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Abstract.

We present a Fourier analysis of multigrid for the two-dimensional discrete convec-
tion-diffusion equation. For constant coefficient problems with grid-aligned flow and
semi-periodic boundary conditions, we show that the two-grid iteration matrix can be
reduced via a set of orthogonal transformations to a matrix containing individual 4×4
blocks. This enables a trivial computation of the norm of the iteration matrix demon-
strating rapid convergence in the case of both small and large mesh Peclet numbers,
where the streamline-diffusion discretisation is used in the latter case. We also demon-
strate that these results are strongly correlated with the properties of the iteration
matrix arising from Dirichlet boundary conditions.

AMS subject classification (2000): 65F10, 65N22, 65N30, 65N55.
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1 Introduction.

In this paper, we present some analysis of a multigrid solution method for the
linear convection-diffusion equation

−ε∇2u(x, y) +w · ∇u(x, y) = f(x, y) in Ω(1.1)

u(x, y) = g(x, y) on δΩ

where the divergence-free convective velocity field w = (w1(x, y), w2(x, y)) and
the small parameter ε are given. Multigrid is effective for this problem if suit-
able strategies (for example, streamline-diffusion discretisation [14] or problem-
dependent grid transfer operators [27]) are used to handle instabilities associ-
ated with coarse grids, and if smoothers (such as flow-directed iterations [12]

� Received 2005. Accepted in revised form February 2006. Communicated by Anna Karin
Tornberg.
�� The work of this author was supported by the National Science Foundation under grant
DMS0208015 and by the Department of Energy under grant DOEG0204ER25619.



284 H. C. ELMAN AND A. RAMAGE

or multidirectional sweeping strategies [20]) take into account properties of the
flow. However, the state of analysis is less well-developed than for the standard
‘model problem’, the Poisson equation. Typical analyses, for example, Bank [1],
Bramble, Pasciak and Xu [2], Mandel [16], Wang [25], generalise the results for
the Poisson equation by treating the convection-diffusion operator as a perturba-
tion of the Laplacian. Good surveys of this situation as well as other new results
can be found in the recent papers of Reusken [21] and Olshanskii and Reusken
[18]. Several results relevant to finite difference discretisations of convection-
diffusion equations can be found in, for example, Stüben and Trottenberg [23]
and Trottenberg et al. [24].
The work presented here is a Fourier analysis applied to the constant coefficient
problem with grid aligned flow and semi-periodic boundary conditions. It shows
that the two-grid iteration matrix can be transformed to a matrix containing
4×4 blocks, which in turn can be used to compute the convergence factor of the
iteration matrix. Moreover, these convergence factors also essentially predict the
behaviour of multigrid for the Dirichlet problem. This work generalises results
for the one-dimensional problem given in Hackbusch [11]. It can be applied to
any discretisation strategy that results in a computational molecule of a certain
form (see (2.3)). It applies to both Galerkin discretisation in the case of small
mesh Peclet numbers and streamline diffusion discretisation for large mesh Peclet
numbers.
To fix ideas, we seek a solution uh of the discrete weak form of equation (1.1),

ε(∇uh,∇v) + (w.∇uh, v) +
∑
αel(w · ∇uh,w · ∇v)el

= (fh, v) +
∑
αel(fh,w · ∇v)el ∀v ∈ Vh,(1.2)

where h is a discretisation parameter, the test functions v are in a finite-dimen-
sional subspace Vh of the Sobolev space V = H10(Ω), fh is the L

2(Ω) orth-
ogonal projection of f into Vh and the sums are taken over all elements in the
discretisation. Choosing the test functions equal to a set of basis functions for
Vh (bilinear functions on square elements here) leads to a sparse linear system
whose solution can be used to recover the discrete solution uh. The stabilisation
parameters αel are given by

αel =
δelhel

|w|
(1.3)

where hel is a measure of element size, |w| represents the strength of the con-
vective field within an element and δel ≥ 0 are parameters to be chosen. The
choice of these parameters depends on the mesh Peclet number

P elh =
hel|w|

2ε
.

Setting δel = 0 on each element reduces (1.2) to the standard Galerkin discreti-
sation: this is the usual practice when P elh ≤ 1. If, however, P

el
h > 1, then the dis-

crete solution obtained from the Galerkin method may exhibit non-physical os-
cillations. The effects of such oscillations may be minimised by choosing δel > 0,
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that is, by adding coercivity in the local flow direction. In this paper, we will
adopt the strategy suggested by the analysis in [5], that is, we choose the sta-
bilisation parameter to be

δel = max

(
0,
1

2
−
ε

hel

)
.(1.4)

For full details of both Galerkin and streamline diffusion discretisations, see for
example [8, 14, 15, 17, 19, 22].

