, four

and five round merging.

Sort(n,3)Ê=ÊO n
8

5
æ

è
ç

ö

ø
÷

Sort(n,4)Ê=ÊO n
20

13
æ

è
ç

ö

ø
÷

Sort(n,5)Ê=ÊO n
28

19
æ

è
ç

ö

ø
÷

Each of these assumes the use of one round to sort the partitions and then

k-1 rounds to merge those partitions.  They also assume that the partitions are all of

the same size.  If the original list does not partition evenly, then the last partition

can be padded out to match the size of the others.  A general formula is not given
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since it is actually a recurrence which involves taking the best sort/merge split

recursively.  An approximation of this is given as O n k
1

2

2
+æ

è
ç

ö

ø
÷ .

Section 2.2: Implementation of algorithm

With this information, I went on to implement 3 round sorting.  From the

algorithm you can derive the fact that you should first partition the original list into

groups of size O n
3

5
æ

è
ç

ö

ø
÷  and then do a two round pairwise merge across these

partitions.  The paper explicitly said the groups should be of size O n
1

3
æ

è
ç

ö

ø
÷  for two

round merging.  I began by partitioning into lists exactly of size n
3

5  (m) and then

doing a pairwise merge using groups exactly of size m
1

3 .  The results when I tested

my program on values of n up to 2000 showed that the second and third rounds (the

ones being used to merge) were both using less than n
8

5  processors.  However, there

was a difference in the number of processors used in each round.
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To see if that difference would disappear as the value of n increased, I

extended testing to values of n up to 10000.
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The chart shows that the difference remained.  This could have indicated that

while the growth rate is following the formula of n
8

5 , some improvement might have

been attainable by bring the number of processors used in rounds two and three

closer together.  However, by varying the size of the partitions as well as the size of

the groups during merging by a constant factor, I found that small changes did not

significantly effect the end result and that large changes had detrimental effects.

Additionally, the points at which this occurred were not constant.  The following

charts demonstrate these differences on several values of n.
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While it was possible in some cases to bring the number of processors used

in these rounds closer together, on the whole, using the initial values proved best.
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Figure 2.10 shows that the relative growth rate between the formulaÕs

predictions and the empirical results as n increases is pretty much constant.

To move from three round sorting to four round sorting, the only part of the

algorithm that changed was the merging.  Instead of using two rounds to merge, the

program could now use three rounds to do the pairwise merging of the partitioned

list.  Now, after the first elements of each group had been compared to one another,

the groups whose positions were not known could be merged using the two round

algorithm.

Sorting in 4 Rounds
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Figures 2.11 and 2.12 show that until n reaches 8192 the algorithm is

requiring more processors that predicted, but that once 8192 is reached it gives the

results that it promised.  The value of 8192 is (not coincidentally) 213 .  It is at this

point that the groups are created in such a way that work is actually done in the

fourth round.  Once this mark is reached, the four round sorting algorithm performs

as predicted by the formula of O n
20

13
æ

è
ç

ö

ø
÷ .  Due to these results, I did not continue on

to do empirical tests on sorting in five rounds since n would need to be at least 219

before useful results would be obtained.  Further work could investigate generating a

formula to predict where this cutoff would fall for a given number of rounds.



46
Section 2.3: Difficulties encountered during implementation

Implementing this algorithm on a sequential processor presented several

challenges.  One such challenge was deciding how to hold the information gathered.

The premise is that all information required to order the original list would be

generated by following the algorithm, but this information needs to be stored in a

manner that could lead to the actually ordering.  I decided to use an adjacency matrix

that would be updated with the information obtained during each round.  When

merge(n,k) would call down to merge(m,k-1) (where m would be the size of each

group in the k round merge) the information obtained would assume that the lists

were of size m rather than n.  In order to integrate the information obtained from

these recursive calls, the information obtained in the local merges had to be re-

oriented to be placed into the matrix at the previous calling level.  I do not know if

these issues would apply when implemented on an actual parallel machine.

Another challenge was dealing with the even partitioning at each level of

merging.  While padding the information would work, it appeared that the

implementation would be made more difficult if the padding needed to be done

internally at each level of merging.  The solution I employed was to choose values

for n that would partition well at each level.  I was able to generate these values with

a short program.  The program could iterate through values of n close to the one that
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I wanted to use and print out that ones could be easily manipulated so they would

partition evenly at each level.

A hidden cost within this sorting algorithm is the cost of propagating the

information obtained during the merging rounds.  After the first elements of each

group are compared, the adjacency matrix needs to have all of the information that

this generates filled in.  This will essentially take the same amount of time as the

transitive closure of the matrix.  Additionally, after the remaining groups are merged,

this information has to be incorporated into the primary matrix.  While this second

cost could possibly be avoided by a more clever use of the matrices, the first one can

not be if our goal is to have an ordered list at the end.

Section 2.4: Summary of empirical results

Through these experiments I can address both of the philosophies that I

presented earlier:

Philosophy 1: Non-constructive proofs built upon probabilistic techniques can be

just as good as, if not better than, constructive ones.

While this proof is a constructive one, the issues that arose during

implementation were more complex than with PippengerÕs.  Due to the pairwise
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merging at every level and associated requirement that all lists being merged have the

same length, there is a good deal of extra overhead required to coordinate this.

Philosophy 2: Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.

