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ALGEBRAIC MULTIGRID PRECONDITIONERS FOR
MULTIPHASE FLOW IN POROUS MEDIA∗

QUAN M. BUI† , HOWARD C. ELMAN‡ , AND DAVID J. MOULTON§

Abstract. Multiphase flow is a critical process in a wide range of applications, including carbon
sequestration, contaminant remediation, and groundwater management. Typically, this process is
modeled by a nonlinear system of partial differential equations derived by considering the mass
conservation of each phase (e.g., oil, water), along with constitutive laws for the relationship of
phase velocity to phase pressure. In this study, we develop and study efficient solution algorithms for
solving the algebraic systems of equations derived from a fully coupled and time-implicit treatment of
models of multiphase flow. We explore the performance of several preconditioners based on algebraic
multigrid (AMG) for solving the linearized problem, including “black-box” AMG applied directly to
the system, a new version of constrained pressure residual multigrid (CPR-AMG) preconditioning,
and a new preconditioner derived using an approximate Schur complement arising from the block
factorization of the Jacobian. We show that the new methods are the most robust with respect to
problem character, as determined by varying effects of capillary pressures, and we show that the
block factorization preconditioner both is efficient and scales optimally with problem size.
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1. Introduction. Multiphase flow is a feature of many physical systems, and
models of it are used in applications such as reservoir simulation, carbon sequestra-
tion, ground water management, and contaminant transport. Modeling multiphase
flow in highly heterogeneous media with complex geometries is difficult, especially
when realistic processes such as capillary pressure are included. The system de-
scribing multiphase flow consists of nonlinear partial differential equations (PDEs),
constitutive laws, and constraints. In this paper, we focus on the iterative solution of
linear systems arising in a fully implicit cell-centered finite volume discretization of a
single component isothermal two-phase flow model with capillary pressure. This fully
implicit time-stepping scheme is among the most robust for simulation of subsurface
flow. Moreover, it can serve as a basis for modeling more complex processes in which
the physical quantities are tightly coupled. This additional complexity could include
adding more components, miscibility between components, thermal effects, and phase
transitions.
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The fully implicit discretization gives rise to a nonlinear system of equations at
each time step. We employ a variant of Newton’s method with an exact Jacobian
of the discretized equations to solve this system. For the linear system, we use a
preconditioned generalized minimal residual (GMRES) method [30]. There is a vast
literature on different approaches to preconditioning the Jacobian system. A very
popular approach is to use incomplete LU factorization (ILU) for constructing the
preconditioner. Though popular for its general applicability, ILU-based precondition-
ers are neither effective nor scalable in many cases. Another approach is to consider
decoupled preconditioners for the coupled system [6]. This methodology is based on
a direct solution of the decoupled pressure system, followed by an iterative solution
using ILU for the global system. This formulation was refined in [34], where it was
proposed to solve the pressure system iteratively, giving rise to the decoupled implicit
pressure explicit saturation (IMPES) preconditioner. The effect of the decoupling is
to weaken the coupling between pressure and saturation. Thus, it is often used as
a preprocessing step to produce a modified Jacobian system, for which new precon-
ditioners can be developed [10, 32]. Another approach to breaking up the coupled
problem into a sequence of simpler problems includes operator splitting techniques,
developed in [14, 15, 26]. With recent development of algebraic multigrid (AMG)
algorithms, the pressure block can be solved efficiently, resulting in the constrained
pressure residual multigrid (CPR-AMG) approach. Recently, AMG has also been
applied to solving the coupled system with some success [10, 32], although develop-
ing a general AMG algorithm for these types of problems remains a topic of ongoing
research [35]. Since the Jacobian matrix has a block structure, one can also consider
a block LU decomposition with an approximate Schur complement, which has been
successfully applied to other models of fluid dynamics [24, 37]. Besides AMG-based
methods, geometric multigrid has also been applied successfully to solve these types
of problems [4, 5]. Our focus in this study is on methods based on AMG because of
its general applicability.

In this paper, we develop a new block preconditioner designed to respect the cou-
pling inherent in models of multiphase flow, and we report our experience with the
performance and scalability of four different preconditioning strategies: (1) a direct
AMG preconditioner for the global system; (2) a two-stage CPR-AMG method with
correction for the pressure block, also known as the combinative two-stage approach;
(3) CPR-AMG with corrections for both the pressure and saturation blocks, known as
the two-stage additive approach; and (4) the block factorization (BF) preconditioner.
An outline of the paper is as follows. In section 2, we present the mathematical for-
mulation for two-phase flow in porous media and discretization schemes. In section
3, we describe the solution algorithms for the linearized system. Numerical results
for the algorithms are presented in section 4. We conclude with some remarks and
discussion of future research directions in section 5.

2. Problem statement. We consider isothermal, immiscible, two-phase flow
through a porous medium. For example, often in reservoir simulation one phase is
oil (the nonwetting phase) and the other is pure water (wetting phase); alternatively,
in groundwater management, one may consider a system of contaminated water that
infiltrates a domain saturated with air.