Discretising (1.1) via (1.2) gives rise to a sparse linear system

Afu = f .(1.5)

In this paper, we are interested in analysing the convergence behaviour of multi-
grid methods for this system. For details of multigrid methods in general, see
for example [3, 9, 26]. Here, we consider only a two-grid method, as multigrid
convergence is closely related to the two-grid convergence (see for example [10]).
Our two-grid method has the following matrix components:

• coefficient matrix Af on a fine grid with grid parameter hf ;
• coefficient matrix Ac on a related coarse grid with grid parameter hc = 2hf ,
constructed by direct discretisation via (1.2);
• bilinear interpolation matrix P for prolongation from coarse to fine grid;
• restriction matrix PT for restriction from fine to coarse grid;
• smoothing matrix SνA corresponding to pre-smoothing with ν steps of line
Gauss–Seidel iteration.

It is shown in [20] that, with stabilisation added as described above, this is an
effective algorithm for two-dimensional convection-diffusion problems. For clarity
of presentation, we have not included any post-smoothing steps; the analysis
could be extended to include post-smoothing in an obvious way. A two-grid
method with the components described above has the iteration matrix

M =
(
I − PA−1c P

TAf
)
SνA,(1.6)

where the contraction number is given by ‖M‖ for any matrix norm.
The remainder of the paper is structured as follows. In the next section, we
present details of the two-dimensional model problem studied, and the matrix
transformations which we will use as a basis for our analysis. These transfor-
mations enable us to obtain a tractable expression for the 2-norm of the two-
grid iteration matrix M by considering several individual problems with one-
dimensional structure. In Sections 3 and 4, bounds are obtained for the norm of
(1.6) corresponding to a semiperiodic version of the model problem for various
values of mesh Peclet number. The usefulness of these bounds for predicting con-
vergence behaviour for the full Dirichlet problem is then assessed in Section 5.
Finally, Section 6 contains some concluding observations.
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2 Matrix Transformation.

For the purposes of this analysis, we focus on the ‘vertical wind’ model problem

−ε∇2u+
∂u

∂y
= 0 in Ω = (0, 1)× (0, 1),(2.1)

obtained by setting w = (0, 1) and f=0 in (1.1). Dirichlet boundary conditions
are applied on all boundaries, and we use a natural ordering of the unknowns
on a uniform grid of square bilinear elements with Nf = 1/h elements in each
dimension. In what follows, we define orthogonal transformation matrices Qf
and Qc and apply them as appropriate to the components ofM in (1.6). We em-
phasise that these transformations can be applied to any discretisation technique
whose stencil takes the form (2.3) (see below). We discuss the specific details for
discretisation (1.2) in Section 5.

2.1 Coefficient matrices.

For model problem (2.1), discretisation (1.2) gives rise to a linear system (1.5)
where the coefficient matrix Af is of order n

2
f , with nf = Nf − 1. The choice of

stabilisation parameter δ is governed by the model problem mesh Peclet number

Ph =
h

2ε
.(2.2)

If Ph < 1, a Galerkin method is used ((1.2) with δ = 0) and if Ph ≥ 1, stream-
line diffusion is added ((1.2) with stabilisation parameter δ = 1

2 −
ε
h ). If the

coefficients of the computational molecule are denoted by

m4 m3 m4
↖ ↑ ↗

m2 ← m1 → m2
↙ ↓ ↘

m6 m5 m6

,(2.3)

then the matrix Af can be written as

Af =

⎡

⎢⎢⎢⎢⎢⎣

M1 M2 0
M3 M1 M2

. . .
. . .

. . .