In addition to the overhead for coordinating the blocks at each level, these

empirical studies led to the observation that n needs to be sufficiently large so that

there are no empty blocks at the bottom of the recursion.  While the paper does say

that the algorithm works for Òsufficiently large values of nÓ it did not indicate what

this meant in terms of specific values of n.  After doing the empirical tests, we now

know that in the case of four round sorting, n must be at least 213 .  Additionally, by

observing the algorithm in action I have ascertained the cause of this boundary and

have extended this to the assumption that for five round sorting, n must be at least

219 .  The values for which n is too small to use this algorithm is something that may

have been found through a more detailed analysis of the algorithm.  However, that

value and its origins were highlighted through the experimental results.
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Chapter 3 : AlonÕs 2-Round Sorting Algorithm Using Direct

Implications

Section 3.1: Sketch of algorithm

Alon [Alon1] presents a constructive proof of the following upper bound:

Sort (n,2) = O n
7

4
æ

è
ç

ö

ø
÷

This algorithm, while slightly worse than current constructive upper bounds

had the advantage of using only a limited form of transitive closure between rounds

(specifically, only direct implications).  Alon used techniques in projective geometry

to construct graphs that could be used in the creation of such an algorithm.

Additionally, it is less complicated to implement than those better algorithms.

PippengerÕs constructive algorithm uses Ramanujan graphs whose constructions are

not straightforward.  Wigderson and ZuckermanÕs algorithm will be discussed in

Chapter 6.

Definition 3.1: Direct implications

Given a graph, we can add edges to the graph by adding connections based on

direct implications.  This means if in our original comparison graph we have
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x>y and y>z then we will add to that graph the fact that x>z.  Note that if we

have x>y, y>z, z>w we do not obtain x>w.

Definition 3.2: Geometric expanders

Geometric expanders are built using projective geometry over a finite field.

An individual geometric expander is based upon two inputs, a prime number

q and a dimension d.  They are built as follows:

· Create a set of d+1 tuples of the following form
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etc.

[NOTE: Each tuple represents a hyperplane in d+1 space over the finite

field of q]

· In the bipartite graph G(U,V,E) that we are building, allow each tuple to

represent corresponding vertices in U and V.

· An edge will exist between uÎU and vÎV in G if the planes which

represent u and v are orthogonal to one another.  That is u v q· º 0 mod .
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Theorem 3.3[Alon1]: Sorting can be done in 2 rounds using only direct implication

with O n
7

4
æ

è
ç

ö

ø
÷ processors

There are two inputs when building geometric expanders [Alon1], a prime

power q and a dimension d.  The number of vertices in each half of this type

of bipartite graph is 
q

q

d+ -

-

1 1

1
.  The degree of any given vertex in this type of

graph is 
q

q

d -

-

1

1
.  If you set n

q

q

d

=
-

-

+1 1

1
 then we can say thatq nd=

æ

è
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÷O

1

and

that the degree is O n d
1

1
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è
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ø
÷ .  Finally, we know that graph will have O n d

2
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edges.  Alon used graphs of this type with dimension 4 and showed that due

to their expanding qualities, if a bipartite graph (x1 to xn on each side of the

graph) of this type is used to specifiy the comparisons done in the first

round of a two round sorting algorithm and only direct implications were

computed between rounds that there would only be O n
7

4
æ

è
ç

ö

ø
÷  comparisons

remaining for the second round.  Since there are O n
7

4
æ

è
ç

ö

ø
÷  edges in this type of

graph, this gives an O n
7

4
æ

è
ç

ö

ø
÷  two round sorting algorithm that only requires
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direct implications between rounds.  NOTE: We will elaborate on this proof

later. ¨

Section 3.2: Implementation of AlonÕs Algorithm

In order to implement this algorithm, I needed to be able to build the

specified geometric expanders and then use them to direct the first roundÕs

comparisons.  Between rounds I needed to deduce any direct implications from that

set of comparisons.  For the second round I needed to execute all remaining

unanswered comparisons.

The results of these experiments (see Figure 3.4) showed that while the first

round (as specified by the graph) did take O n
7

4
æ

è
ç

ö

ø
÷  processors, after doing the partial

transitive closure (PTC), there were far fewer comparisons remaining than expected.

The explanation of this phenomena is left as an open question.
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Alon - Sorting in 2 Rounds
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Upon seeing this I experimented with block sizes as I had in the case of the

[HH2] algorithm.  However, this did not appear to have any real impact.  A new

variable available for manipulation in this algorithm was the dimension.  I

experimented with changing the geometric expander so that it was of dimension 2 or

3 rather than 4.  This led to some interesting results.

Using dimension 3 appeared to give a noticable improvement over the

dimension 4 case.

Sorting in 2 Rounds
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Sorting in 2 Rounds
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The number of processors used in the first round is O n
5

3
æ

è
ç

ö

ø
÷  as would be

expected using geometric expanders of dimension 3, but the remaining comparisons

in the second round also appeared to be O n
5

3
æ

è
ç

ö

ø
÷ .  The known lower bound from

[BT1] is W n
5

3
æ

è
ç

ö

ø
÷ .
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Section 3.3: Some new thoughts on the algorithm and the proof

Definition 3.8: a b c dn n n na b c d, , ,( )-expanders

A bipartite graph on (U,V,E) with |U| = |V| = n will be called an

a b c dn n n na b c d, , ,( )-expander if it has the following two properties:

1) " Í( ) ³ Þ Î Ç £{ } £[ ]Z V Z n x U N x Z n na b ca b c: ( )

2) " Í( ) ³ Þ ³ -[ ]Y V Y n N Y n nb db d( )  ¨

The special case of Theorem 3.9 (below) with 3
3

4

1

2

1

2

3

4n n n n, , ,
æ

è
ç

ö

ø
÷ -expanders of

size O n
7

4
æ

è
ç

ö

ø
÷  is implicit in [Alon1].

