
PC-based Development Environments and a
Unix-centric Curriculum: Some Practical Issues

Evan Golub
Department of Computer Science

University of Maryland
College Park, Maryland 20742-3255 USA

<egolub @ acm.org>

Abstract
As computers have become a more common household item, computer science students are able to work at home rather
than in campus labs. At institutions that have Unix-centric resources, students are able to use these home computers to
connect to campus machines remotely. However, some students want to use a PC-based development environment
rather than the ones available under Unix. Do they gain an advantage? Are there problems that they will encounter
when they bring their program into the Unix environment?

1. Introduct ion
At the University of Maryland, we teach the introductory
computer sequence using C++. Our students use g++ or c++
in Unix. The test projects using automated scripts on this
platform. However, many students have access to other
compilers, typically integrated development environments
(IDEs), for their home machines and often ask if they can use
those, rather than connecting (usually via dialup lines) to the
Unix machines. Several highly self-motivated students had
already reported success in using IDEs at home to develop
and test their projects before transferring them to the Unix
platform and performing final tests. I set forth to observe
two major issues involved in allowing officially students
to use these tools in their projects. These issues were:
(1) Would students have difficulties when porting their

projects to Unix?
(2) Would students scores on written exams, where they

would have no access to the IDEs, be affected?
Additionally, I planned to see where students could use
the IDE during traditional classroom presentations.
To perform this experiment, I needed to arrange for soft-

ware to be available, as well as the creation and presentation
of new lab material to introduce the various aspects of this
environment. Microsoft was approached with a proposal of
what I intended to do, and awarded a gift of funding, soft-
ware, and computers. The computer science department
contributed space and resources as well. With these, I estab-
lished a computer lab on campus. There, we could show
students how to use Visual C++ and how they could work on
assignments at the campus with lab assistants available. We
also provided students with free copies of Visual C++ to use
at home. We chose Microsoft and Visual C++ due to their
previously expressed interest in educational issues and my
familiarity with the IDE as one in which students had often
requested permission to use.

2. Preparat ion
The class selected for the exper iment was the local
Computer Science II course. Within this course, we deter-
mined two basic groups for this experiment. The first would
not use anything other than the standard Unix resources pre-
viously used in the course; the other would have the option
of using Visual C++. For the group given the option of using
Visual C++, all students in that group would have several
recitations that met in the computer lab to introduce the com-
piler and environment. We selected the groups based upon
the section for which they were registered. Students in my
sections would be the experimental group while students in
the other lecturer s sections would receive the same material
as previous semester s students had. Within the experimen-
tal group, programming journals and a simple yes/no ques-
tionnaire were used to help determine which students used
Visual C++ while working on their projects. We created a
series of recitation labs to introduce the basic Visual C++
environment as well as the debugging environment and fea-
tures.

3. Statistical Observations from Fall 1999
We used two different techniques during the Fall 1999
semester to determine which students in the experimental
group used Visual C++: a checkbox on the second exam and
journals for each of the projects. As with any self-reporting
situation, there is a question of reliability. For example,
since we gave the second exam right after project 3 was due,
the results of the checkbox on the exam and the journal for
the project should have been the same. However, the results
differed, as shown in Figure 1. Figure 2 shows the averages
on the second exam and third project, groups based on
whether they reported using Visual C++.

O <

¢D

• : 2':)~!

Vol 33. No. 2 June 2001 51 S n ~ a d ~ SIGCSE Bulletin

Reported using
Visual C++

E x a m C h e c k b o x 75 83
Projec t Jourl la l 53 105

Did not relmrt using] Whole
Visual C++

Figure 1

Exam 2 (divided according to
exam checkbox)
Project 3 (divided according to
exam checkbox)
Project 3 (divided according to
journal entries)

Figure 2

Reported using Did not report using Whole
Visual C++ Visual C++ Class

78.86 79.27 79.08

82.77 77.83 80.18

85.94 77.82 80.18

The noticeable difference in the average of the project 3
grades for those reporting the use of Visual C++ between the
two reporting methods shows the delicateness of this type of
analysis. I felt that the checkbox on the second exam was the
more accurate representation, but provide both distributions
here for completeness. We might attribute this difference to
better students being more likely to report which compiler
they used in their journals as they were instructed to do.

