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1. Introduction

The aim of this work is to study the performance of a preconditioning
methodology designed for use with Krylov subspace iteration to compute
the numerical solution of the incompressible Navier-Stokes equations. The
nonlinear problem is

−ν∆u + (u · grad)u + grad p = f
−div u = 0 in Ω,(1.1)

subject to suitable boundary conditions on∂Ω, whereΩ is an open bounded
domain inR2 orR3, andu andp are the velocity and pressure, respectively.
Our focus is on theOseen equations, the linearized version of (1.1) given
by

−ν∆u + (w · grad)u + grad p = f
−div u = 0(1.2)

wherew is such thatdiv w = 0. This problem arises for example from a
Picard iteration applied to (1.1),

−ν∆u(m) + (u(m−1) · grad)u(m) + grad p(m) = f
−div u(m) = 0

(1.3)

whereu(−1) is arbitrary. It is shown in [13] that this iteration is globally
convergent providedν >

√
c2‖f‖−1/c1 wherec1 is the coercivity constant

associated with (1.1) andc2 is the continuity constant for the convection
term; this requirement is also well known as a sufficient condition for the
existence of a unique solution to (1.1) [10].

Discretization of (1.2) using a div-stable [10] strategy leads to a linear
system of the form (

F BT

B 0

)(
u
p

)
=
(

f
0

)
.(1.4)

F is a discrete convection-diffusion operator, i.e., it has the formF =
νA+N whereA is a discrete diffusion operator,N is a discrete convection
operator, andB andBT are discrete divergence and gradient operators,
respectively.

Tomotivate a preconditioning strategy for (1.4), we begin with the block
LU factorization(

F BT

B 0

)
=
(

I 0
BF−1 I

)(
F BT

0 −BF−1BT

)
.
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With S = BF−1BT denoting the Schur complement operator, this is equiv-
alent to (

F BT

B 0

)(
F BT

0 −S
)−1

=
(

I 0
BF−1 I

)
.

GMRES iteration [21] applied to a linear systemwith this coefficient matrix
would requireprecisely twosteps to compute theexact solution [16]. A right-
oriented preconditioner for (1.4) is determined by approximationsPF ≈ F
andPS ≈ S, or, more precisely, by operations that approximate the actions
of F−1 andS−1. Variants of this methodology have been considered in
many studies [1,2,4,5,9,15,20,23,25,26]1.

The advantage of this general approach is that it reduces the problem
of finding preconditioners for (1.4) to that of finding good techniques for
definingP−1

F andP−1
S . For (1.2), the first subproblementails approximating

the solution of a set of discrete scalar convection-diffusion equationsFu =
v.P−1

F could be defined by applying an iterative algorithm such asmultigrid
to this system. Our experience is that such an iteration requires only a mild
stopping criterion for good performance of the preconditioner, and in this
study we will not consider the effects of this approximation and restrict our
attention toPF = F .

A good choice forPS , the approximation to the Schur complementS,
is less straightforward. Our aim here is to develop an understanding, using
a combination of analysis and experiment, of the effectiveness of a new
version of this operator developed by Kay and Loghin [14] and considered
further by Silvester et. al. [22]. The technique is determined by the choice

PS = ApF
−1
p Mp,(1.5)

whereAp andFp represent discrete approximations to scaled Laplacian and
convection-diffusion operators defined on the pressure space, andMp is
the pressure mass matrix.P−1

S was derived from the Green’s tensor for the
Oseen operator in [14] as an approximation to the inverse of a continuous
representation of the Schur complement. We motivate it here by briefly
recapitulating an alternative derivation given in [22]. Suppose that there is
formal commutativity of differential forms given by

(−ν∆+ w · ∇)∇ = ∇(−ν∆+ w · ∇)p .(1.6)

That is, there is a convection-diffusion operator defined on the pressure
space (identified with the subscript), and that this operator commutes with
the gradient operator as indicated. A discrete version of this relation is

(M−1
u F )(M−1

u BT) = (M−1
u BT)(M−1

p Fp),
1 Right orientation is largely anarbitrary choice; a left-orientedapproach canbederivedby

a similar argument. For symmetric problems such as the Stokes equations, a block-diagonal
preconditioner is preferable [7]
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whereMu is the mass matrix on the velocity space. This is equivalent to

F−1BT = M−1
u BTF−1

p Mp .(1.7)

Recognizing (1.6)–(1.7) as formal approximations rather than identities and
premultiplying (1.7) byB gives the approximationS ≈ PS of (1.5), where
Ap = BM−1

u BT. More generally,Ap can be any stable discretization of the
Poisson operator on the pressure space. This approach for preconditioning
represents an improvement andsimplificationof related strategiesdeveloped
previously in [4,5].

