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LINE ITERATIVE METHODS FOR CYCLICALLY REDUCED
DISCRETE CONVECTION-DIFFUSION PROBLEMS*

HOWARD C. ELMANt AND GENE H. GOLUB$

Abstract. An analytic and empirical study of line iterative methods for solving the discrete
convection-diffusion equation is performed. The methodology consists of performing one step of the
cyclic reduction method, followed by iteration on the resulting reduced system using line orderings
of the reduced grid. Two classes of iterative methods are considered: block stationary methods,
such as the block Gauss-Seidel and SOR methods, and preconditioned generalized minimum residual
methods with incomplete LU preconditioners. New analysis extends convergence bounds for constant
coefficient problems to problems with separable variable coefficients. In addition, analytic results
show that iterative methods based on incomplete LU preconditioners have faster convergence rates
than block Jacobi relaxation methods. Numerical experiments examine additional properties of the
two classes of methods, including the effects of direction of flow, discretization, and grid ordering on
performance.
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operators

AMS(MOS) subject classifications, primary 65F10, 65N20; secondary 15A06

1. Introduction. Consider the convection-diffusion equation

(1.1a) -[(pu)x + (quy)y] + ru + suy f on

(1.1b) au -" Un g on 0gt,

where t is a smooth domain in R2 and p > 0, q > 0 on t. Discretization of (1.1)
produces a linear system of equations

(1.2) Au f,

where u and f are now vectors in a finite-dimensional space, and A is a nonsymmetric
matrix when r and s are nonzero. We are concerned with discretizations (principally,
finite difference methods) for which each equation in (1.2) is centered at some mesh
point (xi, yj), and the associated unknown uij depends only on its neighbors in the
horizontal and vertical directions. That is, the equation centered at (xi, yy) has the
form

(1.3) aijuij fij bijui,j-1 cijui-l,j dijui+l,j eijui,j+l.

In this case, we say that (1.2) has a .computational molecule of the form

Cij 3 dij.
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FIG. 1.1. A 65 grid and a red-black ordering. Grid indices are shown on the left, and vector
indices for a red-black ordering are shown on the right. Red points are denoted by "(R)" and black
points by "."

When the system (1.2) has this property, the mesh points { (xi, yj)} and unknowns
{uij } can be ordered with a red-black ordering so that every equation centered at a
"red" point depends only on "black" unknowns, and every equation centered at a
"black" point depends only on "red" unknowns. An example of a red-black ordering
of a 6 x 5 grid is shown in Fig. 1.1. If uj is a black unknown, then by adding
appropriate linear combinations of the equations for U+l,j and u,j+l to the equation
for uj, we can eliminate the dependence of uij on its red neighbors. When this is
done for every black equation, the result is a smaller linear system

(1.4) A(b)u(b) g(b),

where U(b) is the set of unknowns associated with black mesh points. In matrix
notation, this process corresponds to ordering the rows and columns of A so that
(1.2) has the form

D C
E F)(u()u() )=(f()f(b) ),

where D and F are nonsingular diagonal matrices. Decoupling of the red points
u(r) is equivalent to producing the system (1.4), where A(b) F- ED-1C and
g(b) f(b) ED-l f(r).

In [7], [8], we analyzed the convergence behavior of block iterative methods for
solving the reduced system (1.4) derived from discretizations of (1.1). We considered
block Jacobi, Gauss-Seidel, and successive overrelaxation (SOR) methods [25], [28],
where the blockings (of the rows and columns of A(b)) are derived from certain line
orderings of the underlying reduced (black) grid. In particular, the unknown grid
values u(b) can be grouped together either by individual lines of the grid, producing
a class of one-line orderings, or by pairs of lines, producing two-line orderings (see
2). These orderings produce matrices with block Property A, so that the classical
analysis of Gauss-Seidel and SOR methods [25], [28] can be used. The results of [7],
[8] apply to problems with the constant coefficients p(x, y) q(x, y) 1, r(x, y)
a, s(x, y) T. They show that convergence is often very fast; in particular, for
nonselfadjoint problems (a or T nonzero), convergence is typically faster than for
selfadjoint problems. They also show that convergence rates for solving the reduced
system are often faster than for solving the full system (1.2) by analogous line methods.
These observations are in agreement with asymptotic results in [20] and the algebraic
analysis of [13]. Related results for point iterative methods are given in [18].

In this paper, we extend the analysis of [7], [8] to separable problems, and we
also use it to derive bounds on convergence behavior for stationary methods based
on incomplete factorizations [17]. In addition, in a series of numerical experiments,
we examine the effect of physically significant properties of the problem (1.1) on the
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performance of iterative methods applied to (1.4). Here, we consider both block
relaxation methods and the preconditioned generalized minimum residual method
(GMRES) [23], with preconditioning by incomplete factorizations [17]. We focus on
the following issues"

1. For constant coefficient problems, the effect of the signs and magnitudes of
r and s in (1.1). These quantities determine the direction and rate of flow
associated with the convection in the model. The analysis of [7], [8] is sensitive
to magnitudes but not to signs.

2. The effect of variable coefficients r and s. We consider problems both with
and without turning points.

3. The effects of the choice of discretization on performance; we consider cen-
tered and upwind finite difference discretizations.

4. The first three issues do not address the issue of accuracy of the discrete
solution. We also examine the effect of methods designed to improve accuracy
in the presence of boundary layers, in particular, local mesh refinement and
defect correction methods [12], [15].

An outline of the paper is as follows. In 2, we describe the reduced matrix A(b),
and we present the ordering strategies and iterative methods used to solve (1.4), in-
cluding some block red-black strategies of use for vector and parallel computations.
In 3, we extend the analysis of [7], [8] to separable problems and incomplete fac-
torizations. In 4, we describe the results of numerical experiments with constant
coefficient problems. For several ordering strategies, we examine how performances of
block stationary methods and preconditioned GMRES are affected by direction and
rate of flow, choice of difference scheme, and use of local mesh refinement to resolve
boundary layers. In 5, we compare experimental results with analytic bounds on con-
vergence, for separable problems. In 6, we consider performance for some problems
with nonseparable variable coefficients, i.e., where the flow varies in both direction
and magnitude in ft. Here we consider both centered and upwind finite differences,
as well as a difference scheme used to implement defect correction methods. Finally,
in 7 we make some concluding remarks.