In addition to the averages, we generated ANOVA
results (shown in Figure 3) using the ANOVA analysis tool
in Microsoft Excel 97 with alpha set to 0.05. The null
hypothesis in this would be that the students results were
similar regardless of their use of Visual C++ while working
on projects.

Exam 2 (divided according to
exam checkbox)
Project 3 (divided according to
exam checkbox)
Project :3 (divided according to
journal entries)

F-critical value

0.033457 0 .855092 3.898435

2.31646 0 .130036 3.901761

6.502738 0 ,011735 3.901761
Figure 3

4. L a b R e c i t a t i o n s in Fal l 1 9 9 9 a n d S p r i n g 2 0 0 0
In our Computer Science II course, there are two recitations
scheduled each week. Teaching-assistants introduce some
compiler specifics along with practice problems and some
supplemental material. For this experiment, we decided to
have some of these recitations help in a computer lab, and to
have the Visual C++ IDE introduced. The first lab focused
on the details of creating a project using Visual C++, import-
ing an existing project to Visual C++ and exporting a project
from Visual C++ to the Unix environment. The second and
third labs focused on using the debugger to trace through
programs both to find errors and to observe how and when
things such as constructors and destructors are called.

We had to make some changes in how to scheduled and
run the labs. There were three sections of the course in the
experimental group. Since the hands-on lab was scheduled
during a recitation period, the three sections were rotated
through over a week and a half period. In the Fall 1999
semester, I taught each of the lab meetings rather than the
teaching assistants. We did this primarily to facilitate
dynamically altering the content of the labs based upon the

reactions of the students.
There were approximately 60 students registered for

each section of this course, and each lab was approximately
two-thirds full. This is slightly higher than the average atten-
dance for labs in general for this course, but it is impossible
to say if it was due to increased interest, or the fact that they
knew their instructor would be present. At the end of each
lab, 10 to 15% of the students would usually stay to ask addi-
tional questions about the IDE. Based on student comments,
I developed the impression that they were mostly happy to
have the IDE presented to them, and that they were. Also,
students were happy that they were not being mandated to
use the IDE. Additionally, the graphical debugging environ-
ment was vastly preferred over text-based ones such as gdb.
In previous terms when I attempted to do detailed debugging
recitations, student opinions were very negative and conse-
quently, typically limited discussion to how to use gdb to
find out what line you core dumped on. However, students
appeared more receptive to graphical debugging. Some also
verbally acknowledged that they felt that they understood
certain issues in parameter passing and class composition
better after seeing things in motion via the debugging envi-
ronment.

In the Spring 2000 semester, the initial plan was to have
the teaching-assistants take over running the hands-on labs.
For the first lab, I met with the teaching-assistants in
advance and presented the lab material to them in the same
manner as presented to the previous classes. Additionally,
students made comments regarding the important points of
each exercise in the lesson. We told each teaching-assistant
to practice going through the material and to be prepared to
present it during the scheduled lab time.

Each teaching-assistant taught their lab session, and I
attended to observe. In all three cases, the labs did not go
welt. In the case of one lab, the teaching-assistant clearly did
not review the material sufficiently and was not able to pres-
ent the material correctly. It was the case that all three teach-
ing-assistants did not spent any time thinking about what
they were presenting, nor had they taken note of any of the
comments made to them when they were shown the materi-
al. At this point, I had to decide either to intensify the train-
ing or to remove the teaching-assistants from the equation. I
decided that I would return to presenting the labs. There
were three factors to this decision. The first was the high
rate of turnover in teaching assistants for this course.
However, the decision was more strongly motivated by the
issue that scheduling all of the recitations to cycle using one
or two lab facilities would produce logistical problems. The
final factor was that I was interested in a process that other
institutions could easily apply. Both teaching-assistant train-
ing as well as lab room usage were things that I felt could
hinder this. The result was that for the remaining hands-on
labs, I did the presentations and began considering other
ways in which I could present the material.

In the end, a workbook [3] seemed to be a good way to
organize the material. I divided the material that I had pre-
sented in the labs into individual exercises for the workbook.