The boundary conditions associated with the discrete operatorsAp and
Fp of (1.5) need to be appropriately defined. For the common case of an
enclosed flow with specified velocity conditions on∂Ω, the discrete Schur
complement operatorBF−1BT is conventionally associated with a Neu-
mann operator for the pressure field, see [22]. This means thatAp andFp

should correspond to discrete elliptic problems with a standard Neumann
boundary condition. This issue is explored more fully in [25, pp. 50-51]
and [3, pp. 36-43]. In the case of a boundary segment with standard out-
flow boundary conditions, the Schur complementS (and its preconditioner
PS) must be defined with Dirichlet data for the pressure on that part of the
boundary in order to ensure that the preconditioning operator is elliptic over
the pressure solution space.

In this paper we examine the properties of this preconditioner. In Sect. 2,
we define a set of benchmark problems derived from the “leaky” lid-driven
cavity problem, and we study the performance of the preconditioned GM-
RES iterative solver applied to them. Our concerns here are to understand
the dependence on fundamental parameters in the problems, the viscosityν
and the mesh sizeh associated with the discretization. Our observations are
that the number of iterations required for convergence is independent of the
mesh size, but there is some dependence on the viscosity. This dependence
is manifested through a period of latency in the early stages of the iteration
whose length is mildly increasing withν−1; after this a faster asymptotic
convergence rate is obtained. (We will also occasionally state our observa-
tions in terms of the dimensionlessReynolds numberRe = uL

ν , where in
our examples the length scale and velocity scales areL = 1, |u| = 1, so that
Re is essentially the sameasν−1.) In Sect. 3, we study the eigenvalues of the
preconditioned operatorSP−1

S for these benchmark problems. We demon-
strate empirically that there is a tightly clustered set of eigenvalues contained
in a region whose boundaries are independent ofν andh, together with a
very small number (on the order of ten) of outlying values that are indepen-
dent ofh but notν. In Sect. 4, using an analysis of optimal Krylov subspace
methods, we give a theoretical explanation of the convergence behavior of
GMRES: the latency in iterations is caused by the outlying eigenvalues, and
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the subsequent rapid convergence is a consequence of the tight clustering of
the majority of eigenvalues. In Sect. 5, we consider a variant of the problem
studied in the previous sections and present analytic bounds on eigenvalue
distributions that identify asymptotic effects in the cases of smallν (large
Re) and largeν (the Stokes limit). In Sect. 6, we show that our results,
which are derived for a fixed velocity fieldw in (1.2), are consistent with
the performance for a complete Picard iteration (1.3). Finally, in Sect. 7, we
make some concluding remarks.

2. Performance of GMRES iteration

Asasourceof benchmark problems,weusea linearized versionof the driven
cavity problem, in which (1.2) is posed onΩ = (0, 1) × (0, 1), with f = 0,
boundary conditions{

u1 = u2 = 0 for x = 0, x = 1 or y = 0,
u1 = 1, u2 = 0 for y = 1,

and convection coefficients (or “wind”)

w =
(

2(2y − 1)(1 − (2x− 1)2)
−2(2x− 1)(1 − (2y − 1)2)

)
.