Theorem 3.9: If there exist a b c dn n n na b c d, , ,( )-expanders of size O ne( ), then we can

sort in 2 rounds using only direct implications with O n e d c a amax( , , , )+ + - +( )1 2 1  processors.

Assume that we have a set of n values that we want to order and an

a b c dn n n na b c d, , ,( )-expanding graph of size O ne( ) connecting n vertices

representing the n values.
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For Round 1, we do the comparisons as designated by the graph.  This

requires O ne( ) processors.  (NOTE: We will be using a bipartite graph on 2n

vertices during our construction, but since it is a symmetric bipartite graph,

we can view it as if an n vertex graph were being used when we actually sort

by folding the two halves onto one another.)

Since we know that there exists an ordering of the n values, we can imagine

having the vertices correctly ordered.  Note that the graph connecting these

vertices is still an a b c dn n n na b c d, , ,( )-expander.  We can then divide the

vertices into 
1 1

a
n a-  blocks 

  
( , , , )A A A

a
n a1 2 1 1

K
-

 each of ana  vertices.

We are interested in knowing how many comparisons remain for Round 2.

Take an ordered pair (x,y) with x AiÎ +1 and   y A AiÎ È È -1 1L .  Set Z Ai= .

By Part 1 of Definition 3.8, x U N x Z n nb cÎ Ç £{ } £: ( ) b c .

i) Look at x not in this set

Those x have at least bnb  neighbors in Ai .  By Part 2 of

DefinitionÊ3.8, since N x nb( ) ³ b  we know that N N x n nd( ( )) ³ - d .  That

leaves d an nd a  uncompared pairs per block for Round 2.  This contributes

1 1

a
d an n na d a-  or O nd+( )1  comparisons to Round 2.
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ii) Look at x in the set

In the worst case we would need to compare each of these cnc  values

to all other (n-1) values.  This contributes 
1

11

a
cn n na c- -( ) or O nc a+ -( )2

possible comparisons to Round 2.

iii) We also have to look within each block for possible values for y which

have not been compared to x.  

At most this will be C na( , )a 2  which is O n a2( ).  This contributes

1 1 2

a
n na a-  = O na+( )1  comparisons to Round 2.

This shows that O n e d c a amax( , , , )+ + - +( )1 2 1  processors will be required to sort n

values given an a b c dn n n na b c d, , ,( )-expander of size O ne( ). ¨

Theorem 3.10 [Alon1]:

(Theorem 2.1 in [Alon1])

Let G=(U,V,E) be a bipartite graph.

· Let |U|=n and |V|=m

· Let the degree of uÎU = k and the degree of vÎV = s
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· Let the adjacency matrix A be defined as

(auv)uÎU,vÎV

auv={1 if u and v are adjacent, 0 otherwise}

·   ks n= ³ ³ ³l l l1 2 K  as the eigenvalues of AAT

If you take Z Í V, |Z|=z and let X={uÎU : |N(u) Ç Z| £ b} with x=|X| then

x n k b m z ks n m z( ( ) ( )( )) ( )- - - - £ -2
2 2l l .

Furthermore, if b
kz

m
£

2
 the inequality reduces to:

x
n m z

n k b m z ks
£

-

- - - -

l
l

2
2

2

( )

( ( ) ( )( ))
 ¨

The above theorem relies on b
kz

m
£

2
 so that x can be isolated by dividing

both sides by ( ( ) ( )( ))n k b m z ks- - - -2
2l  without the danger of dividing by a

negative value and thus switching the direction of our inequality.  Since we want b to

be small, and the value which is used for b in the O n
7

4
æ

è
ç

ö

ø
÷  algorithm is at most 

kz

m2

there might not appear to be a reason to look for other values of b for which the
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above holds as well.  However, to obtain the O n
5

3
æ

è
ç

ö

ø
÷  algorithm, we would need to

take b
kz

m
>

2
.  For this reason, this proof can not be extended to explain our

empirical results with dimension 3 geometric expanders.  Additionally, we would

need to take b>2k to extend this formula to dimension 3.  This would cause the

mathematics to fail, but more importantly, it would not make sense to have b>k.  If

b were greater than k, then we would be talking about all vertices since each vertex is

known to have k neighbors (k<2k<b).

Theorem 3.11 [Alon1]: some properties of geometric expanders

Theorem 2.3 in [Alon1] gives us certain information about geometric

expanders with any given q and d.  We will use n to represent the number of

vertices in each half of this bipartite graph and k to represent the degree of

any vertex.

