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Summary. We examine the convergence characteristics of iterative meth-
ods based on a new preconditioning operator for solving the linear sys-
tems arising from discretization and linearization of the steady-state Navier-
Stokes equations. With a combination of analytic and empirical results, we
study the effects of fundamental parameters on convergence. We demon-
strate that the preconditioned problem has an eigenvalue distribution con-
sisting of a tightly clustered set together with a small number of outliers.
The structure of these distributions is independent of the discretization mesh
size, but the cardinality of the set of outliers increases slowly as the viscos-
ity becomes smaller. These characteristics are directly correlated with the
convergence properties of iterative solvers.
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1. Introduction

The aim of this work is to study the performance of a preconditioning
methodology designed for use with Krylov subspace iteration to compute
the numerical solution of the incompressible Navier-Stokes equations. The
nonlinear problem is

—vAu+ (u-grad)u+ gradp = f

(1.1) —divu =0

in (2,

subject to suitable boundary conditions@f, where(? is an open bounded
domain inR? or R3, andu andp are the velocity and pressure, respectively.
Our focus is on th@®seen equationshe linearized version of (1.1) given
by

—vAu+ (w-grad)u+ gradp = f
(1.2) —diva=0

wherew is such thatlivw = 0. This problem arises for example from a
Picard iteration applied to (1.1),

(1.3) —vAu™ + (™Y . grad) ul™ + grad p(™ = f
' —divu™ =0
whereu(~Y is arbitrary. It is shown in [13] that this iteration is globally
convergent provided > +/ca||f||—1/c1 wherec; is the coercivity constant
associated with (1.1) ang is the continuity constant for the convection
term; this requirement is also well known as a sufficient condition for the
existence of a unique solution to (1.1) [10].

Discretization of (1.2) using a div-stable [10] strategy leads to a linear
system of the form

= (5%5) ()= (0)

I is a discrete convection-diffusion operator, i.e., it has the férm=
vA+ N whereA is a discrete diffusion operata¥ is a discrete convection
operator, and3 and BT are discrete divergence and gradient operators,
respectively.

To motivate a preconditioning strategy for (1.4), we begin with the block
LU factorization

F BT\ I o\(F BT
B0 ) \BF1r 0 —BF BT )"
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With S = BF~! BT denoting the Schur complement operator, this is equiv-

alent to .
FBY (FBY\ " _ I 0
B 0 0—-S “\BF'r1)-

GMRES iteration [21] applied to a linear system with this coefficient matrix
would require precisely two steps to compute the exact solution [16]. Aright-
oriented preconditioner for (1.4) is determined by approximatins: F
andPs =~ S, or, more precisely, by operations that approximate the actions
of F~1 and S~!. Variants of this methodology have been considered in
many studies [1,2,4,5,9,15,20,23,25,26]

The advantage of this general approach is that it reduces the problem
of finding preconditioners for (1.4) to that of finding good techniques for
definingP,. " andPg . For (1.2), the first subproblem entails approximating
the solution of a set of discrete scalar convection-diffusion equafions
. P;l could be defined by applying an iterative algorithm such as multigrid
to this system. Our experience is that such an iteration requires only a mild
stopping criterion for good performance of the preconditioner, and in this
study we will not consider the effects of this approximation and restrict our
attention toPr = F.

A good choice forPg, the approximation to the Schur complemént
is less straightforward. Our aim here is to develop an understanding, using
a combination of analysis and experiment, of the effectiveness of a new
version of this operator developed by Kay and Loghin [14] and considered
further by Silvester et. al. [22]. The technique is determined by the choice

(1.5) Pg = A F, ' M,

whereA,, andF,, represent discrete approximations to scaled Laplacian and
convection-diffusion operators defined on the pressure space)/gnd

the pressure mass matri®; ' was derived from the Green’s tensor for the
Oseen operator in [14] as an approximation to the inverse of a continuous
representation of the Schur complement. We motivate it here by briefly
recapitulating an alternative derivation given in [22]. Suppose that there is
formal commutativity of differential forms given by

(1.6) (—vA+w-V)V=V(—vA+w-V),.

That is, there is a convection-diffusion operator defined on the pressure
space (identified with the subscript), and that this operator commutes with
the gradient operator as indicated. A discrete version of this relation is

(M F)(M ' BY) = (M BY) (M, Fp),

! Rightorientation is largely an arbitrary choice; a left-oriented approach can be derived by
a similar argument. For symmetric problems such as the Stokes equations, a block-diagonal
preconditioner is preferable [7]
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whereM,, is the mass matrix on the velocity space. This is equivalent to
(1.7) F'BY = M 'B"F,; "M, .

Recognizing (1.6)—(1.7) as formal approximations rather than identities and
premultiplying (1.7) byB gives the approximatio ~ Pg of (1.5), where

A, = BM,; ' BT. More generally4,, can be any stable discretization of the
Poisson operator on the pressure space. This approach for preconditioning
represents animprovement and simplification of related strategies developed
previously in [4,5].