This choice of the wind, which contains a single recirculation inΩ, is used
to simulate what happens in the Picard iteration (1.3) for the driven cavity
problem, whereu(m−1) contains one primary recirculation for mostm;
we will return to this point in Sect. 6. We examine two discretizations,
the marker-and-cell (MAC) finite difference scheme [11], and theP2-P1
finite element discretization, which uses triangular elements with piecewise
quadratic bases for the velocity components and a piecewise linear basis for
the pressure. Both these discretizations are known to be div-stable, see [10,
17]. For each of them, we discretize (1.2) inΩ using a uniform mesh of
width h. (Cf. [14] for results on non-isotropic grids.) The MAC scheme is
formally first order accurate when measured in a discreteH1 norm, see [17,
18]. TheP2–P1 method is a higher order discretization: if the weak solution
of (1.1) is sufficiently regular, then the velocity converges likeO(h2) when
measured in theH1 norm, see [10, pp. 181, 323].Ap andFp are defined
on the discrete pressure spaces in the natural way via finite differences for
MAC and linear elements forP2-P1.

We present two sets of experimental results on convergence. These and
all other computations described in the paper were performed using Matlab
on a Sun Sparc Ultra 1 computer. Table 2.1 shows the number of iterations
required by the preconditioned GMRES solver, for both discretizations and
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Fig. 2.1. Complete record of‖rk‖2/‖r0‖2 generated by GMRES, for finite differences and
ν = 1/80 (left) andh = 1/128 (right)

Table 2.1. Iteration counts for convergence of the preconditioned GMRES solver

Mac finite differences

ν
1/20 1/40 1/80 1/160 1/320

h = 1/16 17 20 24 31 39
1/32 17 21 26 33 43
1/64 16 21 26 34 44

1/128 16 20 26 33 45

P22-P1 finite elements

ν
1/20 1/40 1/80 1/160 1/320

h = 1/16 18 21 26 37 62
1/32 17 21 26 33 47
1/64 17 20 25 33 43

a variety of values of the mesh sizeh and viscosity parameterν. The initial
guess was identically zero, and the stopping criterion was

‖rk‖2

‖r0‖2
< 10−6,

whererk is the residual vector. Figures 2.1 and 2.2 show the details of
convergence histories for some of these entries. The left sides of the figures
show the results for fixed values of the viscosity parameter (ν = 1/80) and
several mesh sizes, and the right sides show the results for fixed values of
the mesh size (h = 1/128 for the MAC discretization andh = 1/64 for
P2-P1) and several values ofν.
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Fig. 2.2. Complete record of‖rk‖2/‖r0‖2 generated byGMRES, forP2-P1 finite elements
andν = 1/80 (left) andh = 1/64 (right)

These experiments clearly show that convergence is essentially indepen-
dent of the discretization parameter but that there is modest dependence on
the viscosity, with reductions inν (i.e., increases in the Reynolds number)
leading to increases in iteration counts. The tabulated results are consistent
with those obtained by Kay and Loghin [14] for this problem as well as two
others, models of a pipe-flow and flow over a backward facing step. The fig-
ures suggest that in fact the asymptotic convergence behavior of theGMRES
iteration is also independent ofν, but that there is a period of slow conver-
gence in the early stages of the iteration, and this latency period is longer
for smaller values ofν. These observations hold for both discretizations.

3. Behavior of eigenvalues

Let the preconditioned system under consideration be denoted now by

Ax = f ,(3.1)

and let the residual associated with an iteratexm be given by

rm = f − Axm .

AssumeA = V ΛV −1 is diagonalizable, and letσ(A) denote the set of
eigenvalues ofA. Recall the standard bound on convergence of GMRES
[21],

‖rm‖2 ≤ κ(V ) min
pm(0)=1

max
λ∈σ(A)

|pm(λ)| ‖r0‖2 ,(3.2)
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where the minimum is over all polynomials of degreem taking on the value
1 at the origin. In this section, we show the results of a series of experiments
concerning the eigenvalues of theFp-preconditionedmatricesSP

−1
S for the

benchmark problems considered above. We will then (in Sect. 4) use these
results together with (3.2) to explain convergence performance.

We begin with the MAC discretization. Figure 3.1 plots the eigenvalues
of the preconditioned matrices, forν = 1/80 and four successively refined
meshes. Forh = 1/16 and1/32, all the eigenvalues are displayed, and for
h = 1/64 and1/128, a subset is shown consisting of those with smallest
nonzero real parts, largest real parts, and largest imaginary parts2. Figure 3.2
shows the extremal eigenvalues for three values ofν with h = 1/64.