If G is a geometric expnader on q and d then:

· n
q

q
q q

d
d d=

-

-
= + ( )

+
-

1
11

1
Q

· k
q

q
q q n n

d
d d

d

d

d

d=
-

-
= + ( ) = +

æ

è
ç

ö

ø
÷

- -
- -1

1
1 2

1 2

Q Q

· G has ( ( ))1 1
2

1

+
-

o n d  edges
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· l2
1

1 2

= = +
æ

è
ç

ö

ø
÷

-
- -

q n nd
d

d

d

dQ

· X x N X n
n

x

d

³ Þ ³ -

+

( )

1
1

 ¨

These properties include the fact that our geometric expanders of dimension

3 will have O n
5

3
æ

è
ç

ö

ø
÷  edges.  Although the known lower bound would appear to imply

that these results cannot be improved upon by using a lower dimension geometric

expander, it is good to see that using dimension 2 geometric expanders does not work

well empirically:
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Alon with Dimension = 2
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Section 3.4: Theorizing how various algorithms would impact [HH2]

In [HH2] a constructive algorithm for sorting in k rounds was presented for

k>2.  It is not applicable in the k=2 case since it builds upon merging using 2 rounds.

The algorithm is recursive in nature, sorting sublists using some number of rounds

before merging using the remaining rounds.  The non-constructive result of

Sort(n,2)=O n n
5

3

1

3(log )
æ

è
ç

ö

ø
÷ from [BT1] would improve the results in [HH1].
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We can easily discuss the improvements if the dimension 3 algorithm is

O n
5

3
æ

è
ç

ö

ø
÷  and Sort(n,2) turns out to be Q n

5

3
æ

è
ç

ö

ø
÷ .  In the case of Sort(n,4) [HH2] had us

sort sublists in 1 round and then merge these lists in 3 rounds using O n
20

13
æ

è
ç

ö

ø
÷

processors.  If instead we were able to sort sublists in 2 rounds using this Q n
5

3
æ

è
ç

ö

ø
÷

processors and then merge the sublists in 2 rounds, we could accomplish our task

using O n
3

2
æ

è
ç

ö

ø
÷  processors.  Similar improvements could be made for all other values

of k>3 using this algorithm.

Additionally, in the k=4 case where the previous algorithm did not begin to

give good results until n was at least 8192 this new version begins to give good

results with smaller values of n (as small as 931).  In Figure 3.14 and Table 3.15,

when ÒHHÊw/ÊGolubÓ  and HHg are referred to, it is showing the number of

processors used if the dimension 3 geometric expanders are used to sort in 2 rounds.

These results are used only to help visualize the differences that an algorithm which

used around n
5

3  processors could make.
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HH : 4 Rounds (small n)
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HH w/Golub : 4 Rounds (small n)
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While the limitations that blocksize presented in [HH2] regarding choices of

values of n which would work (if the actual n was smaller, we would pad upwards

to the next largest n which would divide well into blocks) still exist, they are no more

an issue here than before.

The following is a chart showing the number of processors required to sort in

the specified number of rounds using the original [HH2] algorithm (HH), that

algorithm with AlonÕs O n
7

4
æ

è
ç

ö

ø
÷  result (HHa) and that algorithm with a O n

5

3
æ

è
ç

ö

ø
÷  result

(HHg).  This last case is given again for the purpose of visualizing the potential

impact of the result.  [Note: If a given algorithm has the value f in the below chart,

that means it will require O n f( )  processors.]
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Rounds HH HHa HHg

3 8/5
(1.60000)

8/5
(1.60000)

8/5
(1.60000)

4 20/13
(1.53846)

26/17
(1.52941)

3/2
(1.50000)

5 28/19
(1.47368)

22/15
(1.46666)

23/16
(1.43750)

6 24/17
(1.41176)

24/17
(1.41176)

24/17
(1.41176)

7 176/127
(1.38583)

76/55
(1.38182)

26/19
(1.36842)

8 80/59
(1.35593)

188/139
(1.35252)

194/145
(1.33793)

9 200/151
(1.32450)

200/151
(1.32450)

62/47
(1.31915)

*

10 64/49
(1.30612)

64/49
(1.30612)

212/163
(1.30061)

*

11 464/359
(1.29248)

40/31
(1.29032)

1556/1213
(1.28277)

12 1592/1249
(1.27462)

488/383
(1.27415)

100/79
(1.26582)

13 512/407
(1.25799)

512/407
(1.25799)

1108/883
(1.25481)

*

14 1136/911
(1.24698)

1136/911
(1.24698)

 536/431
(1.24362)

*

15 1168/943
(1.23860)

704/569
(1.23726)

 3896/3161
(1.23252)

Table 3.15

The rows that have a * next to them represent cases where HHg would give

an improvement over HH when HHa does not.
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This can also be represented by the graph:
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In many cases, HHa performs slightly better than HH.  In all of these cases

and several more, HHg would perform slightly better than HH or HHa.  We have a

non-constructive algorithm [Pip1] which performs better and will later discuss a

constructive algorithm [WZ1] which theoretically performs.  However, it should be

noted that by using either (HHa) or (possibly HHg) whenever the recursive

algorithm gets to a place where it needs to sort in 2 rounds only direct implications

(rather than full transitive closure) will be computed during that part of the

algorithm.  This will give us the associated benefits of requiring only direct

implications at some levels of these sorts.
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Section 3.5: Summary of empirical results

In this case, my empirical results led to the possibility of a new constructive

upper bound for this problem.  Although the performance of the 2 round sorting

algorithm using dimension 3 geometric expanders has not yet been formally

described, the empirical results imply that there is something of interest happening

in this case.

I can again address one of the philosophies that I presented earlier:

Philosophy 2: Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.