2. The reduced system and line iterative methods. Let uj be a black point
not next to the boundary Oft. Elimination of the unknowns u+l,j and u,j+ from
(1.3) produces an equation in the reduced system with the computational molecule
shown in Fig. 2.1. The value "." in the center is

bijei,j-1 cijdi-l,j dijCi+l,j eijbi,j+l
aij

hi,j-1 ai- ,j ai+ ,j ai,j+

and the right-hand side is perturbed by an average of neighboring values,

g(b) fij
bijfi,j-1 cijfi-l,j dijfi+,j eijfi,j+

ij
hi,j- hi- 1,j hi+1,j hi,j+

The line ordering strategies for the reduced grid are outlined as follows (see [7],
[8] for further details). In the natural one-line ordering, points of the reduced grid are
grouped together by diagonal lines, e.g., oriented in the NW-SE direction. The left
side of Fig. 2.2 shows an example for a 6 5 grid. Here, the kth line consists of all
points with grid indices (i, j) such that i + j 2k / 1. (Compare with the left side
of Fig. 1.1.) Thus, in Fig. 2.2, the first line consists of the points {1, 2}, the second
line consists of the points {3, 4, 5, 6}, etc. In the natural two-line ordering, points
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ei el,./+1
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aij+l
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FiG. 2.1. The computational molecule for the reduced system.
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FIG. 2.2. Natural one-line (left) and two-line (right) orderings of the reduced 6x5 grid.

are grouped together by pairs of either horizontal or vertical lines. The right side of
Fig. 2.2 shows an example of a horizontal grouping for a 6 x 5 grid. The points in the
kth group are those with grid indices (i, j) such that k- 1 < j/2 < k. If the number
of lines is odd, the last group consists of a single line, as in the group {13, 14, 15}.
For both these strategies, A(b) is a block tridiagonal matrix; let D denote its block
diagonal. For the one-line ordering, each block of D is a tridiagonal matrix, and for
the two-line ordering, each block of D is a pentadiagonal matrix (except possibly the
last block, which may be tridiagonal). It is also useful (e.g., for parallel computations,
see [8]) to define line red-black variants of these orderings, in which alternating lines
(or line pairs) are assigned opposite colors. For example, for the one-line version, let
the sets { 1, 2}, {7, 8, 9, 10, 11}, and {15} be denoted as "red" lines, and the others
as "black" lines. Then every equation centered at a point in a red line depends only
on that red line and the neighboring black lines; an analogous statement holds for
equations centered on black lines. For the red-black one-line ordering, all red lines are
ordered first, followed by all black lines. The red-black two-line ordering is defined in
similar fashion.

For any of these line orderings, let

A(b) D- C (D- L) U,

where D is the block diagonal part of A(b) and L and U are the lower and upper
triangular parts, respectively, of the block off-diagonal part of A(b). We consider
several block stationary methods based on the splittings (2.1). The block Jacobi
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iteration is given by

(b) D-1CU(kb) + D- g(b)k+l

and the block SOR iteration is

(2.2) (b) (D wL)-l[(1- w)D + wU]u(kb) + w(D wL)-lg(b).

The block Gauss-Seidel iteration corresponds to the case w 1 in 2.2. In all cases,
A(b) is block consistently ordered, so that [28]

(2.3) p((D- L)-IU) [p(D-1C)]2,
where p(X) denotes the spectral radius of a matrix X.

In addition, we consider the use of the ILU(0) incomplete factorization [17] applied
to A(b) for each of the orderings. This factorization is defined as

(2.4) M (D L)D-I( ),
where D is a diagonal matrix; ] and are strictly lower triangular and upper trian-
gular, respectively; the nonzero structure of D L 6 is the same as that of A(b);
and the entries of M are the same as the corresponding entries of A(b) wherever the
latter are nonzero. We will examine the use of this factorization as a preconditioner
for GMRES.

3. Analysis of separable problems and the ILU(0) faetorization. We will
be concerned with finite difference discretizations of (1.1). For example, on a uniform
grid with mesh size h, let standard second order differences [11] be used for the second
derivative terms. If centered differences are used for the first derivative terms, then
after scaling by h2, the values in the computational molecule are given by

aij P(Xi+l/2, Y9) + P(Xi-1/2, Yi) + q(xi, Yj+I/2) + q(xi, Yj-I/2),
bij -(q(xi, yj-1/2) + s(xi, y)h/2), dij -(p(xi+/2, y) r(xi, yj)h/2),
cij -(p(xi_/2, yj) + r(xi, yj)h/2), eiy= -(q(xi, y9+/2) s(xi, yy)h/2).

If upwind differencing is used for the first derivatives, then (for the ce r(xi, yy) > 0,
s(xi, yy) > 0) the values are

aij P(Xi+/2, Yj) + P(Xi-1/2, Yj) + q(xi, Yj+/2) + q(xi, Yj-/2)
+ r(xi, yj)h + s(xi, y9)h,

biy -(q(xi, Yy-/2) + s(xi, y9)h), dij -p(xi+/2, yy),
cij -(p(xi-1/2, yj) + r(xi, yj)h), eiy: -q(xi, yj+l/2).

If instead, s(xi, yy) < 0, then biy -q(xi, Yj-1/2), eij -(q(xi, Y+/2) s(xi, yy)h),
and s(xi, y)h is replaced by -s(xi, y)h in the expression for ai. The case r(xi, y) <
0 is handled in an analogous manner.

If is a rectangular domain and the coefficients of (1.1a) satisfy

p p(x), q

then the differemial operator of (1.1) is separable [26]. In this case, the discrete
coefficients of (1.3) satisfy

_(v)+
bij bj, cij ci, dij di, eij ej.
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Our convergence analysis is based on symmetrizing the reduced matrix A(b) by
a diagonal similarity transformation. The following result gives circumstances under
which A(b) can be symmetrized when it comes from a separable operator. In the
analysis, matrix entries are referenced using indices from the underlying reduced grid,
as shown in Fig. 2.1. That is, every nonzero entry of the row of A(b) associated with
the (i, j) grid point is referenced using subscripts i and j. For example, the entry
corresponding to the point southwest of the center of the computational molecule (see
Fig. 2.1) is denoted by

-bjei d-
hi,j-1 ai-l,j

where the numerator is expressed using the notation of (3.1).
THEOREM 1. /jr the operator of (1.1) is separable and cidi-1 and bjej_l have the

same sign for all i and j, then the reduced matrix A(b) can be symmetrized with a real
diagonal similarity transformation.

Proof. We seek a diagonal matrix Q such that Q-1A(b)Q is symmetric. Let A(b)

be ordered by the natural one-line ordering, so that its rows and columns are grouped
into blocks corresponding to individual lines. Let Q be ordered the same way.

First consider the block diagonal D, which is a tridiagonal matrix. Any two
successive rows of a block of D, corresponding to the (i,j) and (i- 1,j + 1) mesh
points, contain the 2 2 sub-block

-ciej a-l. a,+
-b+d_l + .

ai-l,j hi,iT1

where "." denotes a diagonal entry. If qij is known, then qi-,j+ must be chosen so
that

(1 1) (1 + qi-l,j+l.qi- 1,j+lbJ+ldi-
gi-l,j

+
ai,j+l

qij q1Ciej
gi-- 1,j gi,j+1

hus, within the blocks of Q, successive entries must satisfy

(.) qi_l,j+l (bJ+ldi-l)
1/2

Ciej
qij.