These figures give a clear picture of the dependence of the large extremal
eigenvalues on both the mesh sizeh and viscosityν, as well as the depen-
dence of the smallest eigenvalues on themesh size. Figure 3.1 shows that the
extremal eigenvalues display no significant dependence onh; indeed, the
tabulated results included in the figure show that the maximum real parts,
maximum imaginary parts, and minimum real parts of all eigenvalues are

2 Forh = 1/64, this set consists of the nineteen eigenvalues with smallest nonzero real
parts, the four with largest real parts and the six pairs with largest imaginary parts. For
h = 1/128, it is the nineteen with smallest real part, the two with largest real parts, and the
single pair with largest imaginary part. The zero eigenvalue corresponding to hydrostatic
pressure is excluded from these considerations. The computationswere donewith theMatlab
sparse eigenvalue routineeigs
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Table 3.1. Dependence of eigenvalues onν for the MAC discretization andh = 1/128

Extremal real and
imaginary parts Other small real parts

ν �(λ)min �(λ)max �(λ)max λ2 λ3 λ4

1/20 .2402 1.2017 2.8015 .2410 .2411 .3323
1/40 .1073 1.5389 5.6224 .2486 .2495 .2553
1/80 .0293 1.9010 11.2605 .2444 .2597 .2608
1/160 .0075 2.1265 22.5330 .0786 .2635 .2747
1/320 .0019 2.3008 45.0749 .0209 .0860 .2158
1/640 .0005 2.4403 90.1561 .0053 .0230 .1388

virtually identical for all four mesh parameters. Figure 3.2 shows that the
maximal real parts in the eigenvalue sets are also close to being constant
as functions ofν, but that the maximal imaginary parts grow likeν−1. The
dependence of the small real parts onν is less clear from this figure. This is
explored further in Table 3.1, which shows the extreme real and imaginary
parts, as well as the three next smallest real parts, in this case forh = 1/128.
The patterns are as follows. For small enoughν, the smallest real part is ac-
tually decreasing in proportion toν2. A similar statement applies for the
other small real parts, although the asymptotic behavior is evident only for
somewhat smaller values ofν. That is, there are some eigenvalues that are
decreasing in proportion toν2, but the set (of indices of eigenvalues) for
which this pattern holds appears to be small.
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Table 3.2. Number of eigenvalues outside circle, for MAC discretization andh = 1/16,
h = 1/32

No. eigenvalues No. real eigs
outside circle left of circle

ν 1/16 1/32 1/16 1/32

1/40 7 7 1 1
1/80 8 8 2 2
1/160 11 12 3 3
1/320 19 21 4 4
1/640 25 29 6 6

0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

ν=1/80

ν=1/160

ν=1/320

Closeup of eigenvalues near real axis, MAC, h=1/32

Circle, center .8
radius .5

Fig. 3.3. Containment of eigenvalues in a clustered set, MAC discretization,h = 1/32

Figures 3.1 and 3.2 also suggest that with the exception of a small set of
outliers of the types given above, the majority of eigenvalues lie in a tightly
clustered set. This issue is examined in Fig. 3.3, which shows a magnified
image of the data forh = 1/32 from Fig. 3.2 (coordinates on the imaginary
axis are restricted), on which a circle centered at(0.8, 0) with radius1/2 is
drawn. The circle represents a domain, determined by inspection, containing
themajority of eigenvalues. Table 3.2 continues in this direction by showing
howmany eigenvalues lie outside this circle for different values ofν, for the
two mesh parameters for which all eigenvalues have been computed. These
data indicate that in fact the number of outliers is small but growing slightly
with ν−1. The number of eigenvalues with small real parts (i.e., to the left
of the circle) is also increasing asν gets smaller, but quite a bit more slowly
than the total number of outliers.