The boundary conditions associated with the discrete operdfpasd
F, of (1.5) need to be appropriately defined. For the common case of an
enclosed flow with specified velocity conditions @f?, the discrete Schur
complement operataBF~!' BT is conventionally associated with a Neu-
mann operator for the pressure field, see [22]. This meansithand F),
should correspond to discrete elliptic problems with a standard Neumann
boundary condition. This issue is explored more fully in [25, pp. 50-51]
and [3, pp. 36-43]. In the case of a boundary segment with standard out-
flow boundary conditions, the Schur complemgr(nd its preconditioner
Ps) must be defined with Dirichlet data for the pressure on that part of the
boundary in order to ensure that the preconditioning operator is elliptic over
the pressure solution space.

In this paper we examine the properties of this preconditioner. In Sect. 2,
we define a set of benchmark problems derived from the “leaky” lid-driven
cavity problem, and we study the performance of the preconditioned GM-
RES iterative solver applied to them. Our concerns here are to understand
the dependence on fundamental parameters in the problems, the viscosity
and the mesh size associated with the discretization. Our observations are
that the number of iterations required for convergence is independent of the
mesh size, but there is some dependence on the viscosity. This dependence
is manifested through a period of latency in the early stages of the iteration
whose length is mildly increasing with~!; after this a faster asymptotic
convergence rate is obtained. (We will also occasionally state our observa-
tions in terms of the dimensionlefeynolds numbeRe = % where in
our examples the length scale and velocity scaleg atel, |u| = 1, so that
Reis essentially the same as'.) In Sect. 3, we study the eigenvalues of the
preconditioned operatci?PST1 for these benchmark problems. We demon-
strate empirically that there is a tightly clustered set of eigenvalues contained
in a region whose boundaries are independemt afd h, together with a
very small number (on the order of ten) of outlying values that are indepen-
dent ofh but notv. In Sect. 4, using an analysis of optimal Krylov subspace
methods, we give a theoretical explanation of the convergence behavior of
GMRES: the latency in iterations is caused by the outlying eigenvalues, and
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the subsequent rapid convergence is a consequence of the tight clustering of
the majority of eigenvalues. In Sect. 5, we consider a variant of the problem
studied in the previous sections and present analytic bounds on eigenvalue
distributions that identify asymptotic effects in the cases of smélhrge

Re) and largev (the Stokes limit). In Sect. 6, we show that our results,
which are derived for a fixed velocity field in (1.2), are consistent with

the performance for a complete Picard iteration (1.3). Finally, in Sect. 7, we
make some concluding remarks.

2. Performance of GMRES iteration

As asource of benchmark problems, we use alinearized version of the driven
cavity problem, in which (1.2) is posed ¢h = (0,1) x (0,1), withf =0,
boundary conditions

uy =us =0 forz=0, x=1o0ry=0,
uy =1, ug =0fory =1,

and convection coefficients (or “wind”)

w:( 22y —1)(1 — (2 — 1)? )
—22z-1)1-2y—-1)%) )"

This choice of the wind, which contains a single recirculatiofiris used

to simulate what happens in the Picard iteration (1.3) for the driven cavity
problem, whereu—1) contains one primary recirculation for most;

we will return to this point in Sect. 6. We examine two discretizations,
the marker-and-cell (MAC) finite difference scheme [11], and FheP;

finite element discretization, which uses triangular elements with piecewise
guadratic bases for the velocity components and a piecewise linear basis for
the pressure. Both these discretizations are known to be div-stable, see [10,
17]. For each of them, we discretize (1.2)fihusing a uniform mesh of
width h. (Cf. [14] for results on non-isotropic grids.) The MAC scheme is
formally first order accurate when measured in a discEet@orm, see [17,

18]. TheP,—P; method is a higher order discretization: if the weak solution

of (1.1) is sufficiently regular, then the velocity converges likg:?) when
measured in thé7! norm, see [10, pp. 181, 323}, and F,, are defined

on the discrete pressure spaces in the natural way via finite differences for
MAC and linear elements faP,-P;.

We present two sets of experimental results on convergence. These and
all other computations described in the paper were performed using Matlab
on a Sun Sparc Ultra 1 computer. Table 2.1 shows the number of iterations
required by the preconditioned GMRES solver, for both discretizations and
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Residual norms (normalized) for GMRES, MAC discretization, h=1/128
10 T T T T T 10 T T T T T T

1/40 1160
v=1/20 180 1/320

" " " " " " " " " " " " "
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45
teration Iteration

Fig. 2.1. Complete record ofrx||2/||ro||2 generated by GMRES, for finite differences and
v =1/80 (left) andh = 1/128 (right)

Table 2.1. Iteration counts for convergence of the preconditioned GMRES solver

Mac finite differences

v

1/20 1/40 1/80 1/160 1/320

h=1/16 17 20 24 31 39
1/32 17 21 26 33 43
1/64 16 21 26 34 44

1/128 16 20 26 33 45

P»2- P finite elements

v
1/20 1/40 1/80 1/160 1/320

h=1/16 18 21 26 37 62
1/32 17 21 26 33 47
1/64 17 20 25 33 43

a variety of values of the mesh sizeand viscosity parameter. The initial
guess was identically zero, and the stopping criterion was

lI7k|2

<1079,
[7oll2

wherer;, is the residual vector. Figures 2.1 and 2.2 show the details of
convergence histories for some of these entries. The left sides of the figures
show the results for fixed values of the viscosity parametet (L /80) and
several mesh sizes, and the right sides show the results for fixed values of
the mesh sizel( = 1/128 for the MAC discretization ané = 1,/64 for
P,-Pp) and several values of