For symmetrizing D, the first entry of each block of Q may be arbitrary.
To symmetrize the off-diagonal blocks of A(b), we require

(a.a) Q;I() Q_ (QAI,Q)"k,k--1

where k is a block (or line) index, 2 k 1. As in [7], there are three cases,
corresponding to 2 k < 1/2 + 1, k 1/2 + 1 (1 even), and 1/2 + 1 < k. In the case
2 k 1/2 + 1, a careful specification of the emries of Q and A(b) shows that (3.3)
is equivalent to the following three scalar relations:

eiei-
qi-2,j

I 1
i/2

(3.5) qi-l,j+l
bj+lCi-1
di-2ej

qi-2,j,
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Ibj+lbj+2 ) 1/2
(3.6) qi-2,j+2 qi-2,j.

ejej+

These relations specify three successive entries of Qk in terms of a single entry of
Qk- (where k (i + j- 1)/2). Since the first entry of Qk is arbitrary, (3.4) can
be used to define it. However, once this entry is defined, all subsequent entries are
determined by (3.2). Thus, it is necessary to show that (3.4)-(3.6) are consistent with
(3.2). But application of (3.2) and (3.4) in either order results in (3.5), showing that
both (3.4)and (3.5)are consistent with (3.2). Similarly, (3.6) follows directly from
(3.2) and (3.5).

The arguments for the cases k 1/2 + 1 (1 even) and 1/2 + 1 < k are essentially
the same and we omit the details. A sufficient condition to guarantee that all the
required square roots are well defined is that cidi_l and bjej_l have the same sign
for all and j.

Finally, note that this analysis is not restricted to the natural one-line ordering.
If A(b) is symmetrically permuted into some other order, givinNg the permuted matrix
2(b) then for an analogous permutation of Q to Q, (-12(b)() is also
symmetric.

Remark 1. For the centered difference discretization, necessary and sufficient
conditions to ensure that all cidi_l and bjey_ have the same sign are that either

(3.7) max

and

or

’2p(xi_l/2)

2q(yj_l/2) l)]2q(yj_/2
<1;

min [min ( r(x)h r(x_l)h
2p(Xi_l/2) ll2p(Xi_l/2)l) >1

s(yi)h s(yj_)h
and min[min(12q(yj-1/2)lq-(---lff2) I)] > 1.

In contrast, the full system (1.2) can be symmetrized by a diagonal similarity trans-
formation if and only if the conditions (3.7) hold. For upwind differences, it is always
the case that cidi_ > 0 and bjej_ > 0 for all i, j.

Let .(b) Q-1A(b)Q denote the symmetrized reduced matrix, when it exists, for
any of the strategies under consideration. Fig. 3.1 shows the resulting computational
molecule. Let

b 47

denote the block Jacobi splitting, where /) Q-1DQ, Q-1CQ. Note that
[9-1 Q-D-CQ, so that the eigenvalues of D-C are the same as those of
-1, and in particular they are real. Let Z: (D- wL)-l[(1- w)D + wU]
denote the block SOR iteration matrix. The following result is then a straightforward
application of the analysis of the block SOR method [28].

COROLLARY 1. If A(b) i8 the reduced matrix derived from a separable operator,
and cidi-1 and byey_l have the same sign for all and j, then p(D-1C)
If p(D-1C) < 1, then p(.) w* 1, where * 2/(1 + V/1 + [p(D-1C)]2)
minimizes p(
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v/bj + bj + e ej +

,v/b./’_ bj e./_ e./_

FIG. 3.1. The computational molecule for the symmetrized reduced system in the separable case.

Remark 2. It may be possible to establish the requirements of Corollary i a priori.
Sufficient conditions to guarantee that p(D-1C) < 1 are that the original matrix A
be a diagonally dominant M-matrix, which is always the case for upwind differences,
and is also true for centered differences for small enough h. (In addition, if A is an
M-matrix, then so is A(b) [10].) Even if Corollary 1 cannot be invoked from an a
priori examination of matrix entries, it may still be useful as a guideline for practical
computation. For example, for constant coefficient problems, empirical evidence and
Fourier analysis suggest that p(D-C) < 1 in cases where cidi- and bjej_l are both
negative but A is not a diagonally dominant M-matrix. A good value for the SOR
parameter could be computed from a dynamic estimation of p(D-1C), e.g., using the
methods of [14, 9]. In addition, note that it is not necessary to compute Q or (b)
in order to apply this result, see [7].

The following result contains upper bounds on p(D-1C) (for both one-line and
two-line splittings), for separable problems.

COROLLARY 2. Let A(b) come from a separable operator discretized on a uniform
square grid of mesh width h, and assume that

-(Y) > a() 0 < ci+ld < , 0 < bj+lej < ,(3.8) ax) _> c(x)
j

for all i, j. If A() D- C is a one-line Jacobi splitting and

(3.9)

then

(3.10) +P(D-1C) <- (a + a(Y))2 2(x/ + 2 + 4v (1 cos rh)"

If A(b) D- C is a two-line Jacobi splitting and

(3.11) (a() + a(u))2 > 2(v/" + V)2 + 2,

A nonsingular matrix X is an M-matrix if Xij _< 0 for j and X- _> 0.
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then

(.)

P(D-1C) <- (a(x) + a(y))2- 2(v
2 cos 2rh + 4v/cos rh

+ y/-)2 2 + 4V 1 cos rh) + 4 1 cos2 rh)
+ o(h2).

Proof. Using Corollary 1, we have (for any ordering)

(D-C) (D-5) <_ IID-IIIIblI (D)(5).
Consider the one-line orderings. By (3.8), all nonzero off-diagonal entries of are
bounded below by -2v//(a(x) + a(Y)), and all diagonal entries of are bounded
below by

.() + .() e/(() + .()) ev/(.() + .()).

Thus,/ >_ , where each block of is a constant coefficient tridiagonal matrix

2x/’ a() + a(y(3.13) tri -a() + a(Y)
2 2r 2xfl

a() + a() a() + a()’ a(x) + a() J
The size of this block depends on the line from which it is derived. Assumption
(3.9) implies that each block (3.13) and, therefore, each corresponding block of D, is
an irreducibly diagonally dominant M-matrix. Hence, the Perron-Frobenius theory
implies p(.-l)

_
p(D-1). Similarly, by (3.8), 0 _< ( <_ (, where is a matrix with

the same nonzero structure as that of C in which all occurences of cidi-1, bjej_l, and

aij are replaced by , r, and a(x) + a(), respectively. Consequently, p()
_
p(),

and we have

(3.14) p(b-)p(O) <_ p()-)p(’),

where the right side of the inequality contains constant coefficient matrices. The
bound (3.10) is determined from the maximum eigenvalue of D-1 and use of Ger-
schgorin’s theorem for 6’. (See [7, Thm. 4])

For the two-line ordering,the blocks of D and/) are pentadiagonal matrices, and
/) >_/, where each block of D is a constant coefficient pentadiagonal matrix,

[ 2V a() + a(y) 2 2rpenta a() + a(Y) a() + a() a() + a() a() + a()

2v ]a() + a() a()+a(y)

which is assumed in (3.11) to be diagonally dominant. In addition, exactly as above,
0

_ _ , where has the same nonzero structure as (. The bound (3.12) then
follows from [8, Thm. 5]. U

We will examine the use of this result in 5.
Remark 3. In the interest of brevity, we have limited our attention to the natural

and red-black variants of the one-line orderings. Other variants, called "torus" one-
line orderings, collect some individual lines together into sets of equal sizes; this is
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useful for parallel and vector computations. (See [8], [16].) All of the analysis of this
section also applies to the torus orderings.