We next discuss an analogous set of computations for theP2-P1 dis-
cretization. Table 3.3 shows a set of extremal eigenvalues of the precon-
ditioned matrices, forh = 1/64. This data is analogous to that shown in
Table 3.1 for finite differences, and the patterns displayed for the two dis-
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Table 3.3. Dependence of eigenvalues onν for theP2-P1 discretization andh = 1/64

Extremal real and
imaginary parts Other small real parts

ν �(λ)min �(λ)max �(λ)max λ2 λ3 λ4

1/20 .1336 1.2009 2.8012 .2068 .2069 .2489
1/40 .1072 1.5386 5.6218 .1337 .2091 .2100
1/80 .0293 1.8999 11.2595 .1338 .2114 .2117
1/160 .0075 2.1248 22.5312 .0786 .1339 .2148
1/320 .0019 2.2984 45.0714 .0209 .0859 .1339
1/640 .0005 2.4366 90.1491 .0053 .0230 .0553

Table 3.4. Eigenvalues for theP2-P1 discretization on coarse grids

Extremal real and
imaginary parts Other small real parts

h = 1/32 �(λ)min �(λ)max �(λ)max λ2 λ3 λ4

1/20 .1339 1.1984 2.7996 .2131 .2132 .2825
1/40 .1073 1.5376 5.6188 .1342 .2160 .2174
1/80 .0293 1.8976 11.2534 .1341 .2186 .2193
1/160 .0075 2.1213 22.5190 .0787 .1341 .1718
1/320 .0019 2.2931 45.0470 .0209 .0720 .0727
1/640 .0005 2.4284 90.1004 .0053 .0230 .0292

h = 1/16
ν

1/20 .1344 1.1890 2.7933 .2215 .2216 .3022
1/40 .1076 1.5334 5.6064 .1349 .2250 .2250
1/80 .0294 1.8880 11.2288 .1345 .2012 .2012
1/160 .0075 2.1062 22.4699 .0792 .1042 .1042
1/320 .0019 2.2684 44.9480 .0211 .0470 .0476
1/640 .0005 2.3864 89.8966 .0054 .0160 .0160

cretizations are largely the same. That is, the smallest real parts are of order
ν2, the largest real parts areO(1), and the largest imaginary parts propor-
tional toO(ν−1).

Westudy thedependenceof spectra onmesh size by tabulating additional
data for coarser meshes in Table 3.4. From the results in this table and
Table 3.3, it is clear that, just as above, the smallest real parts, largest real
parts and largest imaginary parts of eigenvalues are all independent of the
mesh size.

For this discretization, it ismore difficult tomake a clean statement about
clustering of the non-extreme eigenvalues. A table analogous to Table 3.3
for the finest mesh for which we can compute a complete set of eigenvalues
(h = 1/32) would show many more eigenvalues lying outside a fixed set
asν is reduced. For example, forh = 1/32 andν = 1/320, there are191
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eigenvalues outside the circle depicted in Fig. 3.3; this contrasts with21
for the MAC discretization. We do not believe that this is caused by any
inadequacy of the preconditioning operator, but that instead it stems from
properties of the discretization. This point can be explored using the data
in Tables 3.3 and 3.4. As noted above, the extremal eigenvalues are the
same for the three mesh parameters of the tables. Whenν is large, the other
eigenvalues (λ2, λ3, λ4) are also qualitatively similar for the three values
of h. However, asν becomes smaller, these eigenvalues behave differently
on coarse meshes than on finer ones. For example, forν = 1/640, λ3
is much smaller forh = 1/16 than for the finer meshes, and a similar
statement holds forλ4 for small valuesofν. Ash is refined, theseeigenvalues
actually increase and become closer to the analogous values for the MAC
discretization. That is, for smallν and insufficiently fine meshes, many of
the eigenvalues occurring in these computations are artificially small and
do not indicate a proper dependence onν. As an additional example, the
bottom right entry.0553 of Table 3.3 is also likely to be artificially small.

We believe the reason for this has to do with the accuracy of the dis-
cretization. It is well known that if thecell Reynolds numberReh = |w|h

2ν
is large, then the discretization may be inaccurate. TheP2-P1 discretiza-
tion has a higher order of accuracy than the finite difference discretization,
but it also requires finer meshes for its asymptotic properties to hold; when
the mesh is too coarse, the discretization is less accurate and this leads to
anomolous behavior in the preconditioning process whenReh is large. This
is also the likely explanation for the reduction in iterations seen in Table 2.1
for smallν ash is reduced.

