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Abstract.
Newton’s method for the incompressible Navier–Stokes equations gives rise to large

sparse non-symmetric indefinite matrices with a so-called saddle-point structure for
which Schur complement preconditioners have proven to be effective when coupled with
iterative methods of Krylov type. In this work we investigate the performance of two
preconditioning techniques introduced originally for the Picard method for which both
proved significantly superior to other approaches such as the Uzawa method. The first
is a block preconditioner which is based on the algebraic structure of the system matrix.
The other approach uses also a block preconditioner which is derived by considering
the underlying partial differential operator matrix. Analysis and numerical comparison
of the methods are presented.
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1 Problem description.

Mixed finite element discretizations of Navier–Stokes equations give rise to
nonlinear systems with the following saddle-point structure (see, e.g., [7, 14])

K(u)
(
u
p

)
=
(
F (u) Bt

B 0

)(
u
p

)
= f ,(1.1)

where K(u) ∈ R
n×n, F (u) ∈ R

n1×n1 is nonsymmetric and possibly indefinite
and Bt ∈ R

n1×n2 has nontrivial kernel spanned by the constant vector.
Since K is large and sparse, a competitive class of solution methods is that of

iterative solvers of Krylov type combined with suitable preconditioning. In this
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work we are interested in the case where a Newton linearization is employed to
solve (1.1); this leads to an iteration of the form [14, §10.3]

J(uk)
(
δuk+1

δpk+1

)
=
(
F (uk) +M(uk) Bt

B 0

)(
δuk+1

δpk+1

)
= rk,(1.2)

where M(u) = Au(u) · u,uk+1 = uk + δuk+1, rk = f −K(uk)uk.
On the other hand, the Jacobian matrix J(uk) is related to the system matrix

arising from a Picard linearization of (1.1),

K(uk)
(
δuk+1

δpk+1

)
=
(
F (uk) Bt

B 0

)(
δuk+1

δpk+1

)
= rk,(1.3)

for which efficient preconditioners are available. Our aim is to adapt and analyze
the preconditioned iterative solvers devised for the Picard iteration for problems
where Newton’s method is employed. Henceforth, we will use the notation

F (ρ,uk) = F (uk) + ρM(uk);(1.4)

where ρ ∈ {0, 1} to denote the matrices arising from the above two discretiza-
tions. To complete the picture, we note here that for flow problems in R

d

(d = 2, 3) there holds F (0,uk) = Id ⊗ F (uk), where F (uk) is nonsymmetric
and positive-definite and comes from the discretization of an advection–diffusion
operator

F (uk) = νL+N(uk),

where ν is the diffusion parameter and L is a discrete Laplacian. The matrix
M(uk) is also a d× d block-matrix and represents the discretization of a ‘zero-
order operator’. Hence it is well-conditioned; however, depending on the problem,
it can be indefinite which leads to the possibility of F (1,uk) being indefinite.

Finally, we note that the parameter ν is very important in practical appli-
cations. Its reciprocal, ν−1, is the Reynolds number and given the size of the
problem n, there are parameters ν for which the nonlinear problem (1.1) does
not have a unique solution. These critical values of ν where non-uniqueness sets
in can be detected in various ways, e.g., continuation methods. For this reason,
optimality of our solvers will be measured in terms of dependence of the number
of iterations on two parameters: n and ν.

Whether Picard, Newton or variations thereof, linearizations of (1.1) preserve
the saddle-point structure of the system matrix for which Schur complement
preconditioners perform optimally. More precisely, it is known that the key to
efficient preconditioning is the Schur complement

S = −BF (ρ,uk)−1Bt;(1.5)

in particular, a block (right) preconditioner of the form

P =
(
F (ρ,uk) Bt

0 S

)
(1.6)
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leads to convergence of any Krylov subspace iterative solver in 2 iterations [13, 8].
The difficulty with this approach obviously relates to applying the action of the
inverse of the Schur complement (1.5) as part of the preconditioning technique.
It is usually the case that the Schur complement is not available, due to its dense
structure and that suitable approximations (or factorizations) are required if we
are to stand any chance to make this approach competitive. Two successful Schur
complement approximations have been devised, analyzed and tested for the case
of the Picard iteration (ρ = 0). We consider these approaches below.