By implementing AlonÕs algorithm, I was able to find that the number of

actual comparisons remaining in the second round appear to grow at a slower rate

than the proof suggested.  Since a flexible implementation existed, I was able to

experiment with factors such as the dimension of the geometric expander and

observe the results.  These observations have led me towards attempting to formally

describe and prove these results.  Additionally, the algorithm can be utilized with

[HH2] in practice to improve upon the apparent performance of the algorithm.
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Chapter 4 : Alon, Azar and VishkinÕs K-Round Sorting Algorithm

Section 4.1: Sketch of algorithm

Alon, Azar and Vishkin [AAV1] present a constructive proof for the

following upper bound:

Sort(n,k) has expected valueO n k
1

1
+æ

è
ç

ö

ø
÷

This comes from a randomized algorithm in which the exact comparisons are

determined at run time using randomization.  The expected number of required

processors is then calculated for the algorithm.

Theorem 4.1[AAV1]: Sorting can be done in    k    rounds with an expected O n k
1

1
+æ

è
ç

ö

ø
÷

processors

In the first round of this algorithm, nk
1

1-  values 
  
( , , , )t t t

n k1 2
1

1K
-

are chosen at

random and then compared to all n-1 other values requiring O n k
1

1
+æ

è
ç

ö

ø
÷

processors.  Between rounds, the n values are partitioned into nk
1

 blocks
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( , , , )A A A

n k1 2 1K  based on the now ordered list of nk
1

1-  values such that if

i<j then all members of Ai  are less than members of Aj .

In the remaining k-1 rounds, each Ai  is sorted.  It is shown in [AAV1] that

the expected number of processors required to do this will be O n k
1

1
+æ

è
ç

ö

ø
÷ . ¨

It should be noted at this point that this tells us that the expected number of

processors is O n k
1

1
+æ

è
ç

ö

ø
÷ .  In the event that there are more unanswered questions than

there are available processors in a terminating round, that round will need to be split

into multiple rounds.  This will be referred to again in Section 4.3 below.

Section 4.2: Implementation of algorithm

This algorithm is a straight forward one to implement but does hide some

coordination overhead that will be discussed later in this section.  The following

figures show some results of sorting 100 groups of values of the specified sizes and

how many processors were required on average.
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AAV : 2 Rounds
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AAV : 3 Rounds
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AAV : 4 Rounds
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Figure 4.4

As predicted by the proof of this algorithm, the average number of

processors required grows at the rate of O n k
1

1
+æ

è
ç

ö

ø
÷ .

While randomly choosing a group of nk
1

1-  elements to use can be done

quickly, there is (as there is with all of the algorithms we have looked at) work to be

done between rounds.  After Round 1 is completed, we need to create the

  
( , , , )A A A

n k1 2 1K  partitioning of the values.  All of the required comparisons have

been done, but that information needs to be converted into actual partitionings.  This
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requires that (a) the 

  
( , , , )t t t

n k1 2
1

1K
-

 values be ordered and that each of the remaining

n nk-
1

 values be placed into their appropriate cell.

Section 4.3: Thoughts on expected number of rounds

A question that arose during these experiments was that of how the expected

number of processors would translate into an actual number of rounds.  Since an

underestimate of the number of processors required would lead to additional rounds

being needed it would be in our best interest to observe the behavior of the algorithm

to assist us in the selection of a number of processors to use.

The following figures show not only the average number of processors

required in each round but the maximum number as well.  Additionally, a line has

been added representing twice the expected number of processors for improved

visualization.
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AAV : 2 Rounds
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In the two round case, the average number of processors used in rounds one

and two as well as the maximum number of processors used in round 2 are so close

that they all overlap with the line representing the formula.

As in the two round case, many of the results being shown in the three and

four round cases are so close that they overlap and appear as a single line or as a

cluster of lines.  It would be difficult to draw the graph as to show each line distinctly

in grey scale colors.



75

AAV : 3 Rounds
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AAV : 4 Rounds
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These empirical results give us reason to believe that if we allocate twice the

expected number of processors we have a good chance of being able to avoid the

requirement that additional rounds be used in the sort.

Section 4.4: Summary of empirical evidence

Through these experiments I can address both of the philosophies that I

presented earlier:

Philosophy 1(modified): Proofs built upon probabilistic techniques can be just as

good as, if not better than, constructive ones.

The expected number of processors required by this randomized algorithm is

lower than the existing constructive as well as non-constructive upper bounds.  The

above results show that this algorithm can be implemented with no more difficulties

than other algorithms.  It is also less than the lower bound for deterministic sorting,

but that is due to the fact that this is the expected number of processors rather than

a guaranteed number of required processors.

Philosophy 2: Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.
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The above results show that the algorithm presented in [AAV1] behaves as

expected.  Additionally, it appears that by allocating twice the expected number of

required processors, we will be able to sort in the desired number of rounds as well.

While the proof does present us with an expected value, it does not address whether

this average is obtain through radical swings above and below the average.  The

empirical results show that the answer to this question is ÒnoÓ.  The empirical

results begin to build a better picture of the run-time behavior of the algorithm.
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Chapter 5 : Bollob    s and ThomasonÕs K-Round Sorting Algorithm

Section 5.1: Sketch of algorithm

Bollob s and Thomason [BT1] present a constructive proof for the

following upper bound:

Sort(n,k) =  O n
k

3

2

1

2 2 1

1

2

+

-
+æ

è

ç
ç

ö

ø

÷
÷

( )  [for k odd]

Only direct implications (see Definition 3.1) are computed between rounds.

Bollob s and Thomason comment that this algorithm is easy and will work for all

values (specifically small values - eg: less than 1000) of n.