Conservation of mass of each of the phases leads to the following coupled PDEs:

φ
∂(ρwSw)

∂t
+∇ · (ρwvw) = qw,(1)

φ
∂(ρnSn)

∂t
+∇ · (ρnvn) = qn,(2)
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in which Sw, Sn are the saturation, ρw, ρn are the densities, qw, qn are the source
terms of the wetting and nonwetting phases, respectively, and φ is the porosity of
the medium. We assume a common extension of Darcy’s law to multiphase flow and
express the phase velocities vw,vn as

vα = −krαK
µα

(∇Pα − ραg∇D), α = w, n.(3)

Here, K is the absolute permeability tensor. The terms krα, µα, Pα are the relative
permeability, viscosity, and pressure, respectively, of phase α; g is the gravitational
constant; and D is the depth. Note that the relative permeability terms krα(sα) are
nonlinear functions of the saturation. We also define the phase mobility λα = krα/µα.
To close the system, we also have the following constitutive law and constraint:

Pc(Sw) = Pn − Pw,(4)
Sw + Sn = 1.(5)

From (1) and (2), one can derive separate equations for pressure and saturation.
The pressure equation is elliptic due to incompressibility; the saturation equation is
of convection-diffusion type. Depending on the applications and capillary pressure
models, the saturation equation can be diffusion-dominated, convection-dominated,
or even purely hyperbolic (in the absence of capillary pressure). The pressure equa-
tion is solved implicitly, and depending on the time discretization strategies applied
to the saturation equation, several methods have been developed. In the case where
the saturation equation is discretized using an explicit method (e.g., forward Euler),
it is referred as IMPES [3]; for an implicit time discretization of the saturation equa-
tion, the method is known as the sequential approach, which was first applied to the
black-oil model by Watts in 1985 [36].

The appeal of these methods lies in the sequential decoupling between pressure
and saturation variables. Each equation can be solved separately. In addition, know-
ing the characteristics of each equation facilitates the design of efficient precondition-
ers, which is critical to achieving high performance. Both of these methods have been
successfully applied to many problems where the fully implicit method is difficult to
implement or shown to be too costly. However, the solution obtained from these ap-
proaches may lose accuracy if pressure and saturation are strongly dependent, or if
capillary pressure changes very quickly. The lack of accuracy of these methods can
be even more pronounced if more complex processes such as miscibility or thermal
and phase transitions are included in the model. For a more complete summary of
the advantages and disadvantages of these approaches, we refer the reader to [23].

Substitution of (3) and (4) into (1) and (2) and using the constraint (5) yields
a system of two equations and two unknowns. Using one popular choice of primary
variables, the pressure in the wetting phase and saturation in the nonwetting phase,
u = (Pw, Sn) [38], we obtain

−∂(φρwSn)
∂t

−∇ ·
(
ρw
krw(Sw)
µw

K(∇Pw − ρwg∇D)
)

= qw,(6)

∂(φρnSn)
∂t

−∇ ·
(
ρn
krn(Sn)
µn

K(∇(Pw + Pc(Sn))− ρng∇D)
)

= qn.(7)

This formulation has the advantage that extending it to the case of compressible flow
and multicomponent flow is quite straightforward. (See also [22, 18] for use of this
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model.) In this paper, we consider solving the coupled system consisting of (6) and (7)
fully implicitly. We use a cell-centered finite volume method for spatial discretization,
and the backward Euler method for time discretization, similar to an approach defined
in [13]. This will serve as a base model for adding more complexity in the future. The
finite volume method described below is known for its mass conservation property.
In addition, it can deal with the case of discontinuous permeability coefficients, and
it is relatively straightforward to implement. Under appropriate assumptions, this
method also falls into the mixed finite element framework [25, 28]. For simplicity,
we consider a uniform partitioning of the domain Ω into equal sized cells Ci, i.e.,
Ω =

⋃
i=1 Ci. Let γij denote the area of the face between cells Ci and Cj . For each

cell Ci, integration of the mass conservation equations and the divergence theorem
gives

∂

∂t

∫
Ci

ξα +
∑
j∈ηi

∫
γij

ψα · n =
∫
Ci

qα,(8)

where the storage ξα = φραSα and the flux ψα = ραvα terms are approximated using
the midpoint rule, which is second-order accurate:

ξ̄α =
1
VCi

∫
Ci

ξα, Qα =
1
VCi

∫
Ci

qα.(9)

The surface integrals are discretized using two-point flux approximation (TPFA);
dropping the phase subscript, this gives∫

γij

ψ · n = −γij
(
ρ
kr
µ

K
)
ij+1/2

(
ωi − ωj

)
,(10)

ωi =
Pi − ρij+1/2 gDi

∆xij+1/2
.(11)

The index ij + 1/2 signifies an appropriate averaging of properties at the interface
between cell i and j. The coefficients (ρkr/µ)ij+1/2 are approximated by upwinding
based on the direction of the velocity field, i.e.,

(
ρ
kr
µ

)
ij+1/2

=


(
ρ
kr
µ

)
i

if v · n > 0,(
ρ
kr
µ

)
j

otherwise,
(12)

and the absolute permeability tensor on the faces is computed using harmonic aver-
aging,

Kij+1/2 = (∆xi + ∆xj)
(

KiKj

∆xiKj + ∆xjKi

)
.(13)

Discretization in time using the backward Euler method gives a fully discrete system
of nonlinear equations,

(ξ̄)n+1
i − (ξ̄)ni =− 4t

VCi

∑
j∈ηi

γij

(
ρ
kr
µ

K
)n+1

ij+1/2

(
ωn+1
i − ωn+1

j

)
−Qn+1.(14)



S666 QUAN M. BUI, HOWARD C. ELMAN, AND DAVID J. MOULTON

3. Solution algorithms. The system of nonlinear equations (14) can be written
generically as F (u) = 0, where F : Rn → Rn. We solve the system using Newton’s
method, which requires solution of a linear system at each iteration k:

∂F

∂u

∣∣∣∣
u=uk

(uk+1 − uk) = −F (uk).(15)

In our case, the solution vector u consists of all the pressure and saturation unknowns
at all the cell centers. The Jacobian system resulting from the derivative ∂F/∂u is
often very difficult to solve using iterative methods, and preconditioning is critical for
rapid convergence of Krylov subspace methods such as GMRES. Next, we discuss the
linear system arising from the Newton’s method and give a detailed description of the
solution algorithms we will use to solve this system.