4. Analysis of GMRES convergence

In this section, we derive a convergence bound for GMRES iteration that
establishes a connection between the latencies displayed in the initial stages
of the solution process, as shown in Sect. 2, and the outlying eigenvalues of
the preconditioned systems described in Sect. 3. The analysis is based on
a technique developed by Jennings [12] for the conjugate gradient method,
whereby a bound is obtained using certain auxiliary polynomials.

With the preconditioned problem represented as in (3.1), suppose as in
our case thatσ(A) = σc(A) ∪ σo(A) whereσc(A) denotes a clustered
set of eigenvalues ofA andσo(A) = {λ1, λ2, . . . , λd} denotes a set ofd
outliers. Takingm = d+ k in (3.2), we have

min
pk+d(0)=1

max
λ∈σ(A)

|pk+d(λ)| ≤ max
λ∈σc(A)

|φd(λ)| |Ck(λ)| ,(4.1)

where
φd(λ) =

(
1 − 1

λ1
λ
)(

1 − 1
λ2
λ
)

· · ·
(
1 − 1

λd
λ
)
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is the polynomial of degreed whose roots are the outlying eigenvalues con-
tained inσo(A), andCk is any polynomial of degreek satisfyingCk(0) = 1.
Ck can be chosen to be small on a setE containingσc(A) such that

max
λ∈σc(A)

|Ck(λ)| ≤≈ ρk.

If the enclosing setE is bounded by a circle centered atc with radiusr as in

Sect. 3, then the choiceCk(λ) =
(

c−λ
c

)k
is optimal with respect toL∞ on

E [19, p. 90]. For this choice,ρ = r/c, and it follows from (3.2) and (4.1)
that

‖rm‖2 ≤ κ(V ) max
λ∈σc(A)

|φd(λ)| ρk‖r0‖2 .(4.2)

If all the outlying eigenvalues are larger in modulus than the (clustered)

members ofσc(A), then for anyλ ∈ σc(A),
∣∣∣ λ
λj

∣∣∣ < 1 and|φd(λ)| < 1. The
bound (4.2) then suggests that there will be a latency ofd steps before the
asymptotic convergence behavior is observed. If some outlierλj is small,

then the factor
(
1 − 1

λj
λ
)
of φd will be large, and there may be some

additional delay. The small eigenvalues identified inSect. 3 are ofmagnitude
ν2, so that the corresponding factors inφd are of orderν−2. If there ares
small eigenvalues like this, and (as above) the clustered eigenvalues have
magnitudeO(1), then the term

max
λ∈σc(A)

|φd(λ)| ρk

will be bounded by an expression essentially of the form
( 1

ν2

)s
ρk, and the

asymptotic convergencebehaviorwill not bemanifesteduntil this expression
is less than1. This will be achieved when

k > 2s
log ν−1

log ρ−1 .

That is, for the preconditioned problems under consideration, we expect
convergence to be slow for a number of iterations essentially determined by
the number of outlying eigenvalues; if some of these eigenvalues are small,
then theremay be an additional delay ofmagnitudelog ν−1. In our examples
(Table 3.2), there are fewer small outliers than large ones, and therefore this
extra delay should be relatively short.

We next show that the bounds establishedwith this analysis give an accu-
rate depiction of performance. Letpm now denote the iteration polynomial
generated bym steps of the GMRES iteration. The roots ofpm, which are
referred to as theharmonic Ritz values, are the eigenvalues of the matrix

(H̃∗
m)

−1
(H∗

mHm)
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Fig. 4.1. Convergence history of GMRES for the preconditioned Schur complement system
with ν = 1/80, h = 1/32, P2-P1 discretization, and steps 6, 10, 16 and 26 highlighted

(see [8]), whereHm is the rectangular upper Hessenberg matrix of dimen-
sions(m+1)×m generated by the Arnoldi computation used for GMRES
[21], andH̃m is the square submatrix ofHm obtained by removing the last
row. As the iteration converges to the solution, the harmonic Ritz values
converge to eigenvalues of the coefficient matrix.