Theorem 5.1: Sorting can be done in    k    rounds (where    k    is odd) using only direct

implications with O n
k

3

2

1

2 2 1

1

2

+

-
+æ

è

ç
ç

ö

ø

÷
÷

( )  processors

This algorithm is similar in some ways to [HH2] in that you first partition

the original list into sublists, then sort those sublists and finally merge values

back into a single ordered list.  However, unlike [HH2] which took j rounds

to sort the sublists and then used k-j rounds to execute all possible pairwise
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merges of those sublists, [BT1] uses k-2 rounds to recursively sort the

sublists and then only 2 rounds to accomplish the merging of the sublists.

Additionally, rather than computing the full transitive closure of the

relationships learned, only direct implications need be computed.

The original list of n values is partitioned into m sublists (each of size n/m)

where m is defined as n
k

1 2 1
1

2/( )
+

-
.  These sublists are then ordered in k-2

rounds (using this algorithm recursively until k=1 in which case the

traditionally method of comparing all values to all other values is used).

Once the sublists are ordered, they are then recombined using the remaining 2

rounds.

In the first of the 2 remaining rounds comparisons are done in a similar

manner to how you would search an ordered list in parallel:

v Î original list of values

Take one of the ordered sublists 
  
X x x x v Xn

m
= { } Ï1 2, , , ,K

Compare v with 
  
x x x

n
m

n
m

n
m

, , ,
2

K

(Note : This should be seen as creating sub-blocks of each sublist)

These comparisons will require nm
n

m
 processors.
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In the second of the 2 remaining rounds all remaining questions typically

must be answered.  However, after the previous round of questions, for

every value v in the original list and every sublist it will be known which

sub-block that value belongs to.  It will be sufficient to compare the element

to all elements in those sub-blocks (one per sublist) and then compute direct

implications.  Since there are m sublists each having a sub-block of size 
n

m

for each of the original n values these comparisons will require nm
n

m

processors as well.

Since nm
n

m
 = n

k

3

2

1

2 2 1

1

2

+

-
+

( )  we have our result. ¨

Section 5.2: Implementation of algorithm

The algorithm is mostly straightforward to implement.  The only tricky part

is dealing with uneven block sizes and some floor/ceiling considerations when

computing, for example, 
n

m
 for use in the program.  The following figures show

the results of using this algorithm in the 3 round, 5 round and 7 round cases.
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BT : 3 Rounds : Original Algorithm
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BT : 5 Rounds : Original Algorithm
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BT : 7 Rounds : Original Algorithm
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Figure 5.4

In all of these cases, the algorithm acted as expected, with each roundsÕ

processor requirements having the same growth rate.  Some minor oscillations occur

in one of the rounds in the 7 round case, but these are due to the blocksizes and

boundary cases as the sub-blocks become smaller and smaller in the later rounds.

We witnessed similar oscillations in [HH2].

Section 5.3: Experimenting with ÒsecondÓ round

After implementing the algorithm as presented in [BT1] I became curious as

the whether more information was being accumulated than was being used.
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Specifically, after the first ÒmergingÓ round, it seemed that there would potentially

be enough information to eliminate the need for some comparisons.

In my modified implementation, rather than waiting until after both of the

ÒmergingÓ rounds to do the computation of direct implications, I instead did these

computations after the first round and then asked only remaining questions during

the second round.  I felt that since every value in the original list could be used as a

direct intermediary between many pairs computing these direct implications could

reduce the number of actual comparisons needed in the second merging round.  The

following graphs show that this does appear to be the case:
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Modified BT Algorithm : 5 Rounds
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Modified BT Algorithm : 7 Rounds
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We can see from these that the number of processors that would be sufficient

in the rounds that represent the ÒsecondÓ round of the ÒmergingÓ is far fewer than

required by the paper.

Unfortunately, it does not appear that we can take advantage of this by

altering the number of sublists upon which we operate.  While doing this can bring

the processors used in the odd numbered rounds closer together (as shown below for

the 3 round case), three things should be noted: (1) the odd numbered rounds all

appear to be growing at the same rate, (2) most of the odd numbered round are

already close and it is only the final round which is really lower and (3) there is no

real effect towards bringing these closer to the growth rate of the number of

processors used in the even numbered rounds.
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Another possibility would be to increase the size of the sub-blocks within each

sublist.  However, this in itself would have no impact on the number of processors

required in the final round.  The following shows (in the 3 round case) how the first

two rounds are affected by altering the size of the sub-blocks:



87

Dp Applied to Sub-block Size
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We do find that choosing a slightly different sub-block size could slightly

decrease the number of processors required in the first round before the number of

processors required in the second round increased too much.  However, the growth

rate still appears to match that of the original formula.  These factors may, however,

be of interest when working on a particular architecture.

Section 5.4: Comparing HH and BT algorithms

While this algorithm does give a slightly worse upper bound than [HH1] did,

it does hold two possible advantages.  The first of these advantages is the fact that it

requires only direct implications rather than full transitive closure.  The second is
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that it will work on smaller length inputs (n) than [HH1] will and does not have the

strict limitations for the choice of n that the blocksize issues enforce in [HH1].

As weÕve been observing algorithms through empirical studies, it might be

interesting to observe the relative performance of these two algorithms for some

ÒsmallÓ lists.  While the [BT1] algorithm does require more processors, the relative

number of processors required in these trials did not exceed a factor of 2.6 for values

of n between 500 and 10,000.
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HH -vs- BT
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Section 5.5: Summary of empirical evidence

Through these experiments I address one of the philosophies that I presented

earlier:

Philosophy 2: Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.