3.1. Linear system. For the set of primary variables u = (Pw, Sn), assuming
that each physical variable is ordered lexicographically, then each nonlinear Newton
iteration entails the solution of a discrete version of a block linear system of the form−∇ · (λwK∇) − φ

∂t
−∇ · (vw)

−∇ · (λnK∇)
φ

∂t
+∇ · (vn) +∇ · (λnP ′cK∇)

(δPwδSn

)
= −

(
qw
qn

)
(16)

in which

vw = −λ′wK∇P̃w,(17)

vn = −λ′nK∇P̃n + λnK∇(P ′c).(18)

All the coefficients in (16) are evaluated at the linearization point P̃w, S̃n. In a more
concise form, the Jacobian matrix of the system has 2× 2 block structure,

J =
(
App Aps
Asp Ass

)
,(19)

and the linear system is Jc = q. The characteristics of the matrix have been discussed
in numerous papers [5, 13, 20, 32]. We summarize important characteristics of the
operators here:

• J is nonsymmetric and indefinite.
• The block App has the structure of a discrete purely elliptic problem for

pressure.
• The coupling block Aps has the structure of a discrete first-order hyperbolic

problem in the nonwetting phase saturation.
• The coupling blockAsp has the structure of a discrete convection-free parabolic

problem in the wetting phase pressure.
• The block Ass has the structure of a discrete parabolic (convection-diffusion)

problem for saturation when capillary pressure is a nonconstant function of
the saturation. When capillary pressure is zero or a constant, there is no
diffusion term, and the block has the form of a hyperbolic problem.

• Under mild conditions, i.e., modest time step size, the blocks App, Aps, Ass
are diagonally dominant.

In this paper, we present some numerical results that show how different models of
capillary pressure affect the algebraic properties of the (2,2)-block Ass in particular
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and the global system in general, which consequently determines the success of AMG
solution algorithms. Our emphasis is on the development and use of preconditioning
operators denoted M ≈ J , for the purpose of solving preconditioned systems

(20) JM−1ĉ = q, c = M−1ĉ.

3.2. Algebraic multigrid. Multigrid is a highly efficient and scalable method
available for solving large sparse linear systems [33, 39]. Geometric multigrid uses a
hierarchy of nested grids, whose construction depends on the geometry of the problem
and a priori knowledge of the grids. AMG methods such as those developed in [31]
have the advantage of not requiring an explicit hierarchy of nested grids. AMG
constructs coarse grids based on the matrix values only, which makes it suitable for
solving a wide range of problems on complicated domains and unstructured grids.
Despite its successful application to scalar problems, use of AMG for coupled systems
is still relatively limited. Some attempts to use AMG to solve fully coupled systems
encountered in modeling multiphase flow for reservoir simulation include [10, 32]. In
this work, we use BoomerAMG [19], part of the Hypre package [16, 17], as a black-box
AMG solver. We note that in our implementation of the coupled system, the Jacobian
matrix passed to BoomerAMG is ordered by grid points, i.e.,

J =

A11 . . . A1N
...

. . . . . .
AN1 . . . ANN

 ,(21)

in which N is the number of grid points and Aij are 2× 2 matrices representing the
couplings between pressure and saturation at points i and j. This is called the “point”
method in [32].

3.3. Two-stage preconditioning with AMG. Unlike AMG, which has not
been popular in reservoir simulation until recently, two-stage preconditioners are
widely used [20]. This idea was developed and first appeared in the context of mul-
tiphase flow modeling in the work of Wallis, Kendall, and Little [34]. Following
[13], we refer to this method as the constrained pressure residual (CPR) approach.
There are many variants of two-stage preconditioners. We discuss two algorithms
here: the two-stage combinative preconditioner—CPR-AMG(1), and the two-stage
additive preconditioner—CPR-AMG(2) [2].

Algorithm 1. Two-stage combinative—CPR-AMG(1).
1. At each iteration k let the residual be rk.
2. Solve δuk+1/2 = P−1

1 rk, compute intermediate solution uk+1/2 = uk+δuk+1/2.
3. Update the residual rk+1/2 = rk −Aδuk+1/2.
4. Solve for the pressure correction Appδp = Rprk+1/2.
5. Update the solution uk+1 = uk+1/2 +RTp δp.

Algorithm 2. Two-stage additive—CPR-AMG(2).
1. At each iteration k let the residual be rk.
2. Solve δuk+1/2 = P−1

1 rk, compute intermediate solution uk+1/2 = uk+δuk+1/2.
3. Update the residual rk+1/2 = rk −Aδuk+1/2.
4. Solve for the pressure correction Appδp = Rprk+1/2.
5. Solve for the saturation correction Assδs = Rsrk+1/2.
6. Update the solution uk+1 = uk+1/2 +RTp δp +RTs δs.