The first attempt to approximate the Schur complement corresponding to the
Picard iteration with a nonsymmetric matrix was presented by Elman in ([4])
who suggested the approximation

S−1 ≈ (BBt)−1(BF (uk)Bt)(BBt)−1.

It is shown in [4] that the performance of the block preconditioner (1.6) with this
choice of approximation has a mild dependence on both ν and n for the Picard
iteration. We refer to [4] for the derivation and details; we note however that this
choice of approximation is algebraic, i.e., it can be generalized to any problem
of saddle-point type and is independent of the underlying differential operator
corresponding to F (ρ,uk). For this reason, we will take our first approximation
of the Schur complement of the Newton method to be

S−1
1 = (BBt)−1(BF (1,uk)Bt)(BBt)−1.

The other approach we consider here is derived in [9]. In this approach, the
Schur complement is seen as the discretization of the fundamental solution for
the differential operator which gives rise to K(uk), the Picard linearization
matrix. The resulting approximation of the Schur complement is also defined
as a factorization of sparse matrices

S−1
2 = M−1

p FpA
−1
p ,

where Mp, Fp, Ap are projections onto the pressure space of the identity, ad-
vection–diffusion and Laplace operators, respectively (see [9] for details). The
cost of assembling the preconditioner in this fashion is justified by the improved
performance which becomes linear in the size of the problem, although it still
exhibits a mild dependence on ν.

Unlike the first choice above, this preconditioner depends strongly on what
the underlying operator is: if F (ρ,uk) changes, the new underlying operator will
lead to a new fundamental solution which will have to be computed (if it exists)
and discretized. Since F (1,uk) corresponds to an operator with non-constant
coefficients, the fundamental solution is not available to our knowledge. For this
reason we have not been able to adapt this preconditioner to Newton’s method.
We therefore analyze and test the above Schur complement approximation S2
(derived for the Picard iteration) on Newton’s method.
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2 Eigenvalue analysis.

In this section we present an analysis of the above preconditioning tech-
niques for the case where the system matrix results from a mixed finite element
discretization of the Navier–Stokes equations. These discretizations have the
advantage of satisfying certain stability conditions which arise in the formulation
of the problem. More precisely, we assume that the following conditions (known
as the Babuška–Brezzi conditions) are satisfied by the Jacobian matrix J(uk)
for all uk and for all ν

max
w∈Rn\{0}

max
v∈Rn\{0}

wtJ(uk)v
‖v‖H‖w‖H

≤ Γ,(2.1a)

min
w∈Rn\{0}

max
v∈Rn\{0}

wtJ(uk)v
‖v‖H‖w‖H

≥ γ,(2.1b)

where Γ, γ > 0. These conditions guarantee existence and uniqueness of a finite
element approximation ([6, Chap. IV]). Here H is a symmetric positive-definite
matrix which defines the discrete norm of the problem; this norm depends on
the choice of function spaces where the solution is sought. For the case of the
standard mixed finite-element approximations of the Navier–Stokes equations
the norm-matrix H takes the form

H =
(
A 0
0 Mp

)
,

where A = Id ⊗ L is a d-dimensional Laplacian matrix and Mp is a Grammian
matrix (mass matrix) assembled on the pressure space.

Let us consider a general block-triangular preconditioner of the form (1.6)
with F (ρ,uk) and S replaced by the respective approximations F̂ , Ŝ

P =

(
F̂ Bt

0 Ŝ

)
.(2.2)

The preconditioned matrix is then

JP−1 =
(
FF̂−1 (I − FF̂−1)BtŜ−1

BF̂−1 SŜ−1

)
and it appears that the derivation of eigenvalue bounds for the above system is
not a simple task. For this reason we make recourse to the general analysis of
block-preconditioners for saddle-point problems presented in [11]. We recall here
the results of interest.

Definition 2.1 (H-norm equivalence). Non-singular matrices M,N ∈
R

n×n are said to be H-norm equivalent if there exist constants α, β independent
of n such that for all x ∈ R

n \ {0}

α ≤ ‖Mx‖H

‖Nx‖H
≤ β.
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We write
M ∼H N.

Thus, H-norm equivalence simply means that the H-singular values of MN−1

are bounded. An immediate consequence is that the eigenvalues of the precon-
ditioned system are bounded independently of the size of the problem

α < |λ(MN−1)| < β;

moreover, H-norm equivalence is an equivalence relation on R
n×n. We will need

the following results proved in [11].