By implementing Bollob s and ThomasonÕs algorithm, I was easily able to

begin to test my theory that there was more information gathered during the first

round of merging than was actually used by the paperÕs algorithm.  Additionally,

once having preliminary confirmation of this I was easily able to begin to test two
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sub-theories which said that this additional information could not actually be used to

any significant benefit.  I would note that interesting results are not always helpful

ones.
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Chapter 6 : Wigderson and ZuckermanÕs K-Round Sorting

Algorithm

Section 6.1: Sketch of algorithm

Wigderson and Zuckerman [WZ1] present a constructive proof of the

following upper bound:

Sort(n,k) = O n k
1

1
1+ +æ

è
ç

ö

ø
÷

o( )

Their algorithm is based upon PippengerÕs non-constructive sorting

algorithm [Pip1].  PippengerÕs algorithm presents a non-constructive proof of the

existence of a category of expanding graphs which can be used well in sorting

problems. Wigderson and Zuckerman present a constructive proof of the existence

of a category of expanding graphs similar to the ones used by Pippenger.   They then

go on to show how these graphs can be used in various applications, including

sorting.

Wigderson and Zuckerman construct their expanders using a function known

as an extractor.  Extractors are functions which essentially take a long string of bits

with a short string of random bits and return a string of nearly random bits. An
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( , , , , )n m t d e -extractor takes the length of the ÒlongÓ input string as n, the ÒshortÓ

input string as t and the output string as m.  Additionally, the Ònearly randomÓ

quality of the output is described in terms of d and e.  They then use these

extractors to build expanders.

Given an ( , , , , )n m t d e -extractor E n t m: { , } { , } { , }0 1 0 1 0 1´ ®  and an input of

length N n= 2  you can create a bipartite graph H using the extractor.  We can

describe this graph as H V W V Wn m: , { . } , { , }´ = =0 1 0 1  where you connect

x nÎ{ , }0 1  to z mÎ{ , }0 1  iff $ Îy t{ , }0 1  such that E x y z( , ) = .  Once this graph has

been built, any vertices in W with degree greater than 
2 2N

M

t

 (or more than twice the

average number of nodes in W) are removed.  We would then use this graph to build

a new graph (G) which would then be used to sort.  An edge (x,z) in the graph

(which would represent a comparison between the xth and zth input values) is placed

into graph G iff  x V y W z V x y H z y HÎ Î Î Î Î, , ,( , ) ,( , ) .  The properties of an

( , , , , )n m t d e -extractor lead to G being an nd -expander.

Section 6.2: Requirements on size of input

In this algorithm, we need to consider the log of the size of the input when

determining for which input lengths the sort will work.  In Section 5.4 of [NZ1] a
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series of lengths for the {0,1}-tuples is given.  It starts with l0 as the largest integer

such that 
l n

ii

0

1
4

1 4+
¢æ

è
ç

ö
ø
÷

=

¥

å £
d

d
 and that l

l
i

i= -

+
¢

1

1
4

d .  Notice that each li represents the

length of a tuple, and that the sequence is non-increasing.  If l0 is not at least 1, then

the extractor cannot be built.  However, since we can solve the above summation to

obtain that l0 is the largest integer such that l
n

0 16
£

¢dd
 we know that n must be at

least 16 for l0 to be at least 1.  This would mean that our smallest input would need

to be 216 or 65,536.

Additionally, by writing a program to iterate through combinations of n, d, e

and c, I found that n would need to be significantly higher than 16.  In my

experiments, the first such value of n which satisfied the requirements was 33.  The

results of this experiment are in the table which follows.
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n/

c

7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2

30 NB NB NB NB NB NB NB DG DG

31 NB NB NB NB NB NB NB DG DG

32 NB NB NB NB NB NB NB DG DG

33 NB NB NB NB L0 L0 L0 DG DG

34 NB NB L0 L0 L0 L0 L0 DG DG

35 L0 L0 L0 L0 L0 L0 L0 DG DG

NB (n below value) = l0 is zero (because n <
¢

16

dd
)

L0 = l0 is non-zero with d=0.5

DG (delta greater than 1) = ¢d is greater than 1

Figure 6.1

Using the value 33 for n would give us an input size of 233, or over 8 billion.

Our experiments to date have been on inputs ranging in sizes from as small as 100 to

at most 15,000.   This was partially due to time considerations in our simulations.

Since we are only using a single processor during these simulations our ability to
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experiment on larger inputs is impaired.  However, if the smallest inputs for which

this technique would work are on the order of 8 billion, it is possible that this

algorithm, while an interesting application of constructed expanders, would not be of

use in many situations.  It should be noted that PippengerÕs probabilistic generation

of graphs for sorting works well even on small inputs.

Section 6.3: Summary of empirical evidence

Through these trials and analysis I can address both of the philosophies that

I presented earlier:

Philosophy 1: Non-constructive proofs built upon probabilistic techniques can be

just as good as, if not better than, constructive ones.