The matrices Rp, Rs denote the restriction of the global unknown vector to the
spaces associated with pressure and saturation, respectively. That is, Rp ∈ Rn×2n,
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and for u =
(
p
s

)
Rpu = p, RTp u =

(
p
0

)
, Rsu = s, RTs u =

(
0
s

)
.(22)

Then, in matrix form, the action of the two-stage preconditioners can be expressed as

δu = M−1
combr = (I −RTp A−1

pp Rp(A− P1))P−1
1 r,(23)

δu = M−1
addr = (I − (RTp A

−1
pp Rp +RTs A

−1
ss Rs)(A− P1))P−1

1 r.(24)

The preconditioner P1 in step 2 of both algorithms is taken to be the ILU(0) factor-
ization of A, i.e., the incomplete factorization with no fill applied to the global matrix.
For the correction solve, we use AMG with one V-cycle iteration. The combinative
approach with AMG was presented in [21]. However, this method does not work well
in the presence of fast changing capillary pressure. We confirm this observation in the
next section. To deal with fast changing capillary pressure, we employ an additive
CPR-AMG approach, which involves one more AMG solve for the correction of the
saturation block. The intuition is that when the absolute value of the derivative of
capillary pressure |dPc/dSw| is large, the block Ass becomes diffusion dominated, and
AMG can handle it efficiently.

3.4. Block factorization preconditioners. Consider the following decompo-
sition of the Jacobian:

J =
(
App Aps
Asp Ass

)
=
(
I ApsA

−1
ss

0 I

)(
S 0
0 Ass

)(
I 0

A−1
ss Asp I

)
,

where S is the Schur complement,

S = App −ApsA−1
ss Asp.(25)

We could choose

M =
(
I ApsA

−1
ss

0 I

)(
S 0
0 Ass

)
=
(
S Aps
0 Ass

)
(26)

as an upper-triangular block preconditioner; this incorporates the effects of the cou-
pling block Aps. This block is important as it contains the time derivative and gravity
terms (16). If the time step is small, then the coefficients on the diagonal of this block
become large, and it is important that this term be included in the preconditioner.
We use an approximation of the Schur complement in which Ass is replaced by its
diagonal values:

S̃ = App −Aps diag (Ass)
−1
Asp.(27)

The purpose of this is to keep the Schur complement sparse so that the action of its
inverse can be applied efficiently. This idea is the basis of the SIMPLE method used
in other models of fluid dynamics [24]. A similar approach has also been applied to
problems in single-phase flow coupled with geomechanics in [37].

Algorithm 3. BF preconditioner.
1. At each iteration k let the residual be rk.
2. Solve for the saturation Asssk+1 = Rsrk using AMG.
3. Compute the residual for pressure r = Rprk −Apssk+1.
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4. Solve for the pressure S̃pk+1 = r using AMG.

An important advantage of this algorithm is that it does not rely on an ILU
factorization. In matrix form,

M−1
bf =

(
S̃−1 −S̃−1ApsA

−1
ss

0 A−1
ss

)
.(28)

4. Numerical results. In this section, we perform numerical experiments for
the four aforementioned preconditioners. All of them are implemented in Amanzi,
a parallel open-source multiphysics C++ code developed as a part of the ASCEM
project [1]. Although Amanzi was first designed for simulation of subsurface flow and
reactive transport, its modular framework and concept of process kernels [11] allow
new physics to be added relatively easily for other applications. The two-phase flow
simulator employed in this work is one such example. Amanzi works on a variety of
platforms, from laptops to supercomputers. It also leverages several popular packages
for mesh infrastructure and solvers through a unified input file. Here, all of our
experiments use a classical AMG solver through BoomerAMG in Hypre. The ILU(0)
method is from Euclid, also a part of Hypre. ILU(0) is used sequentially for the two-
dimensional examples, and parallel ILU(0) (also from Euclid) is used for the three-
dimensional cases. GMRES is provided within Amanzi. For simplicity, we employ
structured Cartesian grids for the test cases, but we can also use unstructured K-
orthogonal grids. The test cases are run on Edison at the National Energy Research
Scientific Computing Center (NERSC).1 We run the two-dimensional test cases in
serial, and the three-dimensional SPE10 problem using 256 cores. Amanzi and other
libraries are compiled with OpenMPI 1.6.5 and gcc-4.9.2. The total time is measured
in seconds. This section has three parts. In the first part, we show the results for a
two-dimensional oil-water model problem. Although the problem is small, it is difficult
to solve due to the heterogeneity of the permeability field. In the second part, we
report the results for a three-dimensional example. In the last part, we examine the
scalability of the three preconditioning strategies. Unless specified otherwise, we use
the benchmark problem SPE10 [8] for permeability data and porosity.

4.1. Two-dimensional oil-water problem. The domain is a rectangle with
dimensions 762× 15.24 meters. The mesh is 100× 20, which means that the problem
is truly two-dimensional in the xz plane. The absolute permeability field is shown
in Figure 1. We inject pure water into the domain through the boundary at the
lower left corner, and oil and water exit the domain through the top right corner.
These correspond to the Sw = 1.0, λw∇Pw · n = −50 m3/day at the inlet, and
Sw = 0.2, Pw = 0 at the outlet. The simulation is run for 200 days with time step
∆t = 20 days.

