1. Let $A x=b$ be a linear system of equations where $A$ is symmetric and positive-definite. Let $x_{k}$ be the $k$ th iterate generated by the conjugate gradient method (CG). Show that if $x_{k} \neq x$, then the vectors generated by CG satisfy
(i) $\left\langle r_{k}, p_{j}\right\rangle=\left\langle r_{k}, r_{j}\right\rangle=0, \quad j<k$,
(ii) $\left\langle A p_{k}, p_{j}\right\rangle=0, \quad j<k$,
(iii) $\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\}=\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\}$

$$
=\mathcal{K}\left(A, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}
$$

Hint: Prove (i) and (ii) simultaneously by induction on $k$, and use a dimensionality argument for (iii).
2. We defined the Chebyshev polynomial in class as $\tau_{k}(z)=\cos (k \arccos z)$ when $z$ is a real number with $|z| \leq 1$.
a. Show that the roots of $\tau_{k}(z)$ are $\left\{\left.\cos \left(\frac{(2 j-1) \pi}{2 k}\right) \right\rvert\, j=1,2, \ldots, k\right\}$.
b. For $k \geq 1$, let $\tilde{\tau}_{k}(z)=\left(\frac{1}{2^{k-1}}\right) \tau_{k}(z)$, so that $\tilde{\tau}_{k}(z)$ is a polynomial of degree $k$ with leading coefficient equal to 1 . Prove that

$$
\max _{z \in[-1,1]}\left|\tau_{k}(z)\right| \leq \max _{z \in[-1,1]}\left|T_{k}(z)\right|
$$

where $T_{k}$ is any other polynomial of degree $k$ with leading coefficient 1.
c. For $|z|>1$, let $\tau_{k}(z)=\cosh (k \operatorname{arccosh} z)$. Show that in this case, $\tau_{k}(z)$ satisfies the same recurrence derived in class,

$$
\tau_{k+1}(z)=2 z \tau_{k}(z)-\tau_{k-1}(z)
$$

d. Prove that

$$
\tau_{k}(t)=\frac{1}{2}\left[\left(t+\sqrt{t^{2}-1}\right)^{k}+\left(t-\sqrt{t^{2}-1}\right)^{k}\right] .
$$

e. Use the result of part (d) to show that

$$
\tau_{k}\left(\frac{b+a}{b-a}\right)>\frac{1}{2}\left(\frac{\sqrt{b / a}+1}{\sqrt{b / a}-1}\right)^{k}
$$

3. Let $A x=b$ be as in Problem 1. Starting from an arbitrary initial iterate $x_{0}$, the steepest descent method generates a sequence of iterates $x_{1}, x_{2}, \ldots$ by the computation

$$
x_{k+1}=x_{k}+\alpha_{k} r_{k}
$$

where $r_{k}$ is the residual $b-A x_{k}$ and $\alpha_{k}$ is a scalar chosen so that the norm $\left\|x-x_{k+1}\right\|_{A}$ is minimal.
a. Explain the name "steepest descent method."
b. Show that the error $e_{k}=x-x_{k}$ satisfies

$$
\left\|e_{k}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\left\|e_{0}\right\|_{A} .
$$

where $\kappa=\Lambda / \lambda$ is the condition number of $A$, that is, the ratio of the largest eigenvalue of $A$ to its smallest eigenvalue.

4a. Write your own version of the conjugate gradient algorithm and use it to solve the problem $A x=b$ where $A$ and $b$ are given in the Matlab mat-file hw1.mat. The program should take as input the matrix $A$, right hand side $b$, a maximum number of iterations, and a tolerance $\tau$. For output, it should produce the computed solution, a vector containing all the residual norms, and a flag indicating whether the stopping tolerance

$$
\left\|r_{k}\right\|_{2} \leq \tau\|b\|_{2}
$$

is satisfied. Use this algorithm to compute an approximate solution $x_{k}$ for which the Euclidean norm of the residual satisfies

$$
\left\|r_{k}\right\|_{2} \leq 10^{-8}\|b\|_{2},
$$

where $x_{0}=0$. Plot the residual norm (on a logorithmic scale) against the iteration counts, and identify the number if iterations required.
b. Modify the program so that at each step, the matrix

$$
S_{k}=\operatorname{tridiag}\left[-\frac{1}{\alpha_{j-1}}, \frac{1}{\alpha_{j}}+\frac{\beta_{j-1}}{\alpha_{j-1}},-\frac{\beta_{j}}{\alpha_{j}}\right]
$$

is also constructed. (Note that $S_{k}$ contains $S_{k-1}$ as a principal minor.) As the iteration proceeds, compute the eigenvalues of $S_{k}$ and compare them to those of $A$. You can use the Matlab function eig to compute the eigenvalues in each case. What do you observe?