We now turn our attention to incomplete LU (ILU) factorizations. Let B be an
M-matrix of order N, and let Af C_ {(i, j) ll

_
i, j

_
N} be an index set containing

all diagonal indices (i, i). It is shown in [17] that there is a unique ILU factorization
LU such that L is unit lower triangular, U is upper triangular, lij 0 and uij 0
for (i, j) Af, and [LU- B]ij 0 for (i, j) EAf. The ILU(0) factorization of (2.4) is
a particular example. The following result of Beauwens ([2, Thin. 4.4]) can be used
to compare the ILU(0) splitting to the block Jacobi splitting.

THEOREM 2. Let B be a nonsingular M-matrix, and let

B M1 R1 M2- R2,

where MI LIU1 and M2 L2U2 are incomplete factorizations of B such that the
set of matrix indices for which L + U1 is permitted to be nonzero is contained in the
set of indices for which L2 + U2 is permitted to be nonzero. Then

p(M-IR2) <_ p(M-IR).

The analysis in [2] actually applies to a more general class of factorizations than the
standard ILU factorization. Theorem 2 can be proved using the result of Wonicki
[27], that if (3.15) represents two regular splittings of a matrix B for which B-1 _> 0,
then

(3.17) M-1 >_ M-1

implies the conclusion (3.16). It is straightforward to establish (3.17) for ILU factor-
izations.

COROLLARY 3. Suppose A(b) is an M-matrix, ordered using any of the orderings
under consideration. Let A(b) M- R where M is the ILU(0) factorization of A(b),
and let A(b) D- C denote the block Jacobi splitting. Then p(M-1R) <_ p(D-C).

Proof. The index set of nonzeros of the block diagonal D is a proper subset of
the nonzero index set for the ILU(0) factorization. The result then follows from
Theorem 2, where (the factorization of) D is viewed as an incomplete factorization
of A() 0

Thus, we expect convergence of a stationary method based on the ILU(0) splitting
to be at least as fast as that for the block Jacobi method, for any ordering. (The work
per step for the Jacobi method will be smaller, though.) In particular, as observed in
[7], [8], convergence should be faster for mildly nonsymmetric problems arising from
nonselfadjoint operators than for symmetric ones derived from selfadjoint operators.
Combining the ILU(0) factorization with an acceleration scheme such as GMRES
(i.e., using M as a preconditioner) should further improve convergence. Numerical
experiments with the ILU(0) preconditioner that support this statement are presented
in the following sections.

4. Experimental results: Constant coefficient problems. In this section,
we examine the numerical performance of the block Gauss-Seidel and SOR stationary
methods, and GMRES(5) with the ILU(0) preconditioner, for solving the constant
coefficient model problem

(4.1) Au + aux + TU, 0
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East North
x

x Northeast Southeast

FIG. 4.1. Plots of the constant coejCficient solution for four different directions of flow.

on ft (0, 1) x (0, 1). Dirichlet boundary conditions on 0 are determined from the
exact solution

eax- 1 ey 1
+

e- 1 e- 1

on ft. The vector (a, T) represents a velocity field with the signs of a or T determining
the direction of flow. We consider eight types of velocity fields, corresponding to eight
flow directions in the (x, y)-plane:

East (E): a > 0, T 0, Northeast (NE): a - > 0,
West (W): a < 0, T 0, Southeast (SE): a --T > 0,
North(N): a=0, T>0, Northwest (NW): a=--T<0,
South (S): a 0, T < 0, Southwest (SW): a T < 0.

(For a 0 or T 0, (4.2) is defined using the limit, i.e., lim__.0(ex- 1)/(ea- 1) x.)
In addition, the solution (4.2) has a boundary layer at any outflow boundary, i.e., near
x 1 for positive a and x 0 for negative a, and similarly for y and -. Plots of
the solution for four such (a, T) combinations, corresponding to flows in the east,
north, northeast, and southeast directions, are shown in Fig. 4.1. Our concern is
to determine the effects of direction and magnitude of flow, ordering of unknowns,
discretization scheme, and use of local mesh refinement on the performance of reduced
system iterative methods.

Details of the numerical experiments are as follows. The experiments were per-
formed on a VAX-8600 in double precision Fortran. Reported iteration counts are
averages over three initial guesses consisting of vectors of random numbers in [-1, 1].
The stopping criterion for all methods was Ilrill2/llroll2 <_ 10-6. A maximum of 150
iterations was permitted; an asterisk "." in any table entry below indicates that for
at least one initial guess, the stopping criterion was not met after 150 steps. (We
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remark that when the block stationary methods failed to meet the stopping criterion,
they never "stagnated," i.e., they appeared to be converging.) For red-black SOR,
the first iteration was performed with w 1, as in [24]. Preconditioned GMRES
was performed with right-oriented preconditioning, i.e., GMRES was applied to the
preconditioned problem A(b)M-I(b) g(b), where M is the preconditioning matrix
and u(b) M-I(b). The construction of the reduced matrices and the experiments
with GMRES were performed with PCGPAK [21].

TABLE 4.1
Average iteration counts for the natural one-line ordering, for eight flow directions.

Gauss-
Seidel

SOR

GMRES
ILU

E W N S NE
a>O, a<O, a=O, a=O, a=>O

10 124 148 124 149 63
50 17 35 17 35 5
100 7 26 7 26 8
200 12 31 12 31 32
500 53 75 53 75 124
1000 150" 150" 150" 150" 150"
10 34 47 34 47 22
50 13 30 13 30 4
100
200 11
500 27
1000 54
10 15 16 14 15 11
50 12 12 8 8 4
100 11 11 6 6
200 10 10 4 4 7
500 10 10 4 4 11
1000 9 9 4 4 18

SE

101
19
14
28
123
15o*
33
17
15
24
37
61
16
16
15
14
17
22

NW
a=--T<O

101
19
14
28
122
150"
33
17
15
23
37
60
17
16
14
13
17
21

SW
< 0 Avg.

117 116
35 23
40 18
71 31

150" 97*
150" 150"
44 37
32 19
33 17
36 23
42 36
65 60
14 15
5 10
6 9
7 9
12 11
20 13

TABLE 4.2
Average iteration counts for the red-black one-line ordering, for eight flow directions.

G
Seidel

SOR

GMRES
ILU

E W
> O, < O,

II,II =o =o
10 132 144
50 23 24
100 13 14
200 20 21
500 63 69
I000 150" 150"
10 33 34
50 23 24
IO0
2OO
5OO
1000
10 24 28
50 29 35
100 28 33
200 28 34
500 31 34
1000 39 42

N S NE
O, a----.O, > 0

T>O -r<O
133 144 82
23 24 19
13 14 22
20 21 49
63 69 140"
150" 150" 150"
33 34 27
23 24 19

18
21
31
57

25 30 27
26 35 37
27 35 38
28 34 37
31 33 35
39 43 46

SE
a=->0

103
18
11
27
128
150"
29
18
14
23
35
58
29
22
16
14
27
52

NW

103
18
11
27
128
150"
30
18
14
22
34
57
27
20
16
14
26
52

SW
< 0

108
21
26
57

150"
150"
28
21
19
22
33
57
32
51
53
53
49
53

Avg.