Lemma 2.1. Let (2.1) hold. Then

H ∼H−1 J.

Moreover, if for all v ∈ R
n1×n1

vtF (1,uk)v ≥ η‖v‖2A(2.3)

then the Schur complement S = BF (1,uk)−1Bt satisfies

S ∼M−1
p

Mp.(2.4)

Lemma 2.2. Let (2.1) hold with H defined as above and let P be defined
in (2.2). Then P ∼H−1 J if

F̂ ∼A−1 A, Ŝ ∼M−1
p

Mp.

The above results simplify our task considerably; in particular, under standard
assumptions on the matrix J , it is sufficient to perform our analysis on the
equivalence of the diagonal blocks of H and P .

Let us consider first a norm-equivalent approximation F̂ . Since F (0,uk) is
the discretization of a (positive-definite) advection–diffusion operator it satisfies
(see, e.g., [15])

vtF (0,uk)v ≥ η‖v‖2A ∀v ∈ R
n1×n1 .(2.5)

This bound implies that F (0,uk) satisfies a min-max bound of type (2.1b) with
respect to the A-norm; since F (0,uk) also satisfies a max-max bound with
respect to the same norm, we can apply Lemma 2.1 to deduce that

F (0,uk) ∼A−1 A.

It can be shown that there exists a value ν0 such that a bound of type (2.3)
holds also for F (1,uk) [6, p. 300] and thus F (1,uk) ∼A−1 A. We remark here
that the value of ν0 is not known a priori and that it depends on application.
We will investigate this issue in the numerics section.
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Remark 2.1. In general, even the weaker bound

min
w∈Rn1\{0}

max
v∈Rn1\{0}

wtF (1,uk)v
‖v‖A‖w‖A

≥ η(2.6)

is not implied by the stability conditions (2.1). In fact, the Babuška–Brezzi
conditions imply that the above min-max bound only holds over kerB [1].

Since the inverse of the matrix F (1,uk) can be quite expensive to compute in
practice we consider below two block approximations. For this purpose, let us
look at the structure of F (1,uk) for two-dimensional problems (cf. (1.4))

F (1,uk) =
(
F (uk) 0

0 F (uk)

)
+
(
M11(uk) M12(uk)
M21(uk) M22(uk)

)
.

Simple approximations are given by

FT (uk) =
(
F (uk) +M11(uk) M12(uk)

0 F (uk) +M22(uk)

)
(2.7)

and

FD(uk) =
(
F (uk) +M11(uk) 0

0 F (uk) +M22(uk)

)
.(2.8)

Given their structure, FT (uk), FD(uk) satisfy (2.1a) if F (1,uk) does. If (2.3)
holds for F (1,uk) then FD(uk) satisfies (2.3) also and thus

FD(uk) ∼A−1 A.(2.9)

If moreover ‖M12(uk)‖ < η, then one can show that vtFT (uk)v ≥ 1
2η‖v‖2A; thus

FT (uk) ∼A−1 A.(2.10)

We note that for a quasi-uniform discretization (see below) ‖M12(uk)‖ = O(h2)
so that the above restriction is satisfied if η > ch2. However, η = O(ν) and ν > ν0
is a stronger restriction on ‖M12(uk)‖. Henceforth, we restrict our attention to
the regime ν > ν0, for which F (1,uk), FT (uk), FD(uk) are all norm equivalent
to A. This equivalence is useful in the analysis we present below.

In the following we assume a quasi-uniform discretization of our physical
domain, i.e., we assume that we have a subdivision of our computational domain
in which all the simplices do not exceed a diameter h. Moreover, the following
bounds can be shown to hold for all v ∈ R

n1 ,q ∈ R
n2 \ kerBt and Ω ∈ R

2

c1h
2‖v‖2 ≤ vtAv ≤ c2‖v‖2,(2.11a)

c3h
4‖q‖2 ≤ qtBBtq ≤ c4h

2‖q‖2,(2.11b)
c5h

2‖q‖2 ≤ qtMpq ≤ c6h
2‖q‖2.(2.11c)

The following results provide eigenvalue bounds for the system matrix pre-
conditioned in the fashion described in the previous section.
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Theorem 2.1. Let (2.1) hold and let ν > ν0 be a viscosity parameter such
that F (1,uk) satisfies (2.3). Let

Pi =
(
F (1,uk) Bt

0 Si

)
,(2.12)

where Si, i = 1, 2 are defined as above. Then there exist constants Ci, i = 1, . . . , 4
independent of n such that

C1 ≤ |λ(JP−1
1 )| ≤ C2h

−2,

C3 ≤ |λ(JP−1
2 )| ≤ C4.

