
Creation of a New Case for LUPSort : ALTERNATING

Evan B. Golub
Moshe Augenstein

Brooklyn College, City University of New York
Department of Computer

Brooklyn, New
& Information Science
York 11210

ih.skaa
The LUPSort was recently introduced in a paper presented at the 1990 ACM SIGCSE Technical

Symposium. Although the algorithm was presented, only a few special cases were analyzed in detail.
In this paper we summarize the algorithm and present a new class of key distributions for analysis.

These distributions are analyzed both mathematically and empirically, and the consistency of the results is
shown. Finally, the significance of this class of distribution in the overall development of the case study is
presented.

1 Introduction

In the February 1990 issue of SIGCSE, Merritt and

Nauck published a paper titled “Inventing A New Sorting

Algorithm : A Case Study.”[1] The purpose of this paper

was to show the path of development of a new sorting

algorithm from concept, to algorithm to mathematical

proof of complexity.

The algorithm suggests using a modified version of

the solution to Dijkstra’s Longest Upsequence Problem [2]

to create a list structure which can be sorted efficiently.

The modified LUP algorithm gives a set of ordered lists

which is then merged by pair-wise techniques.

Merritt’s paper concludes by showing that the cases of

sorted and reverse sorted input data will run in O(n) time.

Additionally, the worst case is mathematically proven to be

less than 2nlog2n. However, while the best cases are

analyzed in detail, the other cases are not given a suitable

review.

The purpose of this paper is to continue the case
study of the invention of this new sorting algorithm.

When creating a new algorithm, it is helpful to know more

than just the upper and lower bounds of its complexity. In

order to study the complexity in other cases, it is helpful

to create special classes of input data, as well as using

extensive sets of empirical results.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ita date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

01991 ACM 0-89791-377-9/91 /0002-0108 . ..$1 .50

2 The LUPSort
The LUPSort is divided into three distinct stages.

The first stage is to create the m-strucfure by using the

solution to Dijkstra’s Longest Upsequence Problem. The

m-structure is a set of lists made up of the elements of the

original data set. The heads of these lists are in increasing

sorted order, and tbe elements on each list are sorted as

well. Elements are placed on each list(thc nt-strucwe is

built) as follows. First it must be determined whether a

new number belongs on an entirely new list, the condition

for this being that the new number is greater than the first,

or head, element of the last list in the structure. If this is

not the case, it is then determined if the new number

belongs on the first list. The condition for this is that the

number is less than or equal to the head of dlat first list. 1[

this too is not the case, then a binary search is done on the

head elements of the existing lists to dctcrminc the list on

which the new number belongs.

Given Input Data: ~2112155164119 170123179188~

Stage 1 gives the m-structure : I 2 I 12 I 19123 I 70 I 79 I 88{

55 64

The second stage of the sort is the creation of the
m*-stmcture from Lhc m-slruc~ure. The definition of this
process is to take any single element list in the m-

restructure,and link it to the top of the following list. This

can be implemented in a two pass method. The first pass

is from list K-1 to list 1, where K is the number of

108

lists in the m-structure, linking the single element lists. for this data set is therefore n-l(Stage 1)+ 2n- 1(Stage 2)+

The second pass is from list 1 to list K, eliminating the O(Stage 3) = 3n-2. Again, O(n) and clearly a suitable

now empty lists and obtaining the new value for K. best case.

Stage 2 gives the m*-structure: -[
12 64 79
19 88
55

The third stage of this sort is the pair-wise merge of

the lists in the m*-strucwre. The content of the structure

allows bypassing the comparison of the heads of any two

lists, since the heads are already in sorted order. Further,

once there is one list of a pair which is exhausted, the
remainder of the other list is simply linked to the bottom

of the new list holding the merge to that point.

Stage 3 gives the sorted list:

12 112119123155164170179188[

3 Best CaseComulexitv of LUPSort
To analyze the complexity of this algorithm, we

consider the best and worst cases for each stage of the sort.
In [1] the two best cases are discussed, these being sorted

and reverse sorted data sets.

The case of reverse sorted data is the best case for the

sorting algorithm described. In the fust stage of the sort,

all of the elements will be placed on the first list. Since

the first element is automatically placed, we are left with

n-1 elements to place. Two comparisons must be made to

determine that an element belongs on the first list, giving

us a total of 2(n- 1) = 2 n -2 comparisons for the first stage.

The second stage of the sort looks at 2K-1 lists during

its execution, where K was the number of lists in the

original m-wucture. For reverse sorted data K= 1, so that

only 1 comparison is needed in this stage.

The third and final stage is the pair-wise merge, but

since there is only one list, no merging is done. The net

4 Development of a New Case(ALTERNATING)
To find LUPSort’s mathematical average case one

would need to calculate the probability and complexity of

every possible input scenario. However, by observing

LUPSort’s intriguing symmetry, and its self-balancing

properties, we can develop a case which reflects how

LUPSort works on a general, randomly created data set.