119
23
15
30
102"
150"
31
21
16
22
33
57
28
32
31
30
33
46
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TABLE 4.3
Average iteration counts for the natural two-line ordering, for eight flow directions.

Seidel

SOR

GMRES
/ ILU

E W N
> 0, < 0, 0,

I1,1-1 =o =o >o
10 101 109’ 92 50
50 22 23 9 7
100 13 13 8 6
200 9 9 15 13
500 6 6 52 47
1000 5 5 150" 143
10 30 31 22 25
50 19 20 6 6
100 9
200 16
500 31
1000 56
10 17 "16 17 17 12"
50 12 13 12 13 5
100 10 10 10 11
200 8 8 8 9 10
500 7 7 8 8 22
1000 6 6 8 8 45

S ’NE SE
a=0,

115
25 22
23 21
31 28
64 63

150" 150"
33 37
20 21

25
29
41
64

NW
<0

19
27
30
33
43
49

72
8
7
14
53

148"
26
8
11
17
31
56
18
25
30
30
41
49

sw
a=-r<

87
23
21
28
64
150"
38
22
25
29
41
65
is
5

48

0 Avg.

89
18
14
19
44
117"
30
15
17
23
36
6O
17
10
14
14
2O
28

TABLE 4.4
Average iteration counts for the red-black two-line ordering, for eight flow directions.

auss-
Seidel

$OR

GMRES
ILU

E W
> 0, < 0,

10 100 110
50 19 20
100 10 11
200 8 8
500 6 6
1000 5
10 24"’ 26
50 15 16
IO0
2OO
5OO
1000
10 20 21
50 12 13
100 8 9
200 6 7
500 8 9
1000 7 8

0 0
"r>0 -r<0
100 109
17 18
15 16
22 24
56 58

150" 150"
24 25
13 14

20 23
25 31
26 30
26 30
34 29
40 43

NE SE
a=>0

60
14
13
20
54
146
28
13
17
21
34
58
16
15
16
17
24
36

78
15
14
21
56

150"
29
14
17
23
35
58
23
23
22
23
30
42

NW
<0

SW
< 0 Avg.

78 82 90
15 16 17
13 14 13
21 21 18
59 57 44

150" 149" 113"
29 5’9 26
14 15 14
17 17 17
22 23 22
35 35 35
58 58 58
23 25 21
24 25 21
24 25 20
23 28 20
28 31 24
41 45 33

The orientation of line orderings was as in 2. That is, for the one-line orderings,
lines were oriented in the NW-SE direction, and the natural ordering arranged the
lines starting from the SW corner; and for the two-line orderings, line pairs were
grouped by horizontal lines and the natural listing is from bottom (south) to top
(north). Note that the lines associated with ordering strategies have a relationship
with the direction of flow (see also [4]). For example, for the natural one-line ordering,
when the flow direction is NE, the lines are perpendicular to the direction of flow,
and the Gauss-Seidel and SOR sweeps follow the flow. When the flow direction is
SW, the lines are perpendicular to flow, but the sweeps are in the opposite direction
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of the flow. On the other hand, the sweeps for the red-black orderings do not have
a clear relationship to the direction of flow (although the line orientations still do).
The ILU(0) preconditioning entails lower and upper triangular solves, so that, for the
natural line orderings, the preconditioning operation can be thought of as a pair of
bidirectional sweeps.

Tables 4.1-4.4 contain results for centered difference discretizations on a uniform
mesh of width h 1/32. For this class of problems, the analysis of 3 is applicable
when lah/21 and ITh/21 are both less than one, i.e., when cr or T are 10 or 50 in the
problems considered. In these cases, Corollary 1 is used to choose the SOR parameter
w, where p(D-1C) is approximated using the bounds (3.10) and 3.12; here

For the one-line orderings, when both Icrh/21 and ]Th/21 are greater than one, the
Fourier analysis of [7] can be used to estimate p(D-iC), from which good values of w
are also obtained (i.e., using the formula for w* in Corollary 1). These values were also
used for the two-line orderings when lah/21 > 1 and ITh/21 > 1, although there is no
theoretical justification for this. We did not examine SOR when one of ]ah/21, ITh/2
is greater than one and the other is less than one. Table 4.5 shows the choices of w
used for Tables 4.1-4.4. Note that the analysis of 3 and [7], [8], does not distinguish
between natural and red-black orderings, or between problems where the magnitudes
of cr (or T) are the same but the signs differ.

TABLE 4.5
Values of SOR parameters used for Tables 4.1-4.4.

10
50
100
200
500
1000

One-line orderings
E/W/N/S NE/SE/NW/SW

1.63
1.07

1.52
1.02
1.05
1.27
1.60
1.77

E/W
1.52
1.06

Two-line orderings
N/S NE/SE/NW/SW
1.52 1.44
1.04 1.01

1.05
1.27
1.60
1.77

We make the following observations on the data of Tables 4.1-4.4:
1. For the stationary methods (Gauss-Seidel and SOR), performance depends

on the relationship between flow direction and sweep direction, but the effects vary
depending on the magnitudes of the velocity vectors. For example, for the natural
one-line orderings, when the convection terms are small or moderate in size, the best
performance of the Gauss-Seidel and SOR methods occurs when the sweeps follow
the flow (i.e., when the flow direction is NE). When the convection terms dominate,
the stationary methods perform better when the flow direction forms a nonzero acute
angle with the sweep direction (flow is N or E), than when the sweeps follow the flow.
For the natural two-line ordering, performance for moderate sized convection terms
is best when the flow direction forms an acute angle with the sweep direction (i.e.,
when flow is N, NE, or NW); for convection-dominated systems, performance is best
when the sweep is perpendicular to the flow. It is always the case that sweeping in
the opposite direction of the flow is a bad choice.

2. Performance of stationary methods for the red-black orderings is much less
sensitive to flow directions. In particular, the average iteration counts (over the
eight flow directions) are essentially the same for the natural and red-black orderings.



LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 353

This is significant on parallel architectures, where the red-black orderings can be
implemented more efficiently [8]. The minimum iteration counts are typically lower
for the natural orderings than for the red-black orderings.

3. Somewhat different conclusions apply for GMRES/ILU. There is no clear
correlation between direction of flow and performance, except that for convection-
dominated problems, performance for both natural orderings degrades when the di-
rections of flow are not parallel to one of the grid coordinates. We have no simple
explanation for this. The average iteration counts for GMRES/ILU are typically
higher for the red-black orderings than for the natural orderings. Similar results have
been obtained for symmetric problems, with point red-black and natural orderings,
e.g., in [1].

4. One step of the block SOR method is approximately as expensive as one
matrix-vector product and one scalar-vector product [8]. Thus, its cost per step
is approximately IONb multiply-adds, where Nb is the order of A(b). One step of
GMRES(5) with ILU(0) preconditioning entails a preconditioning solve, a matrix-
vector product, and approximately 8Nb vector operations [23], for a total cost of
26Nb multiply-adds. That is, one GMRES/ILU step is about 2.5 times as expensive
as one SOR step. Consequently, the performances of the stationary methods and
GMRES/ILU are comparable for problems with small and moderate-sized convection
terms (where for problems with small convection terms, it is necessary to use a good
SOR parameter to achieve good performance). GMRES/ILU is somewhat more ef-
fective for convection-dominated systems, especially when there is no simple way of
choosing a relaxation parameter. GMRES(5) requires 7Nb storage locations [23], plus
approximately 9Nb for the factors of M. SOR requires essentially one vector of stor-
age for the solution iterates {uk)}, plus storage for the factors of the block diagonal
D. If no pivoting is required, these factors could overwrite the analogous locations of
A(b).