Performance and analysis of saddle point preconditioners 671

Residual norms (normalized) for GMRES, P2-P1 discretization, v=1/80 Residual norms (normalized) for GMRES, P2-P1 discretization, h=1/64
T T T T T T T T

1/80

V=120 1/40

" " " " " " " " " " " " "
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45
teration Iteration

Fig. 2.2. Complete record dfrx||2/||70||2 generated by GMRES, fdf.- P; finite elements
andv = 1/80 (left) andh = 1/64 (right)

These experiments clearly show that convergence is essentially indepen-
dent of the discretization parameter but that there is modest dependence on
the viscosity, with reductions in (i.e., increases in the Reynolds number)
leading to increases in iteration counts. The tabulated results are consistent
with those obtained by Kay and Loghin [14] for this problem as well as two
others, models of a pipe-flow and flow over a backward facing step. The fig-
ures suggestthatin fact the asymptotic convergence behavior of the GMRES
iteration is also independent of but that there is a period of slow conver-
gence in the early stages of the iteration, and this latency period is longer
for smaller values of. These observations hold for both discretizations.

3. Behavior of eigenvalues

Let the preconditioned system under consideration be denoted now by

(3.1) Az = f,

and let the residual associated with an itetatebe given by
rm=Ff—Axp,.

AssumeA = VAV ! is diagonalizable, and let(.A) denote the set of
eigenvalues of4. Recall the standard bound on convergence of GMRES
[21],

3.2 Tmlle < K(V) min  max [p,(A)]|]||roll2,
(3.2) [rmll2 < A( )pm(O):ueg(A>|p (M lIroll2
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Eigenvalues for MAC discretization, v=1/80

15 T T T T T T T T T
® o ROy o ReMyp MO,
10k O 116 0.02942 1.927 11.1918 ]
% 1/32  0.029325: 19059  11.2443
1/64 0.029269: 1.9018  11.2572
¢ 1/128 0.0293 1.901. 11.2605
5+ -
®
0[6 - ot xx D o x XA HIABIIE G+ O - % A
®
) i
_10 F -
®
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Fig. 3.1. Dependence of eigenvalues on mesh size for the MAC discretization] /80

where the minimum is over all polynomials of degreeaking on the value

1 at the origin. In this section, we show the results of a series of experiments
concerning the eigenvalues of thg-preconditioned matriceSPST1 for the
benchmark problems considered above. We will then (in Sect. 4) use these
results together with (3.2) to explain convergence performance.

We begin with the MAC discretization. Figure 3.1 plots the eigenvalues
of the preconditioned matrices, for= 1/80 and four successively refined
meshes. Fok = 1/16 and1/32, all the eigenvalues are displayed, and for
h = 1/64 and1/128, a subset is shown consisting of those with smallest
nonzero real parts, largest real parts, and largest imaginary [feigare 3.2
shows the extremal eigenvalues for three valueswith » = 1/64.

These figures give a clear picture of the dependence of the large extremal
eigenvalues on both the mesh sizand viscosity, as well as the depen-
dence of the smallest eigenvalues on the mesh size. Figure 3.1 shows that the
extremal eigenvalues display no significant dependenck; amdeed, the
tabulated results included in the figure show that the maximum real parts,
maximum imaginary parts, and minimum real parts of all eigenvalues are

2 Forh = 1/64, this set consists of the nineteen eigenvalues with smallest nonzero real
parts, the four with largest real parts and the six pairs with largest imaginary parts. For
h = 1/128, itis the nineteen with smallest real part, the two with largest real parts, and the
single pair with largest imaginary part. The zero eigenvalue corresponding to hydrostatic
pressure is excluded from these considerations. The computations were done with the Matlab
sparse eigenvalue routiedys
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Extreme eigenvalues for MAC discretization, h=1/64
50 T T T T

o

40+ 0 v=1/320 1
v=1/160
30 . ¥ v=1/80 b

20 B

04%-© - - O%*HDO omcc&* KOO * 0 E

-50 1 L L 1
0 05 1 15 2 25

Fig. 3.2. Dependence of eigenvalues on viscosity for the MAC discretizatica,1/64

Table 3.1. Dependence of eigenvalues pifior the MAC discretization and = 1/128

Extremal real and

imaginary parts Other small real parts
14 §R()\)'mzn §R(A)m,az %(A)maz >\2 A3 A4
1/20 .2402 1.2017 2.8015 2410 .2411 .3323
1/40 .1073 1.5389 5.6224 2486 .2495 2553
1/80 .0293 1.9010 11.2605 .2444 2597 .2608

1/160 .0075 2.1265 22,5330 .0786 .2635 .2747
1/320 .0019 2.3008 45.0749 .0209 .0860 .2158
1/640 .0005 2.4403 90.1561 .0053 .0230 .1388

virtually identical for all four mesh parameters. Figure 3.2 shows that the
maximal real parts in the eigenvalue sets are also close to being constant
as functions of/, but that the maximal imaginary parts grow like!. The
dependence of the small real parts.ois less clear from this figure. This is
explored further in Table 3.1, which shows the extreme real and imaginary
parts, as well as the three next smallest real parts, in this case-fdr/128.