Proof. We first prove the bounds for P2. Since by hypothesis (2.3) holds, by
the above discussion F (1,uk) ∼A−1 A; in particular, (2.1a) implies

‖F (1,uk)A−1‖A−1 = max
v∈Rn1\0

‖F (1,uk)v‖A−1

‖Av‖A−1
≤ Γ.(2.13)

According to Lemma 2.2 we only have to check that S2 ∼M−1
p

Mp. This is
equivalent to showing that there exist constants α, β such that

α ≤
‖ApF

−1
p x‖M−1

p

‖x‖M−1
p

≤ β.

On the other hand the above inequality holds with respect to the l2-norm
([12], see also [10]) and the required result follows from the spectral equivalence
between the mass matrix Mp and the identity [16].

The bound for P1 follows in a similar way, the only difference being that we
have to show that β is of order h−2 in this case. We have

‖MpS
−1
1 ‖M−1

p
= ‖M1/2

p S−1
1 M1/2

p ‖

≤ c6h
2‖(BBt)−1BF (1,uk)Bt(BBt)−1‖

≤ c6h
2‖A−1/2F (1,uk)A−1/2‖ ‖(BBt)−1BABt(BBt)−1‖

≤ c6Γh2‖(BBt)−1BABt(BBt)−1‖
≤ c6Γh2‖A‖ ‖(BBt)−1‖
≤ c6c2c

−1
3 Γh−2,

where we used (2.13) and the fact that ‖A−1/2F (1,uk)A−1/2‖ =
‖F (1,uk)A−1‖A−1 .

For the lower bound we note that

‖S1M−1
p ‖M−1

p
= ‖M−1/2

p S1M
−1/2
p ‖ ≤ 1

σmin(M
1/2
p S−1

1 M
1/2
p )

.
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Let S0 = (BBt)(BABt)−1(BBt) and let R
n2
∗ = R

n2 \ kerBt. We have

σmin(M1/2
p S−1

1 M1/2
p ) ≥ min

q∈R
n2
∗

qtM
1/2
p S−1

1 M
1/2
p q

qtq

= min
r∈R

n2
∗

rtS−1
1 r

rtS−1
0 r

rtS−1
0 r

rt(BA−1Bt)−1r
rt(BA−1Bt)−1r
rtM−1

p r

≥ min
z∈R

n2
∗

ztF (1,uk)z
ztAz

×

× min
r∈R

n2
∗

rtS−1
0 r

rt(BA−1Bt)−1r
rt(BA−1Bt)−1r
rtM−1

p r
≥ η · 1 · c,

where we used Lemma 2.1, the fact that F (1,uk) satisfies (2.3) and the result
proved in [4] that the smallest eigenvalue of

(BA−1Bt)x = λS0x, x ∈ R
n2
∗

is greater or equal to 1. ✷
Let PT

i , P
D
i denote preconditioners of type (2.12) with F (1,uk) replaced by

FT (uk), FD(uk) respectively. The following result shows that the bounds of
Theorem 2.1 hold also for these approximations.

Corollary 2.1. Let the conditions of Theorem 2.1 hold and let P ∗
i denote

either of PT
i , PD

i . Then there exist constants C∗
i , i = 1, . . . , 4 independent of n

such that

C∗
1 ≤ |λ(JP ∗

1
−1)| ≤ C∗

2h
−2

C∗
3 ≤ |λ(JP ∗

2
−1)| ≤ C∗

4 .

Proof. The proof follows similarly by using the norm-equivalences
(2.9), (2.10). ✷

Remark 2.2. The above analysis relies on relation (2.3). Under this assump-
tion, the analysis for the preconditioned matrix JP−1

2 is equivalent to that
performed in [10] for preconditioning the Picard iteration. However, the general
analysis in [11] allowed us to simplify that analysis and also to provide for the
first time analytic bounds for the eigenvalues of JP−1

1 .