M3 M1 M2
0 M3 M1

⎤

⎥⎥⎥⎥⎥⎦
(2.4)

where

M1 = tridiag(m2,m1,m2), M2 = tridiag(m4,m3,m4),

M3 = tridiag(m6,m5,m6)
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are all tridiagonal matrices of order nf . Assume Nf is even. A related coarse
grid of Nc×Nc elements is formed by removing every second node from the fine
grid. This leads to the coefficient matrix Ac defined by direct discretisation via
(1.2) on the nc×nc coarse grid (where nc = Nc−1). The stabilisation parameter
for the coarse grid is chosen as above using the coarse grid mesh Peclet number

P ch =
h̄

2ε
,

where the coarse grid spacing is h̄ = 2h.
Writing

θj =
jπ

Nf
,

we have that the eigenvalues and eigenvectors of the blocks of Af satisfy

M1v
f
j = λ

f
j vj λfj = m1 + 2m2 cos θj

M2v
f
j = σ

f
j vj σfj = m3 + 2m4 cos θj

M3v
f
j = γ

f
j vj γfj = m5 + 2m6 cos θj

(2.5)

for j = 1, . . . , nf , where the eigenvectors are

vfj =

√
2

Nf
[sin θj , sin 2θj , . . . , sinnfθj ]

T
.(2.6)

We may therefore obtain the decomposition

Tf = (VfΠf )
TAf (VfΠf ) ≡ Q

T
f AfQf(2.7)

where

Vf = If ⊗ Vf , Vf =
[
vf1 ,v

f
2 , . . . ,v

f
nf

]
(2.8)

and the symbol ⊗ represents the Kronecker product (see e.g. [13, p. 243]). Here
Vf represents the eigenvector transformation matrix, If is the nf × nf identity
matrix, and Πf is a permutation matrix of order n

2
f which reorders the unknowns

in vertical rather than horizontal lines; see [5], [6] for further details.
As the coarse grid coefficient matrix Ac is constructed in an exactly analogous
way to Af , we may identify coarse grid eigenvectors

vcj =

√
4

Nf
[sin 2θj, sin 4θj , . . . , sin 2ncθj]

T
, j = 1, . . . , nc(2.9)

with corresponding eigenvalues λc, σc and γc (cf. (2.5)) and write

Vc = Ic ⊗ Vc, Vc =
[
vc1,v

c
2, . . . ,v

c
nc

]
.(2.10)

This leads to the transformation

Tc = Q
T
c AcQc(2.11)

where the matrix Qc = VcΠc is orthogonal. The matrix Tc is block diagonal, with
diagonal blocks (Tc)j = tridiag(γ

c
j , λ

c
j , σ

c
j), j = 1, . . . , nc, involving the coarse

grid eigenvalues.
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2.2 Smoothing Matrix.

Using the block matrix splitting

Af = DA − LA − UA,

where DA is the block diagonal of Af and LA and UA are the (strict) block
lower and upper triangular parts, respectively, the line Gauss–Seidel smoothing
matrix can be written as

SA = (DA − LA)
−1UA = I − (DA − LA)

−1Af .

Hence

QTf SAQf = I −
(
QTf (DA − LA)Qf

)−1(
QTf AfQf

)
(2.12)

= I − (DT − LT )
−1Tf ≡ ST

where DT and LT are the diagonal and (strict) lower triangular parts of Tf , and
ST is block diagonal with blocks

(ST )j = I − (DTj − LTj)
−1(Tf )j , j = 1, . . . , nf .

2.3 Prolongation and restriction matrices.

The prolongation matrix P (of dimension n2f × n
2
c) corresponding to bilinear

interpolation from coarse to fine grid can be written as

P = L⊗ L =

⎡

⎢⎣
l11L · · · l1ncL
...

. . .
...

lnf1L · · · lnfncL

⎤

⎥⎦(2.13)

where L is the nf × nc one-dimensional linear interpolation matrix with entries

lij =

⎧
⎪⎨

⎪⎩

1, i = 2j
1
2 , i = 2j − 1 or i = 2j + 1

0, otherwise

, i = 1, . . . , nf , j = 1, . . . , nc.

Using (2.6) and (2.9), it can be shown that the following relationships hold:

LTvfj = αjv
c
j αj =

1√
2
(1 + cos θj) , j = 1, . . . , nc

LTvfNc = 0
f (zero column vector of length nf )

LTvfNf−j = αNf−jv
c
j , αNf−j = −

1√
2
(1− cos θj) , j = 1, . . . , nc.

(2.14)

Introducing the nc × nf matrix A with entries

ajk =

⎧
⎨

⎩

αj , k = j
αk, k = Nf − j
0, otherwise

,
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we may write

LTVf = VcA⇒ V
T
f L = A

TV Tc .