TABLE 4.6
Average iteration counts for the block Gauss-Seidel method, upwind differences.

10 134
50 30

Natural 100 16
One-line 200 9

5OO 5
1000 4
io i43
50 37

Red-blak 100 23
One-line 200 16

500 13
1000 11
io io4
50 27

Natural 100 16
Two-line 200 11

500 7
1000
10 103
50 24

Red-black 100 14
Two-line 2D0 9

500 6
I000

E W N S NE SE
> 0, ( 0, 0, 0, > 0 > 0

150" 135 150" 77
48 30 48 16
33 16 33 9
26 9 26
22 22 3
20 4 20 2
150" 144 150" 93
39 37 39 31
24 23 24 23
17 16 17 20
13 13 13 17
12 11 12 16
113 105 129 54 95
28 24 41 17 34
17 13 29 11 27
11 8 23 7 23
7 20 20
6 3 19 4 19

"13 113 124 65 90
26 32 34 24 27
15 21 22 18 20
10 16 14 6
6 12 13 12 13
5 11 12 11 12

NW
a--<0

116
34
24
19
17
16
118
33
23
18
15
14

116
34
24
19
17
16
118
33
23
18
15
14
84
20
13
9
6

90
27
13
6
13
12

SW
< 0 Avg.

133 126"
49 36
40 24
35 19
33 15
32 14
124 130"
36 36
26 24
21 18
19 15
18 14
99 ’98
35 28
27 19
23 14
21 11
20 10
94 )9’
28 28
20 18
16 10
14 11
13 10
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Table 4.6 shows the performance of the block Gauss-Seidel method for solving the
same set of problems using the upwind difference scheme for the first derivative terms.
The main difference from the results for centered differences is that performance
improves as a or T increases. This is because A(b) (as well as A) becomes more
diagonally dominant in these cases. In addition, for the natural one-line ordering,
performance is consistently best when the flow is in the same direction as the sweep
(NE), and good performance is achieved when the sweep and flow directions make an
acute angle. Similar observations apply for the natural two-line ordering, except that
sweeping in the direction of flow (N) is not best when the convection terms are small.
As above, the red-black orderings tend to be less sensitive than the natural orderings
to flow directions.

The results above do not address the issue of accuracy of the discrete solution. If
lah/21 or ITh/21 is greater than one and boundary layers are present in the continuous
solution, then the discrete solution tends to be inaccurate near the boundary layers,
and it is oscillatory when centered differences are used [22]. If the boundary layer
can be located, then one possible remedy is to use local mesh refinement. For the
solution (4.2), for nonzero a or T, there are boundary layers of width O(1/a) (or
O(1/T)) near the outflow boundary. We consider one local refinement strategy, which
we describe in terms of the "horizontal" parameters x and a. In the interval of width

2/v/- containing the boundary layer (at either x 0 or x 1), we use a mesh of size
h such that la/21 -.75; away from that interval, we use h 1/32.2 It was shown in

[6] that this strategy does a good job of resolving the boundary layer with the addition

TABLE 4.7
Average iteration counts for the natural one-line ordering, centered differences and local mesh

refinement.

100
Gauss- 200
Seidel 500

1000
100

GMRES 2O0
ILU 500

1000

> O, < O,
"r--O -r=O
’7 31’
12 37
46 73
134 150"
12 12
10 10
10 10
9 9

N s
a--O, a=O, >0
"r>O -r<O

7’ 31 8
12 37 32
46 73 124
132 150"
6 6 6
4 4 8
4 3 12
4 18

17
28
111

17
18
18
23

NW
a=--<0

17
28
109

17
17
21
24

SW
< 0 Avg.

47 2
80 33
150" 91"

6 10
8 10
11 11
14 13

2 Grid points are distributed from left to right within each of these subintervals, so that the
rightmost mesh width of either interval may differ from h and .
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of a relatively small number of additional mesh points. For example, in the present
set of experiments, when a 100 there are 25 coarse grid points and 14 fine grid
points in the horizontal direction; when a 1000, there are 29 coarse and 43 fine grid
points. (The unrefined mesh contains 31 points in each direction.) Table 4.7 shows
the performance of the Gauss-Seidel and GMRES/ILU methods for four problems
where mesh refinement is used, for the natural one-line ordering. Comparison with
Table 4.1 shows that the behavior of the two iterative methods is essentially the same
as that for uniform meshes. Similar conclusions apply for the three other ordering
strategies. Thus, we conclude that the behavior on uniform meshes is indicative of
behavior where mesh refinement is used to resolve boundary layers. (Experiments
with the Gauss-Seidel method for lal ITI 1000 were not performed because of
storage constraints in our implementation.)

5. Experimental results: Separable variable coefficient problems. In
this section, we examine the use of Corollary 2 to derive bounds on p(D-1C) when
A(b) comes from a separable operator. We consider three model problems taken from
[3]. Other experiments with these problems are described in [7].

PROBLEM 5.1.

-Au+a (I+x2) Ux+TUy=0 onf=(0,1) X(0,1)
u=O on0fl.

Discretization by centered differences gives, after scaling by h2,

x) a(x) -() a() 2,a

+ +

V +

b+e 1 .
For a >_ 0 and T >_ 0, upwind discretization gives

ah crh o(ai=2+--(l+x)_>2+--
aj 2 + Th O(y)

ah(1 + 2Ci+ldi 1 + - xi+l) <_ 1 + ah ,
bj+lej 1 + 7"h rI.
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TABLE 5.1
Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,

for Problem 5.1 with h 1/32.

(T T

20
40
60

Centered differences
One-line

Computed Bound
.741 .809
.323 .385
.047 .062

Two-line
Computed Bound

.674 .731

.236 .275

.015 .018

Upwind differences
One-line Two-line

Computed Bound Computed Bound
.817 1.298 .772 1.379
.611 1.182 .544 1.212
.455 .961 .386 .985

Table 5.1 compares the bounds for p(.1) p(D-IC)2 obtained from Corollary 2 with
the corresponding computed values of p(:), for h 1/32. For this problem, as well
as the others considered below, we examine several choices of cr and T where for the
largest such choice, maxx Ir(xi)h/21 and maxyj Is(yj)h/21 are both close to one.

PROBLEM 5.2.

-Au + ax2ux O onft=(0,1)(0,1),
u 0 on Oft.

Centered difference discretization gives

) c() -(Y) (Y) 2,a uj

ci+di 1-+---xi+ 1- xi) 1+ 2

Upwind difference discretization gives

ai 2 + axh 2 + ah3 (),
aj 2 (),

2ci+di 1 + axi+h 1 + ah ,
bj+ej 1 .