While PippengerÕs algorithm [Pip1] is non-constructive, in my opinion it has

two advantages over the above algorithm.  First, PippengerÕs works for much smaller

values of n.  Second, the implementation of PippengerÕs algorithm is more

straightforward.  This second consideration is non-trivial.  While an excellent

mathematician will be able to understand the algorithmÕs design and proof of

correctness and an excellent programmer will be able to implement the algorithm

(once understood) on a specific hardware platform, it would likely require a most
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excellent team with both qualities to accomplish the job; one or the other would not

suffice.

Philosophy 2: Implementing algorithms (in simulated situations) can reveal new and

interesting information as well as suggest new questions.

In this instance, we did not execute our simulations due to the required size

of the input.  However, it was our interest in the implementation and

experimentation with the algorithm that led us to the point where we more closely

analyzed the algorithmÕs requirements.  Additionally, while a purely mathematical

analysis delivered the n³16 result, a computer program was used to help identify the

probable starting point of n=34.
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Conclusions

When beginning this research path, there were two major philosophies that I

wished to demonstrate:

· Philosophy 1: Non-constructive proofs built upon probabilistic

techniques can be just as good as, if not better than, constructive ones.

· Philosophy 2: Implementing algorithms (in simulated situations) can

reveal new and interesting information as well as suggest new questions.

In the preceding chapters I have described my experiences with the works

included in six different papers in the area of parallel sorting.  The following chart

summarizes which experiences helped affirm each of these two philosophies and

how:

Philosophy 1 Philosophy 2

Pippenger Showed that this non-

constructive proof can be used as

the basis for the design of a

The value of p was fine tuned in

a way that was not predicted by

PippengerÕs proof.
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computer program that would in

fact sort a given set of values in a

given number of rounds using the

stated number of processors.

Once a suitable graph has been

generated, it can be reused.  The

generation of a usable graph with

the given factor of p was

accomplished quickly.

Additionally, the performance of

the graphs as the constant factor

was changed implies that there is

a sharp breakpoint before which

graphs do not work well and

after which they do.

Figure C.1
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H�ggkvist

and

Hell

While this proof was a

constructive one, the issues that

arose during implementation were

more complex than with

PippengerÕs.  Due to the pairwise

merging at every level and

associated requirement that all

lists being merged have the same

length, there is a good deal of

extra overhead required to

coordinate this.

In addition to the overhead for

coordinating the blocks at each

level, these empirical studies led

to the observation that n needs

to be sufficiently large so that

there are no empty blocks at the

bottom of the recursion.  In the

case of 4 rounds, this value is 213

or 8192.  For 5 rounds it is

expected to be 219.

Figure C.2
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Alon The implementation of this

algorithm was of the same level

as PippengerÕs algorithm.  There

was slightly more mathematical

background necessary.  ItÕs use

of partial transitive closure is itÕs

most noteworthy distinction.

By implementing AlonÕs

algorithm, I was able to find that

the number of actual

comparisons remaining in the

second round appear to grow at

a slower rate than the proof

suggested.  Since my

implementation was flexible, I

was able to experiment with

factors such as the dimension of

the geometric expander and

observe the results.  These

observations have led me

towards attempting to formally

describe and prove these results.

Figure C.3
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Alon,

Azar

and

Vishkin

The expected number of

processors required by this

randomized algorithm is lower

than the existing constructive as

well as non-constructive upper

bounds.  The results showed that

this algorithm can be

implemented easily.

It appeared that by allocating

twice the expected number of

required processors, we would

be able to sort in the desired

number of rounds.  While the

proof presented an expected

value, it did not address whether

this average was obtained

through radical swings above and

below the average.  The

empirical results begin to build a

better picture of the run-time

behavior of the algorithm and

show that they do not appear to

suffer from radical swings.

Figure C.4
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Bollob s

and

Thomason

The implementation of this

algorithm requires slightly more

planning than PippengerÕs but is

otherwise straight forward to

implement.

By implementing Bollob s and

ThomasonÕs algorithm, we were

able to test the theory that there

was more information gathered

during the first round of merging

than was actually used by the

paperÕs algorithm but that it

would not be easy to capitalize

on this information.

Figure C.5
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Wigderson

and

Zuckerman

Although this was a constructive

proof, it was found that

PippengerÕs algorithm has two

potential advantages over it.

First, PippengerÕs works for

much smaller values of n.

Second, the implementation of

PippengerÕs algorithm is more

straightforward.

In this instance, we did not

execute our simulations due to

the required size of the input.

However, it was our interest in

the implementation and

experimentation with the

algorithm that led us to the point

where we more closely analyzed

the algorithmÕs requirements.

Figure C.6

It is my belief that both of these philosophies are sound and that there is

much to be gained from the empirical study of theoretical works in computer

science.

This work is mean to be a beginning rather than the end.  Some interesting

questions which now exist include:

· Are the graphs being built and working well in the simulation of PippengerÕs

algorithm actually a-expanders?
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· Could a-expanders with properties (relative to sorting) similar to Ramanujan

graphs be generated probabilistically and tested more easily than the current a-

expanders?

· Will Sort(n,2,2) be found to be Q n
5

3
æ

è
ç

ö

ø
÷ ?

· Can any of these sorting algorithms be used towards selection in rounds?

Additionally, although the application studied here (parallel sorting in

rounds) may not become practical for years if ever, there are other areas which the

techniques and philosophies discussed can be applied.  Some examples of these are:

· Probabilistically generated memory layouts.

· Probabilistically generated selection, merging and selection networks.

In chosing other problems to study, we would likely target ones in which the

probabilities are close to 1 as in the case of PippengerÕs algorithm.
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