The patterns are as follows. For small enougthe smallest real part is ac-
tually decreasing in proportion te*. A similar statement applies for the
other small real parts, although the asymptotic behavior is evident only for
somewhat smaller values of That is, there are some eigenvalues that are
decreasing in proportion to?, but the set (of indices of eigenvalues) for
which this pattern holds appears to be small.
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Table 3.2. Number of eigenvalues outside circle, for MAC discretization ang 1/16,
h=1/32

No. eigenvalues No. real eigs
outside circle left of circle

v 116 132 116  1/32
1/40 7 7 1 1
1/80 8 8 2 2
1/160 11 12 3 3
1/320 19 21 4 4
1/640 25 29 6 6

Closeup of eigenvalues near real axis, MAC, h=1/32

* v=1/80
v=1/160

O v=1/320

o * o Circle, center .8
radius .5

0 05 1 15 2 25

Fig. 3.3. Containment of eigenvalues in a clustered set, MAC discretizatien,l /32

Figures 3.1 and 3.2 also suggest that with the exception of a small set of
outliers of the types given above, the majority of eigenvalues lie in a tightly
clustered set. This issue is examined in Fig. 3.3, which shows a magnified
image of the data fat = 1/32 from Fig. 3.2 (coordinates on the imaginary
axis are restricted), on which a circle centerefat, 0) with radius1/2 is
drawn. The circle represents a domain, determined by inspection, containing
the majority of eigenvalues. Table 3.2 continues in this direction by showing
how many eigenvalues lie outside this circle for different values &fr the
two mesh parameters for which all eigenvalues have been computed. These
data indicate that in fact the number of outliers is small but growing slightly
with »~1. The number of eigenvalues with small real parts (i.e., to the left
of the circle) is also increasing agyets smaller, but quite a bit more slowly
than the total number of outliers.

We next discuss an analogous set of computations fo’}h€; dis-
cretization. Table 3.3 shows a set of extremal eigenvalues of the precon-
ditioned matrices, foh = 1/64. This data is analogous to that shown in
Table 3.1 for finite differences, and the patterns displayed for the two dis-
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Table 3.3. Dependence of eigenvalues offior the P,-P; discretization and = 1/64

Extremal real and

imaginary parts Other small real parts
v §R(>\)mzn %(/\)maac C\}()\)mou A2 A3 A4
1/20 .1336 1.2009 2.8012 2068 .2069 .2489
1/40 1072 1.5386 5.6218 1337 .2091  .2100
1/80 .0293 1.8999 11.2595 1338 2114 2117

1/160 .0075 2.1248 225312 .0786 .1339 .2148
1/320 .0019 2.2984 45.0714 .0209 .0859 .1339
1/640 .0005 2.4366 90.1491  .0053 .0230 .0553

Table 3.4. Eigenvalues for thé-P; discretization on coarse grids

Extremal real and

imaginary parts Other small real parts
h=1/32 RMN)min FN)maz  S(A)mas A2 A3 A1
1/20 .1339 1.1984 2.7996 2131 2132 .2825
1/40 .1073 1.5376 5.6188 1342 2160 .2174
1/80 .0293 1.8976 11.2534 1341 .2186 .2193
1/160 .0075 2.1213 22,5190 .0787 .1341 .1718
1/320 .0019 2.2931 45.0470 .0209 .0720 .0727
1/640 .0005 2.4284 90.1004 .0053 .0230 .0292
h=1/16
v
1/20 1344 1.1890 2.7933 2215 2216 .3022
1/40 .1076 1.5334 5.6064  .1349 .2250 .2250
1/80 .0294 1.8880 11.2288 .1345 .2012 .2012
1/160 .0075 2.1062 22.4699 .0792 .1042 .1042
1/320 .0019 2.2684 449480 .0211 .0470 .0476
1/640 .0005 2.3864 89.8966 .0054 .0160 .0160

cretizations are largely the same. That is, the smallest real parts are of order
2, the largest real parts afe(1), and the largest imaginary parts propor-
tional toO(v~1).

We study the dependence of spectra on mesh size by tabulating additional
data for coarser meshes in Table 3.4. From the results in this table and
Table 3.3, it is clear that, just as above, the smallest real parts, largest real
parts and largest imaginary parts of eigenvalues are all independent of the
mesh size.

For this discretization, it is more difficult to make a clean statement about
clustering of the non-extreme eigenvalues. A table analogous to Table 3.3
for the finest mesh for which we can compute a complete set of eigenvalues
(h = 1/32) would show many more eigenvalues lying outside a fixed set
asv is reduced. For example, fér= 1/32 andv = 1/320, there arel91
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eigenvalues outside the circle depicted in Fig. 3.3; this contrasts2aith
for the MAC discretization. We do not believe that this is caused by any
inadequacy of the preconditioning operator, but that instead it stems from
properties of the discretization. This point can be explored using the data
in Tables 3.3 and 3.4. As noted above, the extremal eigenvalues are the
same for the three mesh parameters of the tables. \Wislarge, the other
eigenvalues X2, A3, A4) are also qualitatively similar for the three values
of h. However, as’ becomes smaller, these eigenvalues behave differently
on coarse meshes than on finer ones. For exampley fer 1/640, A3
is much smaller forh = 1/16 than for the finer meshes, and a similar
statement holds fox, for small values of. Ashisrefined, these eigenvalues
actually increase and become closer to the analogous values for the MAC
discretization. That is, for small and insufficiently fine meshes, many of
the eigenvalues occurring in these computations are artificially small and
do not indicate a proper dependencerorAs an additional example, the
bottom right entry0553 of Table 3.3 is also likely to be artificially small.