SIGCSE B u l l e t i n : ~ ; 52 June 2001 Vol 33. No. 2

Additionally, to help encapsulate the individual points, I sub-
divided some of the material in the workbook to make it
more amenable to a variety of learners. Examples that stu-
dents had expressed favor towards, and had asked many
what- i f questions regarding were lengthened and

explained in detail. In the Fall 2000 semester, rather than
holding the hands-on labs, students were given the option of
purchasing a copy of the workbook. Since this was a newly
written work, I did not do a hard sell on it. Rather, I
encouraged students that were more self-motivating to pur-
chase it and asked them to contact me with anything that
they felt was confusing in the workbook. While only about
10% of the enrolled students in my sections of the class pur-
chased the workbook, several came by to complement it, and
there was no negative comment. This was hoped for, as an
excellent undergraduate student who had been in one of the
experimental sections the previous year reviewed the origi-
nal draft and was able to identify poorly worded or unclear
sections.

5. Project Submissions on the Unix Machines
One of the major motivations of this experiment was to see
whether there would be problems with students developing
projects on a different platform than the one on which the
projects would be tested. Consequently, it is important to
discuss the information given to students and the results.
Students were given directions regarding two aspects of
working within Visual C++ specific to this issue.

First, we showed students how to turn off the Microsoft
extensions to C++ by going to the proj ect-settings dialog and
checking the box to disable them. It was anticipated that
with this option (specifically /Za) set, any programs that
compiled and worked under Visual C++ would do so under
g++ on the Unix machines as well. Second, we showed stu-
dents how to achieve input and output redirection using
debug mode and setting the program arguments (which are
essentially the equivalent of command-line arguments). We
also showed them how to use windiffto compare their output
files to sample ones which are posted with sample input
files. In this way, students would be able to test their proj-
ects in the same manner than they were accustomed to on the
Unix machines, which is also the same way in which the
projects are tested for grading.

Over the course of the Fall 1999 and Spring 2001
semesters, I found that very few students (fewer than 10)
reported having problems on the Unix machines with a pro-
gram that had worked correctly under Visual C++. In these
cases, the problem always turned out to be that the program
was reading memory that had been allocated but had not
been initialized by the student s code. We saw an example
of this several times in string comparison functions. This
occurred when students wrote code that went beyond the
final position of the string, into an un-initialized portion of
the array. The problem appeared to be that Visual C++ cre-
ated executables that would blank out memory while g++
would not. This in fact did turn out to be the case due to the
default compiler settings in Visual C++ including the /GZ

option which initializes all local variables not explicitly ini-
tialized by the program to 0xCC [6].

The effect this had upon the student code examples for
string comparison was that if longer strings had been used in
previous function calls, bits o f those values would some-
times still be in the memory locations. A question that this
raised was whether it would be best to remove this compiler
switch from the list. Opinions on this vary. On the one hand,
removing it would allow dirty memory to exist, as g++
allows. However, there is no reason to think that we would
manage the memory in the same way, so between platforms,
it would probably be different dirty memory. The result
would be that a program might still work on one platform,
but not the other.

6. T h e IDE in t h e C l a s s r o o m
In a previous semester, I had attempted to use live demon-
strations using g++ while remotely connected to the Unix
machines. The results were disappointing. The students
raised two concerns. First, they expressed that it was dis-
tracting to see switching between different telnet windows.
Second, just as they had not liked using gdb, they did not like
trying to watch a gdb session. However, it would still be
beneficial to use intuition along with examples from the lit-
erature about engaging the students in general [7] in lower-
level classes [5]. We could also use examples for using ani-
mations to teach the analysis of algorithms [2] and operating
systems algorithms [4] indicated that this type of demonstra-
tion. We should note that other literature [8] indicates that
this might not be the case. During these experimental
semesters, the immediate goal was not to determine whether
there were measurable benefits to this type of in-class
demonstration. Rather, the goal was to see whether using an
IDE such as Visual C++ could address both of the issues
raised by students during the previous attempt.

I found that we could minimize or eliminate the primary
issue o f distraction and disassociation created by switching
between multiple windows by using an IDE. The environ-
ment is specifically designed to integrate the editor, file
manipulation, compilation and debugger into a single work-
space. It was quick and easy to switch between different
files as well as to compile and run the programs. When a
compiler error was raised, it was easy to view both the error
as well as the location in the code that it was raised on
screen.