Combining this with (2.8), (2.10) and (2.13) gives a transformed prolongation
matrix P̄ as follows:

QTf PQc = Π
T
f

(
If ⊗ V

T
f

)
(L⊗ L)(Ic ⊗ Vc)Πc = Π

T
f

(
L⊗ V Tf LVc

)
Πc

= ΠTf (L⊗A
T )Πc = A

T ⊗ L ≡ P̄ .(2.15)

Depictions of the sparsity patterns of P and P̄ (for Nf = 8) are shown in
Figure 2.1. Numbering the individual nf × nc blocks of P̄ down from the top
with j = 1, . . . , nc and up from the bottom with k = Nf − 1, . . . , Nf − nc, we
note that each block has the form

P̄j = αjL, P̄k = αkL

with αj , αk defined by (2.14).

(a) P . (b) P̄ . (c) P̄T .

Figure 2.1: Representative sparsity patterns of grid-transfer matrices, Nf = 8.

2.4 Iteration matrix.

It follows from (2.7), (2.11), (2.12) and (2.15) that the transformed version of
the two-grid iteration matrix M in (1.6), which we will denote by M̄ , is

QTfMQf = Q
T
f

[(
I − PQcT

−1
c Q

T
c P

TQfTfQ
T
f

)
SνA

]
Qf

=
(
I − P̄ T−1c P̄

TTf
)
QTf

(
QfSTQ

T
f

)ν
Qf

=
(
I − P̄ T−1c P̄

TTf
)
SνT ≡ M̄.

Recall that the matrices T−1c , Tf and ST are all of block diagonal form. It can
be seen from Figure 2.1 that the sparsity pattern of P̄ has a block structure
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resembling an arrow pointing from left to right; similarly, the block structure
of P̄T resembles a V-shaped wedge. It is easily shown that (i) pre- or post-
multiplying such “arrow” or “wedge” block matrices by block-diagonal matrices
does not change the structure; and (ii) the product of an “arrow” block matrix
and a “wedge” block matrix is a matrix whose nonzero blocks have the form
of a cross; that is, the blocks of the product lie on the diagonal and counter-
diagonal. The nonzero blocks in the matrix M̄ therefore form this type of cross
pattern: a sample sparsity plot for Nf = 8 is shown in Figure 2.2(a). We will de-
note the diagonal blocks of M̄ by Bj , j = 1, . . . , nf and the ante-diagonal blocks
by Cj , j = 1, . . . , nf , noting that, with this notation, BNc = CNc . Applying
a further permutation results in a block-diagonal matrixM (see Figure 2.2(c)).
The diagonal blocks ofM are given by

Mj =

[
Bj Cj
Ck Bk

]
, j = 1, . . . , nc, k = Nf − j,(2.16)

MNc = BNc ,

(a) M̄ .
(b) M̄ .

(c)M.
(d)M.

Figure 2.2: Representative sparsity patterns of iteration matrices, Nf = 8.
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where the component matrices are defined by

Bj =
(
I − P̄j

(
T−1c

)
j
P̄Tj (Tf )j

)
Sνj

Cj = −P̄j
(
T−1c

)
j
P̄Tk (Tf )jS

ν
k

Bk =
(
I − P̄k

(
T−1c

)
j
P̄Tk (Tf )k

)
Sνk

Ck = −P̄k
(
T−1c

)
j
P̄Tj (Tf )jS

ν
j

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

j = 1, . . . , nc, k = Nf − j

BNc = S
ν
Nc
.

(2.17)

This notation is illustrated for Nf = 8 in Figures 2.2(b) and (d).
As all of the transformations which we have applied are orthogonal, we have
that

‖M‖2 = ‖M̄‖2 = ‖M‖2 = max
j=1,...,Nc

‖Mj‖2.(2.18)

We can therefore obtain the contraction number of the two-grid iteration for
Dirichlet problem (2.1) by bounding the 2-norms of the blocks ofM.