We believe the reason for this has to do with the accuracy of the dis-

cretization. It is well known that if theell Reynolds numbeRe;, = %

is large, then the discretization may be inaccurate. Phd discretiza-

tion has a higher order of accuracy than the finite difference discretization,
but it also requires finer meshes for its asymptotic properties to hold; when
the mesh is too coarse, the discretization is less accurate and this leads to
anomolous behavior in the preconditioning process whepis large. This

is also the likely explanation for the reduction in iterations seen in Table 2.1

for smallv ash is reduced.

4. Analysis of GMRES convergence

In this section, we derive a convergence bound for GMRES iteration that
establishes a connection between the latencies displayed in the initial stages
of the solution process, as shown in Sect. 2, and the outlying eigenvalues of
the preconditioned systems described in Sect. 3. The analysis is based on
a technique developed by Jennings [12] for the conjugate gradient method,
whereby a bound is obtained using certain auxiliary polynomials.

With the preconditioned problem represented as in (3.1), suppose as in
our case that(A) = o.(A) U 0,(A) whereo.(.A) denotes a clustered

set of eigenvalues Qi ando,(A) = {A1, \2,... , \q} denotes a set af
outliers. Takingn = d + k in (3.2), we have

4.1 min max +a(M)| < max M Ce(N)],

(4.1) i, max Pr+a(A)] _AGJC(A)\%( )CkA)]

where

da(N) = (17%>\)( *%QA)'--(l*A%/\)
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is the polynomial of degre¢whose roots are the outlying eigenvalues con-
tained ino,(.A), andCy is any polynomial of degrefesatisfyingCy (0) = 1.
C, can be chosen to be small on a §atontainingo.(.A) such that

max |Cr(N)| <& k.
/\eac(A)| k)] P

If the enclosing sef is bounded by a circle centeredeawith radiusr as in

Sect. 3, then the choidg,()\) = (%)k is optimal with respect td.., on
£ [19, p. 90]. For this choicey = r /¢, and it follows from (3.2) and (4.1)
that

(4.2) [Pl < 6(V) max_|¢a(A)]p*[roll2-
A

Eoc

If all the outlying eigenvalues are larger in modulus than the (clustered)
members of.(.A), then forany\ € o.(.A), ‘%) < land|¢q(N)| < 1.The

bound (4.2) then suggests that there will be a latency sikps before the
asymptotic convergence behavior is observed. If some ouWiégs small,

then the factor(l — %JA) of ¢4 will be large, and there may be some

additional delay. The small eigenvalues identified in Sect. 3 are of magnitude
v?, so that the corresponding factorsdp are of orden/—2. If there ares

small eigenvalues like this, and (as above) the clustered eigenvalues have
magnitudeO(1), then the term

max_ |dg(N\)] p*
AeUC(A)I (M)

will be bounded by an expression essentially of the f¢r)” p*, and the
asymptotic convergence behavior will not be manifested until this expression
is less thari. This will be achieved when

That is, for the preconditioned problems under consideration, we expect
convergence to be slow for a number of iterations essentially determined by
the number of outlying eigenvalues; if some of these eigenvalues are small,
then there may be an additional delay of magnitisge —!. In our examples
(Table 3.2), there are fewer small outliers than large ones, and therefore this
extra delay should be relatively short.

We next show that the bounds established with this analysis give an accu-
rate depiction of performance. Lgf, now denote the iteration polynomial
generated byn steps of the GMRES iteration. The rootsygf, which are
referred to as thbarmonic Ritz valuesare the eigenvalues of the matrix

(Hz)  (H:Hy)
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o Normalized residual norms.
10

107 F

107

10°F

107

10°F

10°F
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L L L L L
0 5 10 15 20 25 30
Iteration

Fig. 4.1. Convergence history of GMRES for the preconditioned Schur complement system
with v = 1/80, h = 1/32, P»-P; discretization, and steps 6, 10, 16 and 26 highlighted

(see [8]), whereH,,, is the rectangular upper Hessenberg matrix of dimen-
sions(m + 1) x m generated by the Arnoldi computation used for GMRES
[21], andH,,, is the square submatrix df,,, obtained by removing the last
row. As the iteration converges to the solution, the harmonic Ritz values
converge to eigenvalues of the coefficient matrix.