Remark 2.3. The above result exhibits only the dependence of the eigenval-
ues on the mesh parameter. Since by hypothesis, the analysis is restricted to a
sufficiently large ν, we will not pursue the dependence on ν here. For the Picard
iteration, analyses and experiments on ν dependence are contained in [4, 5, 10].

Numerical experiments indicate that the bounds on the eigenvalues are tight.
However, it is well-known that the eigenvalues alone do not always describe
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convergence of nonsymmetric iterative solvers. This is also the case here: al-
though the largest modulus eigenvalues of the preconditioned systems behave
as described theoretically, they actually belong to a small group of outliers. We
found experimentally that most of the eigenvalues are clustered in a region of the
plane close to 1, with a small number of eigenvalues migrating from the cluster
as the parameters ν, h are reduced. A general qualitative model for convergence
of GMRES when clustering occurs can be found in [2]. We recall here their
result for one cluster, since it appears to be pertinent to the distribution of
eigenvalues resulting from our preconditioning techniques. Given a cluster of
eigenvalues

C = {λ : |λ− c| < ρ|c|}
to which there correspond M = n − |C| outliers, whose maximum distance δ
away from C is

δ = max
|z−c|=ρ|c|

max
1≤j≤M

|λj − z|
|λj |

the GMRES residual at step k + d satisfies

‖rk+d‖ ≤ Cρk‖r0‖,

where d is the degree of the minimum polynomial associated with the outliers
and C ∼ ρδd is independent of k.

A specific numerical study of this phenomenon for preconditioning with P2
is contained in [5]. In this case the location of the eigenvalues does not depend
on the mesh-size and the migration of eigenvalues from the cluster occurs with
reducing ν. This leads to a delay in convergence dependent on the number of
eigenvalues outside the cluster.

A very similar behaviour is observed for fixed ν in the case of preconditioning
with P1. As described by Theorem 2.1, the maximum modulus eigenvalue of
the preconditioned system is bounded from above by a factor of order O(h−2).
This is in fact a descriptive bound. Table 2.1 exhibits this dependence for the
case ν = 1/10 for the driven cavity test problem (see next section). However,
convergence is not entirely described by the behaviour of the largest modulus
eigenvalues – indeed, the spectrum is mostly clustered in a small region of the
complex plane with only a handful of outliers exhibiting the O(h−2) behaviour.
Thus, there appears to occur a clustering similar to the case described above
where we precondition with P2 and where convergence is described through a

Table 2.1: Spectral information for JP−1
1 ; no(c, r) is the percentage of eigenvalues

outside the circle of radius r centered at c

h(n) maxRe(λ) max Im(λ) no(2, 1) no(3, 2) no(4, 3) no(5, 4)

1/16(289) 46.65 6.44 15.2 7.6 3.1 3.8

1/32(1089) 177.55 24.72 15.4 7.8 3.6 3.7

1/64(4096) 694.42 96.74 15.6 7.9 3.8 3.9
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delay dependent on the (increasing) number of outliers. Table 2.1 presents also
the percentage of (outlying) eigenvalues no(c, r) outside the circle of radius r
centered at c. We see indeed that the number of eigenvalues outside each disc
close to the unity, though in small proportion, is increasing with n. This appears
to match the behaviour exhibited in the tests below, where a slight dependence
on the size of the problem is noticed, though never a linear one.

3 Numerical experiments.

In this section we present numerical experiments obtained for a standard
test problem, the driven cavity flow. This involves solving the Navier–Stokes
equations inside the unit square with Dirichlet boundary conditions equal to
zero everywhere, except for the boundary y = 1 where the horizontal velocity
has a positive prescribed profile.

Although our analysis considered the exact Newton’s method, in practice it is
of considerable advantage to use an inexact version for reasons of computational
efficiency. The algorithm we use is a Newton–GMRES method which involves
solving (1.2) using GMRES with preconditioning and the following stopping
criterion suggested in [3]: writing (1.1) as F(w) = 0, where w = (u,p), at each
Newton step i we stop after k iterations of GMRES if the residual rk satisfies

‖rk‖/‖F(wi)‖ ≤ c‖F(wi)‖q,(3.1)

where the choice c = 10−2, q = 1/4 does not affect the number of nonlinear
iterations in our tests. Moreover, the order of convergence is only marginally
affected, as we show below.