(72h4

2

Table 5.2 compares bounds for p(.i) with corresponding computed values for Problem
5.2. An entry "-" means that the analysis is not applicable because (3.11) is not
satisfied.

TABLE 5.2
Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,

for Problem 5.2 with h 1/32.

Centered differences
One-line

a T Computed Bound
20 .963 1.014
40 .953 1.033
60 .945 1.051

Two-line
Computed Bound

.951 .987

.939 1.011

.928 1.035

Upwind differences
One-line

Computed Bound
.964 3.077
.955 10.37
.947 56.22

Two-line
Computed Bound

.951 6.630

.939

.928

PROBLEM 5.3.

-Au + a(1 2x)u + T(1 2y)uu 0

u--O

on a (0,1) x (0, 1),
on Oft.
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Centered difference discretization gives

-(Y) c(y) 2,ax) a(x)
uj

ci+ldi 1 + --(1 2Xi+l) 1 -(1
=l-2h (1-2xi)(1-2Xi+l)

l-ah2+ (2h3-ha)=,

( )( Th(1 ))bj+ej= 1+ (1-2yj+) 1- -2yj

N 1- The + (2ha ha) .
For a 0 and T 0, upwind discretization gives

ai 2 + a 1 2xih R 2 a(),
a 2 + rl 2NIh X 2 a(u),

ei+ldi 1 + all 2Xi+llh N 1 + ah (,

b+e 1 + TI 2y+llh 1 + Th .
Table 5.3 compares bounds and computed values of p() for Problem 5.3; the entry
"-" indicates that either (3.9) or (3.1) is not satisfied.

TABLE 5.3
Compason of computed spectral radii and bounds for the block Gauss-Seidel iteration matces,

]or Problem 5.3 with h 1/32.

Centered differences Upwind differences
One-line

a T Computed Bound
20 .854 .921
40 .733 .852
60 .629 .788

Two-line
Computed Bound

.813 .869

.669 .785

.553 .710

One-line
Computed Bound

.871 3.611

.780

.703

Two-line
Computed Bound

.833 6.986

.723

.634

To understand these results, it is useful to recall the constant coefficient problem
(4.1). For that problem, the parameters associated with centered differences are given
by (4.3). As shown in [7], [8], if both ah/2 < 1 and Th/2 < 1, then the bounds from
Corollary 2 essentially have the form 1 O(a2h2) O(T2h2). In particular, if either
ah/2 or Th/2 are near 1, then or r] are close to 0, and the bounds from Corollary
2 are very small. For Problem 5.1, r(x) (the coefficient of u) is bounded below
away from 0, so that for large a, the contribution hr(xi)/2 cannot be small for any
xi. Consequently, the bounding value is qualitatively like its constant coefficient
counterpart (compare (5.1) and (4.3)). Moreover, c(), c(y) and have the same
values as in the constant coefficient case. (This is true for () and c(y) with all three
problems considered here.) Thus, the bounds from Corollary 2 behave like their
constant coefficient analogues. For Problem 5.2, the upper bound corresponds to a
value for xi(= h) for which the differential operator is locally nearly selfadjoint; the
resulting bounds typically do not even guarantee convergence, and they are larger
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than what would be obtained in the selfadjoint case. For Problem 5.3, 1-O(oh2)
and 1-O(ah2), which lead to asymptotic bounds of the form 1-O(ah2)-O(’rh2);
these are larger than those occurring for Problem 5.1 but smaller than for Problem
5.2. Note that for all three problems, the bounding values are qualitatively similar to
the behavior of 1.

The parameters for upwind differences applied to the constant coefficient problem
are

a(x) 2 + ah, ay) a(y) 2 + Th, 1 + ah, 1 +

In this ce, the bounds on p(D-1C) from Corollary 2 are less than one, nd they
decrease with increasing a or (see [7], [8]). However, the extra inequalities required
to define a(x) nd a(y) decrease the size of the denominators in (3.10) and (3.12) and
limit the usefulness of the corollary. For Problem 5.1, ah is replaced by ah/2 in a(),
and the bounds on p(D-C) are less than one only when ah is large. The bounds for
Problems 5.2 and 5.3, where they are defined, do not provide any useful information.

6. Experimental results: Nonseparable variable coefficient problems.
We now examine the performance of the iterative methods for solving some nonsepa-
rable problems. Our goals are to examine the effectiveness of the block Gauss-Seidel
and SOR methods, and ILU-preconditioned GMRES, for solving such problems; and
to determine whether the analytic results of [7], [8], and 3 are of use in predicting
behavior.

The following problem, from [19], models the circular flow of a cold fluid with a
hot wall at the right boundary.

PROBLEM 6.1.

-eAu + 2y(1 x2)ux 2x(1 y2)uy 0

u=O
u 100

u--O

Un "-0

on t (--1, 1) x (0, 1),
on 0 _< y _< 1, x --1,
onO_<y_<l,x=l,

on --l_<x<O,y=O,

on 0 _< x _< 1, y--O,
on --1_<x_<1, y=1.

The velocity vectors have turning points in the vertical component, and their mag-
nitudes vary throughout the domain of definition. The solution contains a boundary
layer at x 1. Figure 6.1 shows the boundary conditions and streamlines, and the
general shape of the solution, for e 1/100.3 A related problem, differing from
Problem 6.1 only in the boundary conditions, was also considered in [9]; experimental
results were qualitatively similar to those presented below.

As above, we consider both centered difference and upwind difference discretiza-
tions. At the outflow boundary x _> 0, y 0, we used first order upwind differences

0 0)

i.e., u(xi, O) u(xi, Yl). For the centered difference scheme, we consider both a
square 31 31 mesh, and a uniform mesh of width h 1/32. The first choice

3 The discrete solution was computed using centered differences with 31 interior grid points in
each direction; the figure includes the exact solution values at x =i=l and y 1, but not at y 0.
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u=0

u=0

0
-1 1u=0 0 u =0

n

u=lO0

FIG. 6.1. Boundary conditions and solution for Problem 6.1.

produces matrices with the same algebraic structure as those considered in 4-5, but
the horizontal mesh width is twice that of the vertical width; the second choice leads
to lines of different length in the grid. We also consider a strategy for improving the
accuracy of the solution, based on defect correction methods. For all tests, the initial
guesses and stopping criteria are as in 4.

Table 6.1 shows average iteration counts for solving the reduced system derived
when centered differences are applied on a square 31 31 grid. Here, the grid sizes
for the full system are uniform in each of the x and y coordinates, with hx 1/16
and hy 1/32. As in the constant coefficient case (4), block relaxation is most
effective for intermediate values of e-1, where it is competitive with GMRES/ILU.
The latter method is more effective when e-1 is either small or large. The perfor-
mance of the stationary methods is fairly insensitive to the choice of ordering. This is
consistent with the fact that, because of variable directions of flow, there is no clear
correspondence between lines and flow direction. On the other hand, as in 4, the
performance of GMRES/ILU is typically better with the natural orderings than with
the red-black orderings. We remark that in a few experiments with Orthomin [5], we
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TABLE 6.1
Average iteration counts for Problem 6.1 on a 31 31 grid (hx 1/16, hy 1/32), with centered

differences. Numbers in parentheses are approximate number of digits of accuracy when methods
did not meet the stopping criterion.