3 The semiperiodic problem.

The result (2.18) is useful because it is cheaper to compute norms of the
2nf × 2nf blocks of M than to compute the norm of the original n2f × n

2
f

iteration matrix M . We can gain further insight into multigrid convergence be-
haviour for the Dirichlet problem (2.1) by studying a closely related semiperiodic
problem, namely (2.1) with the Dirichlet conditions on the boundaries y = 0,
y = 1 replaced by the periodic condition u(x, 0) = u(x, 1). For certain parame-
ter regimes, analysis of this problem produces analytic formulae for the 2-norm
in (2.18). In the next two sections, we describe the details of this analysis of
the semiperiodic variant. Then, in Section 5, we state the extent to which these
results are representative of the behaviour of the full Dirichlet problem (2.1).
For the semiperiodic problem, transformations analogous to (2.7) and (2.11)
derived from exponential bases lead to block-diagonal matrices T perf , T

per
c in

which the nf×nf matrices (Tf )j , (Tc)j and Sj are replaced by Nf×Nf circulant
matrices (recall nf = Nf − 1) in the obvious way. For prolongation, each block
P̄j = αjL is extended to a Nf ×Nc matrix by the addition of an extra row and
column to L, with nonzero entries

l1,Nc =
1
2 , lnf ,Nc =

1
2 , lNf ,Nc = 1.

We will denote these periodic variants with superscript per, and write, for ex-
ample,

Bperj =
[
I − P̄ perj

(
T perc

)−1
j
(P̄ per)Tj

(
T perf

)
j

](
Sperj

)ν
(3.1)

(cf. (2.17)).
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We now define the vectors

wfq =

√
1

Nf
[ei(2θq) ei(4θq) . . . ei(2Nfθq)]T , θq =

qπ

Nf
, q = 1, . . . , Nf(3.2)

which are the orthonormal eigenvectors of the one-dimensional periodic problem
on the fine grid. Constructing the unitary matrix

W =
[
wf1 w

f
1+Nc

wf2 w
f
2+Nc

. . . wfnc w
f
nc+Nc

wfNc w
f
Nf

]
,

it can be shown that

Bperj W =WB̂
per
j , C

per
j W =WĈ

per
j , j = 1, . . . , nf

where each of B̂perj , Ĉ
per
j is an Nf ×Nf block diagonal matrix with 2× 2 blocks

(see the appendix for details). Combining these according to (2.16) gives

Mper
j =

[
B̂perj Ĉperj

Ĉperk B̂perk

]
, j = 1, . . . , nc, k = Nf − j,

and a final permutation can be applied to produce matrices M̂per
j which are

block-diagonal with 4× 4 blocks. Representative sparsity patterns forMper
j and

M̂per
j are shown in Figure 3.1. As W is unitary,

‖Mper
j ‖2 = ‖M̂

per
j ‖2 = max

q=1,... ,Nc
‖Xj,q‖2,

where Xj,q is the 4× 4 block of M̂
per
j corresponding to the pair of eigenvectors

wq, wq+Nc . From (2.18), it follows that

‖Mper‖2 = max
(
max

j=1,... ,nc

[
max

q=1,... ,Nc
‖Xj,q‖2

]
, ‖Mper

Nc
‖2
)
,(3.3)

(a)Mper
j , j = 1, . . . , nc. (b) M̂per

j , j = 1, . . . , nc.

Figure 3.1: Representative sparsity patterns of transformed subblocksMper
j and M̂per

j

of Mper, Nf = 8.
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where

(3.4)

Xj,q =

[
B̂perj,q Ĉperj,q

Ĉperk,q B̂perk,q

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sν1j

(
1−

f21jd1j

gj

)
−
f1jf2jd2js

ν
2j

gj
− f1jf1kd1ks

ν
1k

gj
− f1jf2kd2ks

ν
2k

gj

−
f2jf1jd1js

ν
1j

gj
sν2j

(
1−

f22jd2j

gj

)
− f2jf1kd1ks

ν
1k

gj
− f2jf2kd2ks

ν
2k

gj

−
f1kf1jd1js

ν
1j

gj
−
f1kf2jd2js

ν
2j

gj
sν1k

(
1− f

2
1kd1k
gj

)
− f1kf2kd2ks

ν
2k

gj

−
f2kf1jd1js

ν
1j

gj
−
f2kf2jd2js

ν
2j

gj
− f2kf1kd1ks

ν
1k

gj
sν2k

(
1− f

2
2kd2k
gj

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

For definitions of s1j , d1j , etc. see the appendix.

4 Semiperiodic analysis.

As stated previously, the above analysis is applicable to any discretisation
technique which gives rise to a stencil of the form (2.3). In this section we focus
on the application of finite element discretisation (1.2) with

δ = max

(
0,
1

2
−
ε

h

)
, δc = max

(
0,
1

2
−
ε

h̄

)
,

to model problem (2.1). The coefficients in stencil (2.3) for this discretisation
using bilinear finite elements are given by

m1 =
4
3 (δh+ 2ε) , m2 =

1
3 (δh− ε) ,

m3 = −
1
3 [(2δ − 1)h+ ε] , m4 = −

1
12 [(2δ − 1)h+ 4ε] ,

m5 = −
1
3 [(2δ + 1)h+ ε] , m6 = −

1
12 [(2δ + 1)h+ 4ε] .