For capillary pressure models, we employ a simple linear model and the Brooks–
Corey [7] model:

linear model: Pc(Sw) = P0(1− S̄w), Brooks–Corey: Pc(Sw) = PdS̄
−1/λ
w ,(29)

in which S̄w is the effective saturation, Pd is the entry pressure, and λ is related
to the pore-size distribution. For the Brooks–Corey model, the typical range of λ
is [0.2, 3.0] (see [4, 12]). In general, λ is greater than 2 for narrow distributions of

1A DOE Office of Science User Facility supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-05CH11231.
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Fig. 1. Permeability field obtained from SPE10 model 1 data. The x-direction is scaled down
by 1/20 for visualization.

Fig. 2. Capillary pressure curves for Brooks–Corey model with entry pressure Pd = 105 Pa.

Table 1
Input data for the quarter-five spot problem.

Initial wetting phase pressure 105 Pa
Initial nonwetting phase saturation 0.8
Residual wetting phase saturation 0.0
Nonwetting phase density 700 kg/m3

Wetting phase density 1000 kg/m3

Nonwetting phase viscosity 10.0 cP
Wetting phase viscosity 1 cP
Porosity 0.2

pore sizes, and λ is less than 2 for wide distributions. For example, sandpacks with
broader distributions of particle sizes have λ ranging from 1.8 to 3.7 [7]. The Brooks–
Corey capillary pressure curves for various values of λ are plotted in Figure 2. Other
parameters are listed in Table 1 and Example 1 (Ex 1) of Table 2.

For all of the simulations presented here, the convergence tolerance for Newton’s
method is ||F (x)|| ≤ 10−6, and the linear tolerance for GMRES is ||Jδuk −F (uk)|| ≤
10−12||F (uk)||, which is the default in Amanzi. BoomerAMG is used as a precondi-
tioner. The number of V-cycle steps is set to 1. The coarsening strategy is the par-
allel Cleary–Luby–Jones–Plassman (CLJP) coarsening [9]. The interpolation method
is the classical interpolation defined in [27], and the smoother is the forward hybrid
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Table 2
Parameters for capillary pressure models.

Parameters Ex 1 Ex 2 Ex 3 Ex 4
Linear entry pressure P0 105 104 103 106

Brooks–Corey entry pressure Pd 106 105 2 × 104 106

Brooks–Corey λ 2.5 0.8 2.5 0.8

Table 3
Performance of three preconditioning strategies for the set of parameters in the diffusion-

dominated Example 1.

Methods/Models
Linear Brooks–Corey

NI LI LI/NI Time NI LI LI/NI Time
AMG 32 368 11.5 27.2 36 470 13.1 37.24

CPR-AMG(1) 32 3695 115.5 324.15 36 5831 162 567.7
CPR-AMG(2) 32 899 28.1 103.94 36 1102 30.6 134.6

BF 32 524 16.4 33.17 36 599 16.6 46.2

Gauss–Seidel/successive over-relaxation scheme.
In order to explore the effects of different models for capillary pressure on solver

performance, we use the four sets of parameters listed in Table 2. In Example 1, the
parameters are chosen such that the L∞ norm of the derivative of capillary pressure
P ′c is large, leading to a diffusion-dominated case (see (16)). In Example 2, the param-
eters are tuned to reduce the L∞ norm of P ′c, leading to an advection-dominated case.
Example 3 is a more extreme case of Example 2, in which P ′c is further decreased, lead-
ing to a strongly advection-dominated case. Example 4 represents another diffusion-
dominated case, and it is only used in the scaling test in section 4.5. We also note the
difference between the linear model and the Brooks–Corey model for capillary pres-
sure. The derivative P ′c for the linear model is a constant value, which means that
the character of the problem, i.e., diffusion-dominated or advection-dominated, is the
same everywhere for the whole domain. In the Brooks–Corey model, P ′c depends on
the saturation of the wetting phase, and the problem can be diffusion-dominated in
one part of the domain and advection-dominated in another part. This can cause
further difficulties for AMG-based solvers, whose optimal performance is sensitive to
the characteristics of the problem.

The performance of the three strategies is summarized in Tables 3, 4, and 5. NI
denotes the number of nonlinear iterations, LI the number of linear iterations, LI/NI
the average number of linear iterations per nonlinear iteration, and Time the total
time in seconds of the whole simulation. For the diffusion-dominated problem for
which the results are shown in Table 3, AMG is the most efficient method, about
25% more efficient than the block preconditioner in terms of both iteration counts
(linear iterations per Newton step) and total run time. Note that, in this example,
the diffusion term in the (2,2)-block (Ass) is large, and the block is close to a scalar
elliptic problem. Hence, it is not surprising that AMG performs well in this case. For
the linear model, the BF approach still takes about 8 times fewer linear iterations,
and it is about 10 times faster in total run time than CPR-AMG(1). The reason for
this discrepancy is that CPR-AMG(1) is a two-stage preconditioner, and it requires
an extra global solve using ILU. The BF preconditioner does not rely on ILU, which
helps improve the run time significantly. CPR-AMG(2) also performs well in this case;
although it requires one more AMG solve per Newton iteration than CPR-AMG(1),
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Table 4
Performance of three preconditioning strategies for the set of parameters in the advection-

dominated Example 2.