Ordering

Gauss-
Seidel

GMRES
/ ILU

Natural one-line
Red-black one-line
Natural two-line
Red-black two-line
Natural one-line
Red-black one-line
Natural two-line
Red-black two-line

0 0 00 200 00 000
122 22 27 57 150 (4) 150 (1)
119 26 29 63 150 (4) 150 (1)
114 24 26 54 150 (4) 150 (1)
111 25 26 54 150 (4) 150 (1)
10 7 7 8 15 33
27 27 34 37 46 74
14 10 10 10 19 87
24 21 26 26 42 71

found Orthomin(5) to be somewhat less robust than GMRES(5).
TABLE 6.2

Average iteration counts for Problem 6.1, with the natural one-line and two-line orderings,
on a uniform grid with mesh size h 1/32 and centered differences. Numbers in parentheses are
approximate number of digits of accuracy when methods did not meet the stopping criterion.

Method
G.S. Natural one-line
G.S. Natural two-line
GMRES/ILU Natural one-line

.GMRES/ILU Natural two-line

10 50
0 () 2S
129 27
17 11
20 14

/
i00 200’ 500 000
22 35 122 150 (3)
22 34 101 150 (3)
10 10 16 150 (3)
12 12 17 64

Table 6.2 shows iteration counts for solving the reduced system derived from an
underlying uniform mesh of width h 1/32, for block Gauss-Seidel and GMRES/ILU,
with the two natural line orderings. The lines are oriented as in Fig. 2.2. These
results are similar to those of Table 6.1, except that GMRES/ILU has trouble with
one problem class (e 1/1000 with the natural one-line ordering). In this case, the
iteration "stagnates," in the sense that the residual norm IIg(b) A(b)ub)II2 remains
constant over many iterations.4 In contrast, whenever the block relaxation methods
fail to meet the stopping criterion, they appear to be converging.

TABLE 6.3
Average iteration counts for Problem 6.1 on a 31 31 grid (hx 1/16, hy 1/32), with upwind

differences.

Ordering
Natural one-line

Gauss-
Seidel

GMRES
/ ILU

Red-black one-line
Natural two-line
Red-black two-line
Natural one-line
Red-black one-line
Natural two-line
Red-black two-line

10 50 100 200 500 1000
142 31 24’ 21 18 17
139 37 29 26 24 23
132 32 25 23 20 19
131 35 27 22 20 19
10 8 8 7 7 6
29 25 28 32 36 37
15 10 10 9 8 7
28 20 20 21 26 25

Table 6.3 shows average iteration counts for solving the reduced system derived
when upwind differences are applied to Problem 6.1. Note that the mesh points used

Stagnation of this type also occurs for GMRES(10) and GMRES(15).
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for discretization depend on the direction of flow (see 2), and the reduced matrices
A(b) are always diagonally dominant. The results of Table 6.3 (for the stationary
methods) are consistent with those for constant coefficient problems.

A methodology for improving accuracy that does not require a priori knowledge
about the solution is the class of defect correction methods. A description of this ap-
proach can be found in [12], which contains several other references. For the operator
Lu =_ -Au + ru + suy, let A,h denote the matrix associated with the (second
order) centered difference discretization on a uniform mesh of width h. For > e, let
A,h denote the analogous matrix derived from L. In its simplest form, the defect
correction iteration consists of the following steps, where f is the discrete right-hand
side.

Solve A,hu(m) f.
For m-- 0, 1,..., Do

r(.) f A,hU(m)

Solve A=,hd(m) r(m)

u(m/l) u(m) + d(m)

End

The idea is to compensate for instabilities associated with high order operators using
lower order operators. For the choice e / ch where c > 0 is a fixed constant,
A,h is a first order discretization. At every step of the iteration, Ae,h is used only
to calculate the residual, and a linear system with coefficient matrix A,h must be
solved. Thus, the cost of this method is highly dependent on the cost of solving the
linear system.

Any c > 0 prevents the convection terms from dominating the discrete problem,
for arbitrarily small e. For c >_ max{Ir(x,y)l/2, Is(x,y)l/2}, A,h and the resulting
reduced matrix 4(5)

",h are diagonally dominant M-matrices. For Problem 6.1, this gives
c 1. However, Hemker [15] has observed that (using a variant of the algorithm
above) better accuracy is obtained with smaller c. Following [15], we use c- 1/2. The
differential operator L for Problem 6.1 is then equivalent to

2y(1 x2) 2x(1 y2)-Au + u u.e+h/2 e+h/2
We refer to the discretization of this operator by centered difference as the "defect
correction discretization." Table 6.4 shows the performance of the various iterative
methods for solving the resulting reduced linear systems. (See [15] for a discussion
of the overall iteration.) These results are qualitatively similar to performance for
upwind differences.

7. Concluding remarks. In this paper, we have continued the study of line
iterative methods for solving reduced systems begun in [7], [8]. We have extended the
analysis in two ways. First, for matrices that arise from variable coefficient separable
differential operators, we derived conditions under which the reduced matrices can be
symmetrized via diagonal similarity transformations; previous results applied only to
constant coefficient problems. Symmetrization is the key to the analysis of conver-
gence behavior for the constant coefficient case. In the present analysis, it determines
conditions under which the classical analysis of SOR applies, from which the optimal
SOR parameter can be expressed as a simple function of the maximum eigenvalue of
the line Jacobi iteration matrix, and it leads to some analytic bounds on performance
for separable problems. In addition, we used regular splitting results to show that the
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TABLE 6.4
Average iteration counts to solve the linear systems arising from the defect correction method,

for the natural one-line and two-line orderings on a uniform grid with mesh size u= 1/32. Numbers
in parentheses are approximate number of digits of accuracy when methods did not meet the stopping
criterion.

Method
G.S. Natural one-line
G.S. Natural two-line
GMRES/ILU Natural one-line
GMRES/ILU Natural two-line

/
10 50 100 200 500 1000
150 (4) 42 32 28 2’6 25
0() s 0
17 12 12 11 11 11
21 16 14 14 13 ..3

analysis of line Jacobi splittings can be extended to splittings based on incomplete
LU factorizations, for various line orderings of the reduced grid. The results help ex-
plain the good performance of IC preconditioners applied to the nonsymmetric matrix
problems arising from the convection-diffusion equation.

We have also performed an extensive set of numerical experiments that exam-
ine the effects of direction of flow, discretization, and grid ordering on performance
of the line iterative methods. For constant coefficient problems, the results reveal
correlations between relaxation sweep direction and direction of flow that are not dis-
played by any analytic results. They also show that for block relaxation methods,
red-black orderings are less sensitive to flow directions than natural orderings, whereas
for IC-preconditioned GMRES, convergence is faster for natural orderings than for
red-black orderings. In addition, both block relaxation and IC preconditioned GM-
RES are effective for many problems where the analysis does not apply. In general,
IC-preconditioned GMRES is more robust than block relaxation. Finally, experimen-
tal results for problems with variable coefficients or locally refined grids are largely
consistent with analysis and experiments for constant coefficients and uniform grids.
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