For simplicity, we consider here the GMRES iteration applied directly
to the Schur complement systesip = s wheres = BF~! f, with right
preconditionerPs. We present results for thB,-P; discretization, with
v = 1/80 andh = 1/32. Figure 4.1 shows the convergence history, with
values of the residual norms at four distinguished stages of the iteration
highlighted with asterisks. Figures 4.2—-4.5 depict the state of the GMRES
iteration at the four stages. The figures show the eigenvalue?ngfl,
together with then harmonic Ritz values available at step for m = 6,

10, 16 and26. The left sides of the figures show the complete set of data;
the right sides show magnified views by limiting the dimensions on the
imaginary axis.

Some of the trends displayed in these figures are as follows. Step 6
(Fig. 4.2) is the first where any eigenvalues of the coefficient matrix, in
this case the pair with maximal imaginary parts, are accurately resolved.
At this stage, the four other harmonic Ritz values bear no clear relation to
the spectrum oSPb?l. Also, after this step, the residual norm exhibits a
noticeable decrease in size (Fig. 4.1). At step 10 (Fig. 4.3), several other
extremal eigenvalues are resolved: the pair with second largest imaginary
part and the one with largest real part. In addition, the estimates for the pair
with third largest imaginary part are fairly accurate, although it takes until
step 14 for these to be resolved well. In these first two figures, there is no
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Complete set, iteration 6 Magnified view, iteration 6
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Fig. 4.2. Eigenvalues x) and harmonic Ritz values) at GMRES step 6 for the precondi-
tioned Schur complement system, with= 1/80, h = 1/32, P»-P; discretization
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Fig. 4.3. Eigenvalues x) and harmonic Ritz values) at GMRES step 10 for the precon-
ditioned Schur complement system, with= 1/80, h = 1/32, P»-P; discretization

harmonic Ritz value near the eigenvalue with smallest real part. By step 16
(Fig. 4.4), the smallest harmonic Ritz value is close to that eigenvalue; good
resolution is obtained at step 18. At about this point, the GMRES iteration
enters its period of asymptotic performance. Finally, at step 26, when the
asymptotic performance is established, all extreme eigenvalues are well-
approximated and the new harmonic Ritz estimates lie around the perimeter
of the set of eigenvalues clustered in the vicinity @8, 0).

These results are typical of performance for both discretizations. They
indicate, as the analysis suggests, that asymptotic convergence occurs after
the outlying eigenvalues are resolved by the GMRES iteration, and that the
smaller outliers take longer to be resolved than the longer ones. Once the
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®

0.2 0.4 0.6 0.8 1 12

14

16

18

2

-1

0

02

04

0.6

08 1 12 14 16 18 2

Fig. 4.4. Eigenvalues x) and harmonic Ritz values) at GMRES step 16 for the precon-
ditioned Schur complement system, with= 1/80, h = 1/32, P»-P; discretization
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Fig. 4.5. Eigenvalues x) and harmonic Ritz values) at GMRES step 26 for the precon-
ditioned Schur complement system, with= 1/80, h = 1/32, P»-P; discretization

outliers are obtained, the fact that subsequent eigenvalue estimates tend to
embrace the cluster is a consequence of the maximum principle.

RemarkThe bound (3.2) also depends on the condition number of the matrix
of eigenvectors. Using Matlab, we calculated this quantity for the Euclidean

norm and various choices bfandv. It had values on the order 62 to 103

but displayed no discernable pattern. The correlation between performance
and analysis suggests that the eigenvalues are responsible for convergence
behavior, but we are unable to incorporaté”) into the discussion.
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5. Analysis of eigenvalues

In this section, we derive bounds on the eigenvalues of a generalized eigen-
value problem

(5.1) BF'BTp = uPgp.

HerePs is a variant of the preconditionéts of (1.5) but with a “symmetric
style,”

> 1/2 A1/2 ;p—1 A1/2 3 s1/2
(5.2) Pg = MY2AVPFE ALV,

The presence of the matrix square roots makes this operator unsuitable for
practical computation, but its symmetric form is needed for an analysis.
We consider two cases separately. We first show that for the case of small
Reynolds numbers (large), the eigenvalues of (5.1) are perturbations of
those of a generalized problem associated with the Stokes equations, which
leads to bounds showing that (5.1) is well behaved and that the properties of
the preconditioner in the Stokes limit are good. For more general situations,
including the case of small, we derive an equivalence between (5.1) and
an alternative problem that leads to rigorous bounds on the imaginary parts
of the eigenvalues and heuristic insight into properties of the real parts.

5.1. Small Reynolds numbers and the Stokes limit

Let
F=vA+ N, F,=vA,+ N,

A_L(F+ETN 1 (B E,
v 2 ’ Py 2

denote the (scaled) symmetric partsfoaind F,,, respectively, and

where

L ) Er

2 7 F 2
denote the skew-symmetric parts. Consider the factorizations of the discrete
convection-diffusion operators,

N =

F =vA+ N =uvAl/? I+%N)A1/2

(5.3) .
Fy=vA, + Ny =vA)® (14 18,) 4%,

whereN = A-V2NA-Y2 N, = A, >N, 4,/ (Here and in the fol-
lowing, A;l is to be understood as the inverse of the operator defined on
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the orthogonal complement of the null vectoe constant, or, equivalently,

as the pseudo-inverse on the complete pressure space.) It is well known
that the spectral radji(V) and p(N,) are bounded by constants that are
independent of the mesh parametef6]; these spectral radii are clearly
also independent aof. We will use these observations to derive simplified
representations of the Schur complement and preconditioning operators for
large v. The following result will be used in the derivation; the proof is
straightforward and is omitted.