Methods/Models
Linear Brooks–Corey

NI LI LI/NI Time NI LI LI/NI Time
AMG 37 2575 69.6 138.8 - - - -

CPR-AMG(1) 37 1919 51.9 175.5 55 4851 88.2 605.7
CPR-AMG(2) 37 1222 33.0 157.1 55 3701 67.3 506.8

BF 37 684 18.5 51.7 55 1633 29.7 131.1

Table 5
Performance of three preconditioning strategies for the set of parameters in the strongly

advection-dominated Example 3.

Methods/Models
Linear Brooks–Corey

NI LI LI/NI Time NI LI LI/NI Time
AMG - - - - - - - -

CPR-AMG(1) 43 1079 25.1 122.8 48 2173 45.3 247.6
CPR-AMG(2) 43 1442 35.5 169.8 48 4805 100.1 560.5

BF 43 1002 23.3 69.8 48 1829 38.1 121.8

it still outperforms CPR-AMG(1) in terms of both the number of linear iterations
per Newton step and the total run time. The same conclusion can be made for the
Brooks–Corey model.

The results reported in Table 4 reveal the lack of robustness of AMG when applied
to the coupled system. In contrast to the diffusion-dominated case, for the linear
model of capillary pressure, AMG requires the greatest number of linear iterations per
Newton step for the advection-dominated case, and it even diverges for the Brooks–
Corey model. The BF preconditioner still shows good performance, taking about half
the number of iterations and running four times faster than the next best method,
which is CPR-AMG(2). CPR-AMG(1) is still the least effective method in this case
for both capillary pressure models.

For the strongly advection-dominated problem with parameters in Example 3,
AMG diverges for both the linear and Brooks–Corey capillary pressure models, as
shown in Table 5. The performance of CPR-AMG(2) is also affected in this case,
trailing that of CPR-AMG(1). CPR-AMG(2) is still more robust than direct ap-
plication of AMG, however, since unlike AMG, this method still converges. The BF
preconditioner is again the most effective method, requiring fewer iterations and about
half the run time of CPR-AMG(1). This suggests that when the diffusion term in the
Ass block gets small, the coupling block Aps, which has the structure of a discrete
first-order hyperbolic problem for the saturation, becomes important and needs to be
taken into account. The BF method does exactly this. Moreover, it takes advantage
of the effectiveness of AMG for scalar problems. Recall that, in the BF approach,
AMG is applied to the approximate Schur block S̃ and to the block Ass. S̃ has the
form of a perturbed elliptic problem, and therefore we believe it is similar in character
to the original pressure block App. Thus, AMG is a natural choice for approximat-
ing the action of the inverse of S̃. Similarly, the block Ass is a discrete version of a
convection-diffusion problem, for which AMG should work well.

4.2. Two-dimensional problem with gravity. In this example, we compare
the performance of the different strategies for a problem in which gravity plays a
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Table 6
Iteration counts for the diffusion-dominated case with gravity, time step dt = 10 days.

Methods/Mesh sizes 202 402 802 1602

AMG 7 7 7 7
CPR-AMG(1) 15.1 25.9 49.4 95.2
CPR-AMG(2) 22.0 30.9 38.1 40.7

BF 19.9 21.0 21.1 21.1

Table 7
Iteration counts for the advection-dominated case with gravity, time step dt = 4 days.

Methods/Mesh sizes 202 402 802 1602

AMG - - - 17.3
CPR-AMG(1) 17.9 17.8 16.1 25.2
CPR-AMG(2) 30.3 29.8 22.7 30.2

BF 13.0 17.0 21.1 23.9

dominant role. The domain is a square box of size 20 × 20 meters. The absolute
permeability is a homogeneous field of 100 mD. Water is injected into the domain
through the boundary at the top left corner, and the outlet is at the top right corner.
The rate of injection is 5 m3/day. For spatial discretization, we use uniform grids of
size 20× 20, 40× 40, 80× 80, and 160× 160. The initial conditions are the same as
the heterogeneous two-dimensional example above. The time steps are 10, 4, and 1
days, and the final times are 20, 8, and 2 days, respectively.

The diffusion-dominated case, shown in Table 6, exhibits the same pattern as in
the previous example: the AMG preconditioner is the most efficient method, followed
by the BF method, CPR-AMG(2), and CPR-AMG(1). AMG and the BF method
exhibit optimal performance with respect to problem size. The number of iterations
for CPR-AMG(2) also seems to reach a plateau as the mesh size is refined. In contrast,
the performance of CPR-AMG(1) does not scale well with respect to mesh size for this
case, taking about twice the number of iterations for each level of mesh refinement.

The results for the advection-dominated case are shown in Table 7. The AMG
method is not robust and converges only for the largest mesh size (for which it takes
the fewest iterations). The BF preconditioner is highly robust and also appears to
require iteration counts tending to a constant as the mesh is refined. The performance
of CPR-AMG(2) is consistent except for the 80× 80 mesh. Although it requires more
iterations than CPR-AMG(1), this method shows promising scaling properties, similar
to the previous example, since the number of iterations does not grow as the mesh
is refined. CPR-AMG(1) performs quite well for this case, but it still exhibits poor
scalability, as the number of iterations grow quickly between 80× 80 and 160× 160.