We report below the performance of preconditioners Pi, P
T
i , P

D
i , i = 1, 2. The

tests were performed on discretizations resulting from three successively refined
meshes and a range of diffusion parameters ν. The value ν0 in Thm 2.1 depends
on the problem; for our example we found experimentally that ν0 ∼ 1/80. As
the results below demonstrate, the regime ν ≥ ν0 is also the regime where our
preconditioners perform best. The finite element discretization is the so-called
Q2 − Q1 discretization, using a regular mesh of rectangles with finite element
bases of quadratic and linear piecewise polynomials for the velocity and pressure,
respectively. The initial guess for the Newton iteration was the zero vector,
except for the range ν ≤ 1/640 for which three steps of the Picard iteration were
necessary to provide a initial iterate which ensured convergence of Newton’s
method. We note that this will lead to an apparent improvement of performance
in this regime, although not to a qualitative change. We stopped the Newton
(outer) iteration when ‖F(wi)‖/‖F(w0)‖ ≤ 10−6.

The computational cost of our preconditioners is dominated by the inver-
sion of the (1,1)-block F (1,uk). For the Q2 − Q1 discretization the cost of
storing the Schur complement approximations Si is approximately 25n2(BBt)
+45n2(BFBt) for S1 and 3×9n2(Ap, Fp,Mp) for S2. The cost of applying these
preconditioners will of course depend on the choice of implementation. In the
experiments below we implemented them exactly; however, iterative techniques
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Table 3.1: Average number of GMRES iterations per Newton step for P1

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

n = 2,467 13.7 14.2 15.5 17.7 21.4 29.3 31.8 43.2

9,539 20.2 21.2 21.5 23.5 29.2 36.8 40.0 53.2

37,507 29.7 31.7 32.7 33.7 41.2 52.0 62.6 72.3

Table 3.2: Average number of GMRES iterations per Newton step for P2

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

n = 2,467 13.5 13 17.7 22.8 27.8 47.3 59.5 85.1

9,539 11.5 13.2 16.2 21.2 31.6 44.6 57.2 77.3

37,507 11.7 14.2 16.5 19.5 29.6 43.5 56.5 75.1

Table 3.3: Average number of GMRES iterations per Newton step for P T
1

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

n = 2,467 13.7 14.2 16.2 19.5 26.0 32.6 37.6 49.1

9,539 20.2 22 22.2 25.7 43.2 44.3 44.5 59.7

37,507 30.2 32 34.5 37.7 49.2 64.0 69.8 80.5

are certainly possible [4, 9] in which case the choice S2 becomes clearly more
competitive.

The results for the ‘exact’ case, when preconditioners P1, P2 are employed are
shown in Tables 3.1, 3.2. We see indeed that while the performance of P2 is mesh-
independent, the performance of P1 exhibits a sub-linear dependence on the size
of the problem. This we believe to be explained by the distribution of eigenvalues
which was exhibited in Table 2.1, which showed an increasing number of outliers
with decreasing mesh-size. As for the viscosity parameter ν, preconditioner P1
appears to exhibit a milder dependence than P2, which makes it comparable to
P1 for high-Reynolds number flows, despite its mesh-dependence.

The same behaviour is exhibited by the preconditioners PT
i , P

D
i , i = 1, 2. In

particular, the performance remains mesh-independent in the case of PT
2 , P

D
2

as shown in Tables 3.4, 3.6; as a consequence, the number of extra iterations
compared to the ‘exact case’ displayed in Table 3.2 is independent of the mesh.
This is not the case for PT

1 , P
D
1 as shown in Tables 3.3, 3.5, for which this

difference (cf. Table 3.1) grows with the mesh parameter, although the number
of iterations still grows sub-linearly with respect to the size of the problem.

From a practical point of view it is important to study the deterioration in
performance when the exact preconditioners Pi are replaced with PT

i , PD
i , as

solving systems with F can be quite costly. As the above numerics show, this
deterioration is negligible for large ν and quite acceptable for smaller ν. To
exemplify this we replaced the exact solution of systems involving F (1,uk) with
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Table 3.4: Average number of GMRES iterations per Newton step for P T
2