These formulae can be used to generate the fine grid eigenvalues (2.5) (and,
with appropriate values δc and h̄, their coarse grid equivalents) which can then
in turn be used in (6.1) to generate the entries in the matrices Xj,q given by
(3.4) (which are listed in the appendix). Here we use these values to evaluate
(3.3) for this specific discretisation.
First, we note that we can take advantage of some symmetry in the problem.
We have that

j ∈ Ij ≡ {1, 2, . . . , nc} ⇒ θj ∈
(
0, π2

)
, q ∈ Iq ≡ {1, 2, . . . , Nc} ⇒ θq ∈

(
0, π2

]
,

and that any pair of angles α and α∗ = π/2− α with α ∈ [0, π4 ] satisfy

sin(α∗) = cos(α), cos(α∗) = sin(α), sin(2α∗) = sin(2α), sin(4α∗) = − sin(4α).
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Hence, for an index pair q ∈ {0, 1, . . . , Nc2 } and q
∗ = Nc− q, we have symmetry

in the formulae in (6.3) in the sense that

|d1j(q)| = |d2j(q∗)|, |d2j(q)| = |d1j(q∗)|, |d1k(q)| = |d2k(q∗)|,

|d2k(q)| = |d1k(q∗)|, |s1j(q)| = |s2j(q∗)|, |s2j(q)| = |s1j(q∗)|,

|s1k(q)| = |s2k(q∗)|, |s2k(q)| = |s1k(q∗)|, |f1j(q)| = |f2j(q∗)|,

|f2j(q)| = |f1j(q∗)|, |f1k(q)| = |f2k(q∗)|, |f2k(q)| = |f1k(q∗)|,

|gj(q)| = |gj(q∗)|.

This symmetry means that, without loss of generality, we need only consider
indices q ∈ Īq ≡ {

Nc
2 , . . . , Nc}, or θq ∈ [

π
4 ,
π
2 ].

We will deal with two distinct regimes of mesh Peclet number separately.

4.1 Case 1: Ph ≥ 1.

When Ph ≥ 1 (so δ is given by (1.4)), it can be observed from experiment that

max
q∈Īq
‖Xj,q‖2(4.1)

always occurs when q = Nc, that is, when θq = π/2, so we need only find an
expression for ‖Xj,Nc‖2. Using the notation

Cj = cos (θj) , C2j = cos (2θj) , Sj2 = sin

(
θj

2

)
, Cj2 = cos

(
θj

2

)
,(4.2)

from (6.3) we have

f1j = 0, f2j = 2C
2
j2, f1k = 0, f2k = −2S

2
j2

so (3.4) can be permuted to

Xj,Nc =

⎡

⎢⎢⎢⎢⎢⎢⎣

sν1j 0 0 0

0 sν1k 0 0

0 0 sν2j

(
1−

4C4j2d2j
gj

)
4C2j2S

2
j2d2ks

ν
2k

gj

0 0
4C2j2S

2
j2d2js

ν
2j

gj
sν2k

(
1−

4S4j2d2k
gj

)

⎤

⎥⎥⎥⎥⎥⎥⎦

and

‖Xj,Nc‖2 = max
{∣∣sν1j

∣∣,
∣∣sν1k

∣∣, ‖X̂‖2
}

(4.3)

where

X̂ =

⎡

⎢⎣
sν2j

(
1−

4C4j2d2j
gj

)
4C2j2S

2
j2d2ks

ν
2k

gj

4C2j2S
2
j2d2js

ν
2j

gj
sν2k

(
1−

4S4j2d2k
gj

)

⎤

⎥⎦ .
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Furthermore,

d2j = 4εS
2
j2, d2k = 4εC

2
j2, gj = 16εS

2
j2C
2
j2

so

X̂ =

[
sν2j(1− C

2
j2) sν2kC

2
j2

sν2jS
2
j2 sν2k(1− S

2
j2)

]
=

[
sν2jS

2
j2 sν2kC

2
j2

sν2jS
2
j2 sν2kC

2
j2

]

and

‖X̂‖2 =
√
2
(
s2ν2jS

4
j2 + s

2ν
2kC

4
j2

)
.