This is possible due to the fact that the general ordering of

a random set of numbers will not resemble either of the

best cases(sorted/reverse sorted), and in this situation the

best and worst cases for each stage have a counter

balancing effect on each other. Empirical results from over

50,000 test runs on random data sets showed the range of

the number of comparisons done to be well within +-5%

of the median for those runs. The following explains the

various counter-balancing features which lead to the

parameters for the formal definition of our new case to be

referred to as ALTERNATING.

Within the first stage, the creation of the m-structure,

there is a balancing effect between best and worst case

situations. The best case for inserting a number into the

m-structure is if it needs to be placed on a new list, where
it will take 1 comparison. The worst case is when the

value needs to be inserted on the last list of the structure.

Here 2 comparisons would be needed prior to the binary

search, then an additional rlog2r1+ 1, where r= ’’the number

of lists - 2“, giving a tot~l of ‘~og2r1+3. However, the

more frequently the “best case” occurs, the larger the

“worst case” will be when it occurs, since the best case

increases r’s value.

For the first stage, where the worst case would be

when extensive binary searches need to be done to insert

elements into the m-structure, one such worst case would

be as follows. If the first 1/2n elements were in sorted

comparisons done for the sort is therefore 2n-2(Stage 1) +

l(Stage 2) + O(Stage 3), which equals 2n -1 in the case of
order, and then the next 1/2n elements all had to be placed

reverse sorted input data. This is O(n), and is quite in the next to last list. Here it would take 1/2 n +

acceptable as a best case. 1/2n [10g2(1/2n) + 1] comparisons to accomplish the
The other best case mentioned in [1] is that of sorted

data. In this situation, each new element is placed on a
first stage of the sort.

For the second stage of the sort, the worst case would
new list. Since once again the first element is placed

be where K=n, such as the case of sorted data. However,
automatically, we are left with n-1 elements to place. It

takes 1 comparison to determine that an element belongs
when we have single element lists, they do not need to be

on a new list, resulting in n-1 comparisons for this stage.
merged. Therefore, with either the worst case for the first

When we reach the second stage, there are n lists, so
or second stage, the third stage would not be at its worst

case.
that K=n. Since this stage depends entirely on K, 2(n)- 1 The worst case for the third stage needs for there to be
comparisons are done here (using the same formula as we many lists to merge, none of which will be exhausted too
used in reversed sorted, 2K- 1), However, after this stage is

completed, since all of the lists were single element lists,
early in a particular merge. If for each pair of lists being

there is only one list remaining.
merged, one list were exhausted while the other were still

Therefore, in third stage(as in the reverse sorted case),
full, this could be seen as a best case. If both lists are on

no comparisons are necessary. The net comparisons done
their last element when one is exhausted, this could be

109

seen as a worst case. A hypothetical average here would be

where one list is half-way through when the other is

exhausted.

From this information we can see that the data set we

want needs to have no single element lists generated from

it, yet still have a high number of lists. For our

ALTERNATING case we therefore need a set which will

give us 1/2n lists, which will each have 2 elements, in an

order which will allow the second of each pair of lists

being merged to be exhausted when the first list is only

half way through.

5 Formal Definition and Complexity of Case
The data set ALTERNATING can be defined as: For

any position K, if K is odd, then K+ 1’s number is less

than Ks number, and if K is even, then K+ 1’s number is

greater than K’s number. Additionally, every second

number beginning with the first is in non-increasing order,

and starting with the second is in increasing order.

e.g. ALTERNATING :
500,1 ,499,2,498,3,497,4,496,5,495,6,494,7,493,8

If we trace through the sort algorithm, using an

ALTERNATING data set of size n, where n is a power of

2, we can come up with a formula for the number of

comparisons done by any set of ALTERNATING numbers.

This formula can then serve as the theoretical median of

random data set runs on some data set of size n.

The first stage of the LUPSort is to create the m-

restructure. In the case of ALT, 1/2 of the numbers,

beginning with the first of the set, and continuing as every

second number in the set, belong on a new list. Since the

sort automatically puts the first number into a new list,

and to place the other numbers into new lists takes 1

comparison each, then these 1/2n numbers take 1/2n - 1

comparisons to place.