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

n = 2,467 14.7 14 19.7 26.8 36.4 58.3 71.3 103.5

9,539 12.5 14.7 17.7 24.7 37.4 55.8 67.2 102.6

37,507 12.7 15.5 18.2 21.7 34.6 53.2 67.5 108.6

Table 3.5: Average number of GMRES iterations per Newton step for P D
1

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

n = 2,467 14 15 17 21.5 28.4 36.2 39.2 51.4

9,539 20.7 23.2 24.5 28.5 37.6 46.8 45.3 59.2

37,507 30.7 33.7 36.5 41.2 54.0 69.2 69.5 80.83

Table 3.6: Average number of GMRES iterations per Newton step for P D
2

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

n = 2,467 15.7 15.7 22.7 30.6 41.6 65.6 77.9 114.3

9,539 13 16 19.7 25.2 43 63 72.3 111.0

37,507 13.7 17 20.7 25 39.6 59.2 72.5 116.1

a GMRES iteration with preconditioners FT , FD. The stopping criterion was the
reduction of the relative 2-norm residual by a factor of 106 which insured that this
inner iteration did not affect the outer iteration count displayed in Tables 3.1, 3.2.
The number of iterations was always mesh-independent. We present these results
in Table 3.7. We see indeed that the modified preconditioners PT

i , P
D
i (which

require just one solve with FT and FD respectively) outperform by far Pi when
the inner-GMRES iteration is used to approximate F . Thus, unless a fast so-
lution algorithm is available for F (1,uk), the ‘ideal’ performance presented in
Tables 3.1, 3.2 may prove too expensive to achieve.

We end this section with a note on the convergence rate of Newton’s method
observed for our inexact Newton–GMRES algorithm. The choice of this algo-
rithm and in particular of stopping criterion (3.1) was justified by both practical
and theoretical considerations [3]. In Table 3.8 we display the average conver-
gence rate observed in our tests. More precisely, we tabulated the mean of the
ratio qk of logs of consecutive residuals

qk =
log ‖F(wk)‖

log ‖F(wk−1)‖ ,

for the cases q = 1/4 and q = 1 in (3.1) and for the exact case (q = ∞). The
choice of preconditioner does not affect the convergence rate displayed below.
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Table 3.7: Average number of iterations per outer-GMRES step for
inner-GMRES solver using preconditioners F T , F D

ν = 1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/1280

F T 3.0 3.8 4.5 5.6 8.1 12.0 16.4 27.7

F D 4.8 6.2 8.3 11.3 15.6 22.5 31.7 34.2

Table 3.8: Convergence rate of Newton’s method: exact
and inexact with q = 1/4 and q = 1; n = 9, 539

ν = 1/10 1/20 1/40 1/80 1/160 1/320

q = 1/4 1.78 1.77 1.70 1.58 1.43 1.28

q = 1 2.00 1.98 1.80 1.57 1.43 1.28

q =∞ 2.20 2.02 1.81 1.57 1.43 1.28

We see indeed that the choice of stopping criterion (i.e., q in (3.1)) does not
affect significantly the rate of convergence of the method except possibly for
the low Reynolds number (large ν) regime. In principle, one could recover this
convergence rate by a stricter criterion (q = 1, say), at the cost of more iterations.
Given our choice of tolerance for the outer nonlinear iteration (10−6), q = 1/4
was sufficient to keep the same number of Newton steps as in the exact case. A
stricter tolerance may require a larger value of q. However, for high Reynolds
number flows a more economical stopping criterion is sufficient due to the sub-
optimal convergence of Newton’s method.

4 Summary.

The purpose of this work was to analyze and compare block preconditioners
for the system matrix arising from a Newton iteration for the Navier–Stokes
equations. The preconditioners are saddle-point preconditioners using an alge-
braic and operator based approximation of the Schur complement. They were
introduced originally for the case of the Picard iteration. In each case we give
analytic bounds for the spectrum of the preconditioned system under standard
stability assumptions for the finite element discretization. The bounds require
a further assumption of positive-definiteness of the (1, 1)-block of the matrix,
which holds for large viscosity parameters. The numerical experiments however
show no qualitative change even for smaller values of viscosity. In each case
the implementation is modular – we only require the action of inverses of sub-
blocks which have to be constructed algebraically or assembled together with
the system matrix. The performance is very similar to the case of the Picard
iteration which has been recently reported. The operator-based preconditioner
appears to be more robust and less costly than the algebraic preconditioner and
especially the independence of the size of the problem is an attractive feature.
However, optimality with respect to the Reynolds number is still to be achieved.
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