Also, it can be shown that

s2j = s2k = −
1
5 , |s1j | <

1
5 , |s1k| <

1
5(4.4)

so

‖X̂‖2 =

√
2
√
S4j2 + C

4
j2

5ν
=

√
3 + cos (2θj)
√
2(5ν)

>
1

5ν
.

Hence

max
q=1... ,Nc

‖Xj,q‖2 = ‖Xj,Nc‖2 = max
{
|s1j |

ν , |s1k|
ν , ‖X̂‖2

}
=

√
3 + cos (2θj)
√
2(5ν)

.

This is maximised over j ∈ Ij when j = 1, that is,

max
j=1... ,nc

[
max

q=1... ,Nc
‖Xj,q‖2

]
=

√
3 + cos (2πh)
√
2(5ν)

.

To evaluate (3.3), it remains only to find

max

(√
3 + cos (2πh)
√
2(5ν)

,
∥∥Mper

Nc

∥∥
2

)

where, from (2.17),

Mper
Nc
=
(
SperNc

)ν
.

Using the results in the appendix, we see that

Sperj Wq =Wq

[
s1j 0
0 s2j

]

so
∥∥MperNc

∥∥
2
=
∥∥(SperNc

)ν∥∥
2
= max

{
|s1Nc |

ν , |s2Nc |
ν
}
=
1

5ν
.

We therefore have an analytic expression for the norm of the two-grid iteration
matrix when Ph ≥ 1:

‖Mper‖2 =

√
3 + cos (2πh)
√
2(5ν)

.(4.5)
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Note that as h→ 0,

‖Mper‖2 →

√
2

5ν
.(4.6)

4.2 Case 2: Ph < 1.

When Ph < 1 (so δ = 0 and no streamline diffusion is added), it can be ob-
served from experiment that the maximum in (4.1) always occurs at an extreme
value of Īq, that is, when q = Nc/2 or when q = Nc (corresponding to θq = π/4
and θq = π/2, respectively). In this case, the complexity of the formulae makes
it difficult to find an exact expression for ‖Xj,q‖2. We also observe, however,
that the maximum in terms of j required for (3.3) occurs when j = 1 (that
is, when θj = θ1 = πh → 0 as h → 0). We therefore derive an approximate
expression for (4.1) by replacing θj by 0 in (6.3), which simplifies the algebra
considerably.
When θq = π/2, we must identify (4.3) as before. With the above assumption
of very small h, we have

‖X̂‖2 =
√
2
(
s2ν2jS

4
j2 + s

2ν
2kC

4
j2

)
≈
√
2|s2k|

ν .

As it can be shown that this is bigger than |s1j |ν and |s1k|ν , we have the ap-
proximation (when θj = 0 and θq = π/2)

‖Xj,Nc‖2 ≈
√
2

(
1 + Ph
11− Ph

)ν
.(4.7)

When θq = π/4, replacing θj by 0 gives

f1j = 1, f2j = 1, f1k = 0, f2k = 0

so (3.4) becomes

Xj,Nc/2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

sν1j

(
1− d1jgj

)
−
d2js

ν
2j

gj
0 0

−
d1js

ν
1j

gj
sν2j

(
1− d2jgj

)
0 0

0 0 sν1k 0

0 0 0 sν2k

⎤

⎥⎥⎥⎥⎥⎥⎦

and

‖Xj,Nc/2‖2 = max
{∣∣sν1k

∣∣,
∣∣sν2k

∣∣, ‖X̄‖2
}

where

X̄ =

⎡

⎣
sν1j

(
1− d1j

gj

)
−
d2js

ν
2j

gj

−
d1js

ν
1j

gj
sν2j

(
1− d2jgj

)

⎤

⎦ .
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As

d2j = d̄1j , s1j = s̄2j, gj ∈ R,

we have

‖X̄‖2 =
√
(max. eigenvalue of X̄∗X̄)

=

∣∣∣∣s
ν
1j

(
1−
d1j

gj

)∣∣∣∣+
∣∣∣∣
d2js

ν
2j

gj

∣∣∣∣

= |s1j |
ν

(∣∣∣∣1−
d1j

gj

∣∣∣∣+
∣∣∣∣
d2j

gj

∣∣∣∣

)
.