For the other 1/2n numbers, they will ix placed on an

existing list. The first two of these numbers will take 2

comparisons each to place, giving 4 comparisons. The

remainder are placed with the binary search. For each of

- insertions, there are initially 2 comparisons done

before reaching the binary search. The binary search itself
then takes ~log2r1 + 1 comparisons, where r=’’the number

of lists - 2.” Therefore the insertion of one of these

numbers will take 2 + (#og2r1 + 1), or [1 o g2rl + 3

comparisons. With ALT, for the R* number of these

1/2n numbers, to be placed, there are R lists in the m-

restructure. The solution for these 1/2n numbers is then

4(first 2 numbers) + Z (~og2r1 +3) as r goes from 1 to

(1/2n)-2 (representing #s 3 to 1/2n). The solution to this

equation is 1/2nlog2n - log2n + 2. Adding the

comparisons for the two groups of 1/2n numbers gives us :

(1/2n - 1)+ (1/2nlog2n - log2n + 2)=

1/2nlog2n + 112n - log2n + 1

The second stage of the LUPSort is the creation of the

m*-structure from the m-structure. In the case of ALT,

there are 1/2n lists. Therefore, by the same equation as in

the reverse sorted and sorted discussion, 2K- 1, the stage

looks at 2(1/2n)-l lists. So, the number of comparisons

done here are:

n- 1

The third and final stage of this sort is the pair-wise
. thmerge of the lists in the m*-structure. For the I pass in

the pair-wise merge of the m*-structure created with ALT

&ta, each pair of lists will take 1.5(2i)- 1 comparisons to

merge. The 2i comes from the number of elements in each

list during that pass. The 1.5 comes from the fact that the

second of each pair of lists will be fully exhausted when

the other list is half way through. The -1 comes from the

previously stated fact that the heads need not be compared

during the pair-wise merge. Additionally, for pass i, there

are ‘/2(i+l) [n over 2 to the i+l] pairs to merge. So, for each

pass i, there are (‘/2(i+l)] * (1.5(2i)- 1] comparisons done.

In all, there are log2n - 1 passes through the lists. The

sum of these passes can be written as the summation:

Z {n/2(i+l)) * { 1.5(2i)- 1), as i goes from 1 to log2n -1

This summation is solved to be :

3/4nlog2n - 5/4n + 1

By adding the sub-totals from each stage of the sort,

we come up with the total number of comparisons done to

sort a file of ALT through the use of LUPSort to be:

Stage 1 (1/2nlog2n + 1/2n - log2n + 1) +

Stage 2(n -1)+

Stage 3 (314nlog2n - 514n + 1)

5/4nlog2n + 1/4n= - log2n + 1

6 Em@rical Supuort for ALTERNATING Case
Now we have the ALTERNATING case of 5/4nlog2n

+ 1/4n - log2n + 1. In order to test its accuracy, we need

empirical random results. By doing 1500 sorts on data sets

created by a random number generator(Table 1), of sizes 64

and 512 elements, we can obtain a run-time average case.

For the size of 64, tests runs gave 484 comparisons

as the average. By replacing n with 64 in the formula for

ALTERNATING, we come up with 491, For the size of

512, test runs gave 5865 comparisons as the average. The

ALT formula gives 5880. The range for the number of

comparisons done on a data set of 512 random numbers

110

was from -5600 to -6100, no where near O(n), yet within

a reasonable range of 5880. These results serve as

justification to classify the case of ALTERNATING as the

median value for the complexity of random data set

LUPSort runs, and this case is ()(n logzn).

7 Conclusion
While the sort does have good upper and lower

bounds, 0(nlog2n) and O(n), they are extremely

dependent on the input data. Additionally, our

ALTERNATING case, representing the complexity of

random tests, is in excess of n lo g2n. By looking at the

different possible situations, we can see that this sort is

not a particularly useful one for real world applications.

If we know that the data will be almost sorted or

reverse sorted order, we can use other sorts which are

simpler and shorter, which take up less memory, that will

still run in O(n) time. If the data is presented in a

random, mixed up ordering, then using a straight merge

will do the sort with less work than the LUPSort, as far as

the ALTERNATING case has shown.

The sort is, however, useful as part of a case study for

computer science students. Merritt’s paper shows the steps

taken in developing this complex sort. However, it is also

important to show that after you have written an

algorithm, and defined its best and worst cases, you need to

continue. You have to see how it works in random data set

situations, and how often a random run will fall near the

best case. The process of establishing a data set which

will result in an empirically supportable average for the

random data set, as well as solving for its precise

complexity are important steps for a computer science

student to study. They will help develop the student’s

ability to better utilize his knowledge of mathematical

induction and intuition,

REFERENCES

1 Susan Merritt and Cecilia Nauck. Inventing a New

Algorithm : A Case Study. SIGCSE, 181-184(1990).

2 Edsger Dijkstra. Some beautiful arguments using

mathematical induction. Acts Informatica, 13, 1-8(1980).

Table 1
Sample Empirical Results

NLfi!!a ~ max comm average &’lJ

64 100 444 511 485
500 417 517 485

1000 417 517 485
1500 417 519 484

491

512 100 5657 6024 5879
500 5624 61C0 5865

lm 5624 6129 5866
1500 5624 6129 5865

5880

Notes :

1) Special thanks to The Ford Foundation for their

guidance and support

2) Pascal-coded interpretation of LUPSort algorithm

may be obtained from the authors of this paper.

111