For the same reasons the graphical debugger appeared
to be preferred by students when working on programs, it
appeared to have been received well in class presentation.
Students seemed very comfortable asking to place break-
points on lines of code, or for code to be moved and altered.
We can probably attribute this to the fact that we can insert
breakpoints via direct manipulation of the code window.
Additionally, the Visual C++ IDE allows for various visual-
izations of the relationship between classes. As an example,
we can see the inheritance-based relationships between a
class and the rest of the classes in a project. We can do this
by right clicking on the class name under ClassView and

Vol 33. No. 2 June 2001 53 ~E ~ SIGCSE Bulletin

selecting to see derived classes or base classes relative to that
class.

Again, this paper makes no claim as to there being measura-
ble benefits from this approach. In fact:, a comparison
between the results of students in my sections and those who
were not shows no statistical difference. However, it was
good to see that students appeared more :receptive to the
more visually attractive environment than they had been to
the text-based one.

7. C o n c l u s i o n s
From the results, it appears safe to conclude that students
would not become dependant upon the tools that an IDE
such as Visual C++ provides if they begin using it at this
level. The exam and project results show that there is n o sig-
nificant effect of students using the software. The higher
project scores among those who used Visual C++ were not
significant, so it is not possible at this point to make any con-
clusions in that regard.

Although the recitation labs appeared to be successful,
we feel that this method of introducing students to the com-
piler would not scale well. This is partially due to the expe-
riences with the teaching assistants and partially due to the
physical lab resources that would be required.
Consequently, the lessons learned in those labs resulted in
the creation of a workbook to introduce those concepts. The

workbook addresses the means to set the compiler to be
ANSI-compliant as well as how to redirect input from text
files and output to text files.

There were some issues with projects working in Visual
C++ but not on the Unix machines. However, in all of the
cases observed, the problem was a subtle programming error
that would have occurred and needed to be fixed even if the
student had been doing all of their development on the Unix
machines. The difference was that they would have detect-
ed the error at an earlier point. However, it should be noted
that since the program was known to be mostly sound, the
students were able to quickly identify where the problem
was, and correct that problem.

We also observed that students appeared receptive to the
use of the compiler during class. This was especially true
during the portions of the class when we discussed inheri-
tance and many what-if questions were raised and could be
answered empirically using Visual C++.

A c k n o w l e d g e m e n t s
Special thanks to the people at Microsoft and the University
of Maryland with whom I have worked. These include
(alphabetically): Craig Cumberland, Larry Davis, John
Gannon, Laura Goyer, Dylan Greene, Kurt Messersmith,
Susanne Peterson, Jandelyn Plane, Robert Rodgers, and John
Spencer.

References
[1] Naps, T., et. al., An overview of visualization: its use and design. Report of the Working Group on Visualization. Proceedings o f the

Conference on Integrating Technology into Computer Science Education (1996), 192-200.
[2] Goodrich, M., Tamassia, R., Teaching the Analysis of Algorithms with Visual Proofs. Proceedings o f the 29th SIGCSE technical sym-

posium on Computer Science Education (1998), 207-211.
[3] Golub, E., A Visual C++ Workbook. 2000.
[4] Hartley, S., Animating Operating Systems Algorithms with XTANGO. Proceedings o f the 25th SIGCSE technical symposium on

Computer Science Education (1994), 344-348.
[5] Lewandowski, G., Computer Science Through the Eyes of Dead Monkeys: Learning Styles and Interaction is CS I. Proceedings o f the

29th SIGCSE technical symposium on Computer Science Education (1998), 312-316.
[6] Microsoft,/GZ (Catch Release-Build Errors in Debug Build). <http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/vcre-

fgz(catchrelease-builderrorsindebugbuild).htm>, 2000.
[7] Rodger, S., An Interactive Lecture Approach to Teaching Computer Science. Proceedings o f the 26th SIGCSE technical symposium on

Computer Science Education (1995), 278-282.
[8] Stasko, J., Badre, A., Lewis, C., Do Algorithm Animations Assist Learning? An Empirical Study and Analysis. Conference proceed-

ings on Human factors in computing systems (1993), 61-66.

SIGCSE Bulletin S n ~ 54 June 2001 Vol 33. No. 2