In the strongly advection-dominated case, AMG diverges for all mesh sizes. The
new BF is the most efficient method in this case, requiring the fewest iterations across
all mesh sizes (see Table 8). Here, CPR-AMG(1) is more efficient than CPR-AMG(2),
requiring about half the number of iterations. Both CPR-AMG(1) and CPR-AMG(2)
show good scaling properties in this case. The scaling result for the BF method is not
as clear as in the diffusion- and advection-dominated cases, but we suspect that the
mesh is not fine enough for a consistent pattern to emerge.

Besides varying the mesh size, we also experimented with changing the time step
size for a fixed mesh of 80×80 for the same problem. The final time for the simulation
is eight days. The results are reported in Table 9.
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Table 8
Iteration counts for highly advection-dominated case with gravity, time step dt = 1 day.

Methods/Mesh sizes 202 402 802 1602

AMG - - - -
CPR-AMG(1) 18.6 19.6 19.7 18.8
CPR-AMG(2) 31.5 34.6 36.6 36.3

BF 13.1 9.3 12.0 16.4

Table 9
Results for the advection-dominated case with gravity P0 = 104. NI/TS is the number of

Newton iteration per time step.

Methods/Time steps
dt = 1 day dt = 2 days dt = 4 days dt = 8 days

NI/TS LI/NI NI/TS LI/NI NI/TS LI/NI NI/TS LI/NI
CPR-AMG(1) 12.4 16.9 17 15.9 23 16.1 28 19.4
CPR-AMG(2) 12.4 29.0 17 24.0 23 22.7 28 27.2

BF 12.4 16.7 17 19.0 23 21.1 28 23.0

Since AMG does not converge in this experiment, we exclude it from the results.
From Table 9, it is clear that as the time step gets larger, Newton’s method takes more
iterations to converge. For dt = 8 days, there is only one time step, and it is the most
difficult case. The number of iterations for CPR-AMG(1) is not significantly affected
by the time step except for the largest time step size of eight days. Meanwhile, the
number of iterations for CPR-AMG(2) decreases as the time step gets larger, but goes
up again at dt = 8 days. The BF method shows a consistent increase in the number of
iterations for larger time steps. Overall, there is not much of a difference in terms of
iteration counts for these three methods, but it is worth noting that the BF method
is much faster than the others in terms of run time, as it does not require a global
ILU solve.

4.3. Behavior of eigenvalues. It is often possible to obtain insight into the
properties of preconditioning operators from the eigenvalues of the preconditioned ma-
trix JM−1. In particular, recall a standard analysis [29] of the convergence behavior
of GMRES for solving the preconditioned system (20). Assume that the precon-
ditioned matrix is diagonalizable, JM−1 = V ΛV −1, where Λ is a diagonal matrix
containing the eigenvalues of the preconditioned matrix and the columns of V are the
corresponding eigenvectors. If ck = M−1ĉk are the iterates obtained at the kth step
of GMRES iteration, with residual rk = q − Jck, then

(30)
‖rk‖2
‖r0‖2

≤ ‖V ‖2 ‖V −1‖2 min
pk(0)=1

max
λ∈σ(JM−1)

|pk(λ)|,

where the minimum in (30) is over all polynomials of degree at most k that have the
value 1 at the origin, σ(JM−1) is the set of eigenvalues of JM−1, and the norm is
the vector Euclidean norm. Thus, a good preconditioner tends to produce a precondi-
tioned operator with a compressed spectrum whose entries are not near the origin. In
this section, we explore the behavior of the eigenvalues of the preconditioned matrix
with an eye toward understanding the effects of features of the discrete problem such
as discretization mesh size and qualitative features of the model such as the relative
weights of diffusion and advection and the degree of coupling between the components.

Figure 3 gives a representative depiction of the eigenvalues of preconditioned
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Diffusion-dominated
CPR-AMG(1)

Advection-dominated
CPR-AMG(1)

Diffusion-dominated
CPR-AMG(2)

Advection-dominated
CPR-AMG(2)

Diffusion-dominated
BF

Advection-dominated
BF

Fig. 3. Eigenvalues of preconditioned systems for different strategies, applied to the diffusion-
dominated Example 1 (left) and advection-dominated Example 2 (right).

operators for three of the preconditioners considered. These results are for benchmark
problems for which performance is considered in section 4.1, the two-dimensional
linear oil-water model discretized on a 100 × 20 grid. The plots on the left side
of the figure show eigenvalues for the diffusion-dominated case (for which solution
performance is shown in Table 3), and those on the right show eigenvalues for the
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Table 10
Performance in the 3D case for the set of parameters in example 1 of Table 2.

Methods/Models
Linear Brooks Corey

NI LI LI/NI Time NI LI LI/NI Time
AMG 16 282 17.6 103.1 20 452 22.6 144.7

CPR-AMG(1) 16 2698 168.6 803.2 20 6069 303.45 1940.8
CPR-AMG(2) 16 712 44.5 299.5 20 1900 95.0 741.1

BF 16 355 22.2 133.6 20 752 37.6 231.1

advection-dominated case (performance in Table 4).2

These displays indicate that the spectra for the preconditioned systems for the
CPR-AMG(2) and BF preconditioners are bounded away from the origin, whereas
for the CPR-AMG(1) preconditioner there are many small eigenvalues. Performance
of CPR-AMG(1) improves in the advection-dominated case, and the smallest asso-
ciated eigenvalues are somewhat further from the origin. In contrast, the latter two
preconditioners are largely unchanged in the advection-dominated case, where they
are still effective, and the associated eigenvalues are also contained in similarly struc-
tured regions far from the origin. We believe the superior performance of the BF
preconditioner comes from its greater emphasis on the coupling between pressure and
saturation, derived from use of the approximate Schur complement (27).