Lemma 5.1. For any matrixC such that/ + C is nonsingular,
(I+C)yt'=1-Cc+C*aI+0).

Since N is skew-symmetric/ + %N is nonsingular, and the lemma
implies that

A\ —1 ~
(1+18) =1-1N+%E,
N A\ —1
whereE = N? (I + %N) . Combining this with the first relation of (5.3)
gives the following expression for the Schur complement:
S =BF BT
(54) =1 (Sw—LBATVPNATI2BT + LBAT2EATI2BT),

whereS,, = BA~!BT isthe Schur complement associated with the Stokes
operator. Note also that

B[l < p(N)? = O(1).

An identical argument fofs of (5.2) shows that
-1 .
<I+§Np) =I-1iN,+ LE,,
where .
Ey=N2(T+18,) Bz < p(Np)*.
Consequently, the preconditioning operator has the form
Ps = 1 (M, = LMYPN,M2 + 0P E M)

In essence, these derivations quantify the facts that for small Reynolds
number,S andPg are perturbations oifSoo and%M , respectively. But the
eigenvalues for the generalized problem

(5.5) SooD = nNMpp
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are contained in a mesh independent intefyal I"%]. Here,~ is the inf-
sup constant associated with the discretization, fand 1 for conforming
finite element approximations such@s-P;, see [24]. The following result
shows that the eigenvalues of (5.1) lie in a region close to this interval.

Theorem 5.2. For large enoughy, the eigenvalues of the generalized prob-
lem(5.1)are contained in a region that is independent of the discretization
mesh sizé.

Proof. The Rayleigh quotient for the eigenvalués

(P (Seo — LBATYV2NAY2BT + L BAT/2EA-Y/2BT)p)
(. (M = LMy PN My - LMy B M)

,U/:

Dividing numerator and denominator By, M,p), we rewrite this as

(5.6)
(p, Seop) 1 (p, BAY2NA-1/2BTp) 1 (p, BA-Y2EA-1/2BTp)
(p, Mypp) v (p, Myp) v? (p, Mpp)
1/2 35 1/2 1/2 1/2
| 1PN M) |1 (p My B My )
v (p, Mpp) 2 (p, Mpp)

Now consider the individual quotients appearing in (5.6). For the numer-
ator, we have already observed that the first term is containgd ji™2].
The second term is imaginary and satisfies

(p’ BA—l/QNA—l/ZBTp)
(p, Mpp)

(p, BATY2NA-Y2BTp)| (p, Seop)
(ps Soop) (p, Mpp)

< p(N)I'2.
Similarly, the third quotient is bounded by

(p, BA"Y/2EA-1/2BTp)
(p, Mpp)

|A=1/2BTp||3
(p, Mpp)

I1Ell2 < p(N)*I2.

Analogous arguments apply for the two quotients appearing in the de-
nominator of (5.6). It follows that the eigenvalpamust be of the form

a+if
T4+

wherea € [y2 —cv =2, I? +cv2],7 € [l —cv™2, 1+ cv 2], andB, n are
real of orden/ L. O
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5.2. General results

For the case of genera) we begin with the generalized eigenvalue problem

e (50)0)2(68)6)

which arises from application of a block diagonal preconditioner to (1.4),

as in [4,20,23]. It follows from the first equation of (5.7) that for~ 1,

u = (ﬁ) F~1BTp, and the problem (5.1) for the Schur complement

can be derived by eliminating from the coupled system and setting=
A(A = 1). Alternatively, the second equation of (5.7) giyes- %Pngu,
and elimination op yields the generalized problem

(5.8) BYP'Bu = pFu.

By analogy with terminology used in the optimization literature, we refer to
(5.8) as theorimal problemassociated with (5.7); equation (5.1) is the related
dual problemThe eigenvalues of (5.8) consist of the nonzero eigenvalues of
(5.1) together with a zero eigenvalue of multiplicity equal to the dimension
of the null space oB.

We will use the primal problem to derive a bound on the imaginary parts
of these eigenvalues. Making the change of variables A=1/2y in (5.8)
and premultiplying both sides hy—1/2 leads to the equivalent problem

A_l/2BTMp_1/2A;l/QFpA;1/2Mp_1/QBA_1/2’U _ /,LA_1/2FA_1/2U.
We rewrite this in shorthand notation as
(5.9) (vJ + K)o = p(vl + N)v
whereN is as in Sect. 5.1 and
J =AV2BTM1BATY?,

(5.10) K A_I/QBTM;1/2A;1/2NPA;1/2M;UQBA_I/Q.

We have noted the boundedness\gf,..(N) andA,...(N,) above. The
following result establishes similar bounds érand K.

Lemma 5.3. The maximum eigenvalues of the matridesnd K of (5.10)
are bounded in magnitude by constants that are independent of the param-
etersh andv.