But

d1j = 2ε+ hi, d2j = 2ε− hi, gj = 4ε, |sij | =
1− Ph√
4 + (1 + Ph)2

,

so

‖X̄‖2 =

(
1− Ph√
4 + (1 + Ph)2

)ν√
1 + P 2h .(4.8)

It can be shown that this is bigger than |s1k|ν and |s2k|ν , so that (4.8) gives an
approximation to ‖Xj,Nc/2‖2 (when θj = 0 and θq = π/4).
For a specific value of Ph < 1, the value of ‖Mper‖2 will be (approximately)
equal to the maximum of (4.7) and (4.8). A plot of the two quantities against
Ph is shown in Figure 4.1(a) ((4.7) solid line, (4.8) dashed line, ν = 1). They are
equal at a value P ∗h ≈ 0.538, and

(a) Comparison of approximations (4.7)

(solid) and (4.8) (dashed) for Ph < 1: the

maximum of the two changes at Ph = P
∗
h .

(b) Comparison of (4.6) and (4.9) (solid)

with true values of ‖Mper‖2 for h = 1/8

(dashed) and h = 1/16 (dotted).

Figure 4.1: Assessment of the accuracy of approximations to ‖Mper‖2.
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‖Mper‖2 ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1− Ph√
4 + (1 + Ph)2

)ν√
1 + P 2h Ph < P

∗
h ,

√
2

(
1 + Ph
11− Ph

)ν
P ∗h < Ph < 1.

(4.9)

A plot of the full approximation to ‖Mper‖2, using (4.6) and (4.9) in the
appropriate Ph regimes, is shown in Figure 4.1(b) (solid line). The actual values
for h = 1/8 (dashed) and h = 1/16 (dotted) are also shown. For smaller values
of h, the lines become indistinguishable from the approximation to the naked eye.

5 Comparisons with the Dirichlet problem.

As stated in the introduction, it is shown in [20] that applying the multigrid
method we describe to the finite element discretisation under discussion results
in iteration counts independent of the mesh size h. Similar results are obtained
for the two-grid version studied here, as evidenced by the iteration counts in
Table 5.1 (based on the stopping criterion ‖rk‖2/‖r0‖2 ≤ 10−6). These results
were obtained using Problem 3.1.1 from Elman et al. [7] which has Dirichlet
boundary conditions u(x,−1) = x, u(x, 1) = 0, u(−1, y) = −1 and u(1, y) = 1.
The initial guess is the zero vector and the number of smoothing steps is ν = 1
for this and all subsequent numerical examples (unless otherwise stated). The
fact that the iteration count is decreasing as Ph → ∞ is an artefact of our
simple model problem: in this limit, the line Gauss-Seidel smoother becomes an
exact solver for (2.1). It appears that the two-grid iteration works well for the
Dirichlet problem (2.1) for all values of Ph: we would therefore expect to have
a contraction number ‖M‖2 which is always less than less than one. It is clear
from Figure 4.1(b) that this is the case for the semiperiodic problem analysed
in the previous section. We now address the important question: are the results
obtained from the semiperiodic analysis above useful for describing the actual
behaviour for the full Dirichlet problem (2.1)?

Table 5.1: Two-grid iteration counts.

ε

h 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

1
2048

1
4 5 5 5 5 5 4 4 3 2 2 2
1
8 7 7 6 6 5 5 4 4 3 2 2
1
16 7 7 7 6 5 5 5 4 4 3 2
1
32 7 7 7 7 6 5 5 4 4 3 3
1
64 7 7 7 7 6 5 5 4 4 4 3
1
128 7 6 6 6 6 6 5 4 4 4 3
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To answer this, we first compare the theoretical bounds (4.6) and (4.9) for the
semiperiodic problem with the value of ‖M‖2 for the Dirichlet problem, calcu-
lated numerically from the explicit formula (2.18), over a range of values of Ph.
The results of this comparison for 0 < Ph ≤ 1.6 are illustrated in Figure 5.1(a).
This shows the semiperiodic approximation (solid line) and the Dirichlet problem
norms (dashed lines) for h = 1/8, 1/16, . . . , 1/512, where the line for h = 1/8
is the lowermost and that for h = 1/512 the uppermost. There is an obvious
distinction between the regimes 0 < Ph < 1 and Ph ≥ 1.
When Ph ≥ 1, the Dirichlet behaviour is very well represented by the semiperi-
odic analysis, that is, the Dirichlet problem norm also tends to a constant as
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