4.4. Three-dimensional problem. We use a homogeneous permeability field
of 100 mD, and the grid is stretched to induce anisotropy. The model dimensions
are 25 × 100 × 6 m, and the cell size is 0.5 × 1 × 0.05 m. Thus, the mesh is 50 ×
100 × 120, and the problem has 1.2 million unknowns in total. Water is injected
into the domain at one bottom corner, and the outlet is at the opposite corner.
The injection rate is 0.75 m3/day. The parameters for the capillary pressure model
are from Example 1 of Table 2. The simulation is run for 100 days with time step
∆t = 20 days. Table 10 shows the performance results of the diffusion-dominated case
for this three-dimensional example, which are consistent with those of the previous
two-dimensional example. The AMG preconditioner shows the best results for both
the iteration counts per Newton step and the time it takes to complete the simulation
for both capillary pressure models. CPR-AMG(2) does not perform quite as well as
AMG, but it is much more efficient than CPR-AMG(1) for both performance measures
and capillary pressure models. As in the two-dimensional case, the new BF method
performs well, requiring fewer than half the iterations of CPR-AMG(2) for both the
linear and Brooks–Corey models, and running in about one third the CPU time.

We also tested the three-dimensional SPE10 problem with the linear model of
capillary pressure for the different preconditioning strategies. Here, AMG diverges
even for the diffusion-dominated case (P0 = 106 Pa), even though it was the most
efficient method for the two-dimensional example. The BF method is about four times
faster than CPR-AMG(2) and five times faster than CPR-AMG(1) in the diffusion-
dominated case. CPR-AMG(2) still outperforms CPR-AMG(1) both in terms of
iteration counts and run time, but the margin is smaller than for the two-dimensional
problem (Table 11). In the advection-dominated case (P0 = 105 Pa), unlike in the two-

2These computations were done using the eig function in Matlab, and they use Matlab back-
slash to perform the actions of the inverses of A11, A22 and the modified Schur complement. This
contrasts with the solution algorithms tested, which approximate these operations using one AMG
V-cycle.
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Table 11
Performance for the three-dimensional SPE10 model, diffusion-dominated case.

Methods/Models
Linear

NI LI LI/NI Time (s)
AMG - - - -

CPR-AMG(1) 17 2410 141.8 614.14
CPR-AMG(2) 17 1661 97.7 448.21

BF 17 490 28.8 121.71

Table 12
Performance for the three-dimensional SPE10 model, advection-dominated case.

Methods/Models
Linear

NI LI LI/NI Time (s)
AMG - - - -

CPR-AMG(1) 18 1122 62.3 354.38
CPR-AMG(2) 18 1554 86.3 657.12

BF 18 474 26.3 157.24

Fig. 4. Weak scaling for different strategies.

dimensional example, CPR-AMG(1) is more efficient than CPR-AMG(2), requiring
about 23% fewer iterations and 45% the run time. The BF approach is still the
most efficient method, taking fewer than half the number of iterations and less than
half the run time of CPR-AMG(1) (Table 12). We also note that the number of
iterations for the BF method is very consistent with respect to the characteristics of
the problem; i.e., it does not change significantly whether the problem is diffusion-
dominated, advection-dominated, or strongly advection-dominated.

4.5. Scaling results. To perform a scalability study, we run a test problem on
a box of dimensions 20 × 20 × 20 meters. The initial mesh is 20 × 20 × 20 and is
repeatedly refined in the z-direction. The time step is fixed at ∆t = 20 days. The
domain has constant material properties. The parameters for the capillary pressure
models are listed in Example 4 of Table 2. Note that this set of parameters corresponds
to a diffusion-dominated problem. The results shown in Figure 4 indicate that the
performance of the BF, CPR-AMG(2), and AMG methods is independent of the mesh
size. The number of linear iterations per Newton step does not grow as the mesh is
refined, which is optimal multigrid performance. The BF method’s performance is
nearly identical to that of AMG for the linear model, and still quite close for the
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Brooks–Corey model, compared to CPR-AMG(2). CPR-AMG(1), however, does not
scale as well as the other two methods. The linear iteration counts for CPR-AMG(1)
grow linearly as the mesh is refined.

5. Conclusions. In this work, we have implemented a fully implicit parallel
isothermal two-phase flow simulator along with four different preconditioning strate-
gies to solve the linear systems resulting from linearization of the coupled equations,
and we have tested the performance of these methods as preconditioners for GMRES.
We have also developed a new BF preconditioner whose performance is robust and
efficient across all benchmark problems studied. In contrast, although AMG precon-
ditioning applied to the coupled systems is the most efficient choice in some cases
(both two-dimensional and three-dimensional diffusion-dominated examples), it ex-
hibits slow convergence and sometimes diverges for advection-dominated cases. The
new BF preconditioner achieves consistently low iteration counts across all the tests
and varying examples of capillary pressure, and it scales optimally with problem size.
The combinative CPR-AMG(1), though robust across all the tests, is the least effi-
cient method, with the exception of the near hyperbolic case, where it is faster than
CPR-AMG(2). The additive CPR-AMG(2) method performs well in most cases ex-
cept the strongly advection-dominated case. It also scales optimally with problem
size for both advection-dominated and diffusion-dominated cases.
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