Proof. The assertion fog follows from the boundedness of the maximum
eigenvalue of the generalized problem (5.5). For a bound on the eigenvalues
of K, we have

[Amaz ()| < [[AT2BTM, 2|3 || A, 2N 4,12
The expression on the right ),,..(J)p(N,) = O(1). O
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That is, the matrices on each side of equation (5.9) consist of the sum
of a bounded symmetric operator (timegsand a bounded skew-symmetric
operator. A heuristic explanation for the effectiveness of the preconditioner
is that, from (5.5),J behaves loosely like an identity operator on the space
range(A~Y/2BT), and K and N are derived in a similar manner from
the underlying discrete convection operators. We also have the following
result establishing a bound on the imaginary parts of the eigenvalues of the
preconditioned system consistent with the behavior reported in Sect. 3.

Theorem 5.4. For small values of the viscosity parameterthe maximum
values of the imaginary parts of the eigenvalue¢9f) are bounded by
a quantity that grows liké(v~1) and is independent of the discretization
parametetrh.

Proof. From the equivalence of (5.1), (5.8) and (5.9), we seek a bound on
the imaginary part of the Rayleigh quotient

v(v, Ju) +is1(v)
v(v,v) +iss(v)

whereis; (v) = (v, Kv), is2(v) = (v, Nv). This can be rewritten as

v2 (v, Jv)(v,v) + s1(v)s2(v) LY [(v,v)s1(v) — (v, Jv)s2(v)]
v2(v,v)? 4 s2(v)? v2(v,v)? 4 s52(v)?

The imaginary part is bounded by

v[(v,0)[s51(0)] + (v, Jv)|s2(v)]]
V2(v,0)? + s9(v)?

S(p) <

< 2 (W (B4 A (D) AR

6. Full Picard iteration

All the results above are for a fixed velocity fieldin the Oseen equations
(1.2) where, in the experiments,was chosen to resemble the driven cavity
flow field. The fixed wind was used for convenience but it is somewhat
artificial, since the structure of the solution to (1.1) and of the iterates of (1.3)
will depend on the viscosity. In this section, we show the results of some
experiments with the full nonlinear Picard iteration, for both discretizations
andh = 1/64.

Table 6.1 shows the average iteration counts required when precondi-
tioned GMRES is used to solve each linear system arising during the non-
linear iteration. For completeness, the number of Picard iterations is also
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Table 6.1. Average inner iteration counts for Picard iteration, with outer iterations in paren-
theses, foh = 1/64

14
1/20  1/40 1/80 1/160 1/320
MAC 65(4) 9.0(5) 11.6(7) 156(9) 22.5(11)
P-Py 6.8(4) 83(4) 96(5) 132(6) 18.1(7)

Inner iterations, v=1/160, h=1/64
2
10 T T
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o > r s s T T
Fig.6.1. Convergence histories of preconditioned GMRES inner iteration for the full Picard
iteration withy = 1/160, P>-P; discretizationh = 1/64

shown, in parentheses. These tests were run using an “inexact” nonlinear
iteration (1.3), with the stopping criterion for the linear solver tied to the
residual of the nonlinear system. That is, the linear iteration was stopped at
stepk when the linear residual vecteg satisfied

Irillz < 10721 F (™Y l2,

(m—1)
wherex(m—1) = <Z(m1)> andF (x(™~Y) is the nonlinear residual. The

starting iterates were(?) = ( for the nonlinear system and the most recent
nonlinear iterate for the linear system.

These results are consistent with what we observed for a fixed velocity
field. In particular, the dependencemshown in Table 6.1 is essentially the
same as that depicted in Table 2.1. Similar results are also given in [14]. The
lower iteration counts are due to the less stringent stopping criterion. Further
comparison is provided by Fig. 6.1, which shows the complete convergence
histories of the linear solves for one problem, with- 1/160 and thePs-P;
discretization. This data is typical of the results for all the problems. Except
in the first nonlinear step, which requires a Stokes solve, there is a latency
exactly like that observed above (Fig. 2.2).
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7. Concluding remarks

The purpose of this study was to explore the properties of the preconditioning
operator (1.5) proposed by Kay and Loghin, and to explain its behavior for
the steady-state Navier-Stokes equation. Our results indicate that the eigen-
values of the preconditioned operator determine the convergence properties
of preconditioned GMRES. Eigenvalue distributions and convergence rates
are independent of discretization mesh size, and a smdépendent num-

ber of outlying eigenvalues lead to some dependence of performance on
14 .
We conclude with a few comments on issues not explored here. First, we
have not considered algorithmic costs. An iterative solver using this precon-
ditioner can be constructed with building blocks consisting of a convection-
diffusion solver (forPgl), a Poisson solver (foA;l), a solver for the pres-

sure mass matrix (i.e., foMp‘l), and various matrix products. The latter
two operations have negligable costs, and if fast algorithms such as multi-
grid or domain decomposition are used for the other tasks, then the cost per
step of the complete iteration will be low. Kay and Loghin [14] showed that
use of such inner iterations leads to performance consistent with that of the
“exact” preconditioner. In addition, although we have restricted our atten-
tion to GMRES for the Krylov subspace method, we expect other solvers to
perform well also.

Finally, this study has been limited to the steady-state problem. For evo-
lutionary problems, the same solution algorithm can be applied at each step
of a time-implicit iteration. Results in [22] suggest that in this setting, for
small enough time steps, iteration counts appear to be independent of the
viscosity.
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