For simplicity, we consider here the GMRES iteration applied directly
to the Schur complement systemSp = s wheres = BF−1f , with right
preconditionerPS . We present results for theP2-P1 discretization, with
ν = 1/80 andh = 1/32. Figure 4.1 shows the convergence history, with
values of the residual norms at four distinguished stages of the iteration
highlighted with asterisks. Figures 4.2–4.5 depict the state of the GMRES
iteration at the four stages. The figures show the eigenvalues ofSP−1

S ,
together with them harmonic Ritz values available at stepm, form = 6,
10, 16 and26. The left sides of the figures show the complete set of data;
the right sides show magnified views by limiting the dimensions on the
imaginary axis.

Some of the trends displayed in these figures are as follows. Step 6
(Fig. 4.2) is the first where any eigenvalues of the coefficient matrix, in
this case the pair with maximal imaginary parts, are accurately resolved.
At this stage, the four other harmonic Ritz values bear no clear relation to
the spectrum ofSP−1

S . Also, after this step, the residual norm exhibits a
noticeable decrease in size (Fig. 4.1). At step 10 (Fig. 4.3), several other
extremal eigenvalues are resolved: the pair with second largest imaginary
part and the one with largest real part. In addition, the estimates for the pair
with third largest imaginary part are fairly accurate, although it takes until
step 14 for these to be resolved well. In these first two figures, there is no
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Fig. 4.2. Eigenvalues (×) and harmonic Ritz values (◦) at GMRES step 6 for the precondi-
tioned Schur complement system, withν = 1/80, h = 1/32, P2-P1 discretization
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Fig. 4.3. Eigenvalues (×) and harmonic Ritz values (◦) at GMRES step 10 for the precon-
ditioned Schur complement system, withν = 1/80, h = 1/32, P2-P1 discretization

harmonic Ritz value near the eigenvalue with smallest real part. By step 16
(Fig. 4.4), the smallest harmonic Ritz value is close to that eigenvalue; good
resolution is obtained at step 18. At about this point, the GMRES iteration
enters its period of asymptotic performance. Finally, at step 26, when the
asymptotic performance is established, all extreme eigenvalues are well-
approximated and the new harmonic Ritz estimates lie around the perimeter
of the set of eigenvalues clustered in the vicinity of(0.8, 0).

These results are typical of performance for both discretizations. They
indicate, as the analysis suggests, that asymptotic convergence occurs after
the outlying eigenvalues are resolved by the GMRES iteration, and that the
smaller outliers take longer to be resolved than the longer ones. Once the
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Fig. 4.4. Eigenvalues (×) and harmonic Ritz values (◦) at GMRES step 16 for the precon-
ditioned Schur complement system, withν = 1/80, h = 1/32, P2-P1 discretization
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Fig. 4.5. Eigenvalues (×) and harmonic Ritz values (◦) at GMRES step 26 for the precon-
ditioned Schur complement system, withν = 1/80, h = 1/32, P2-P1 discretization

outliers are obtained, the fact that subsequent eigenvalue estimates tend to
embrace the cluster is a consequence of the maximum principle.

Remark.Thebound (3.2) also dependson the condition number of thematrix
of eigenvectors. UsingMatlab, we calculated this quantity for the Euclidean
norm and various choices ofh andν. It had values on the order of102 to103

but displayed no discernable pattern. The correlation between performance
and analysis suggests that the eigenvalues are responsible for convergence
behavior, but we are unable to incorporateκ(V ) into the discussion.
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5. Analysis of eigenvalues

In this section, we derive bounds on the eigenvalues of a generalized eigen-
value problem

BF−1BTp = µP̂Sp.(5.1)

HereP̂S is a variant of the preconditionerPS of (1.5) but with a “symmetric
style,”

P̂S = M1/2
p A1/2

p F−1
p A1/2

p M1/2
p .(5.2)

The presence of the matrix square roots makes this operator unsuitable for
practical computation, but its symmetric form is needed for an analysis.
We consider two cases separately. We first show that for the case of small
Reynolds numbers (largeν), the eigenvalues of (5.1) are perturbations of
those of a generalized problem associated with the Stokes equations, which
leads to bounds showing that (5.1) is well behaved and that the properties of
the preconditioner in the Stokes limit are good. For more general situations,
including the case of smallν, we derive an equivalence between (5.1) and
an alternative problem that leads to rigorous bounds on the imaginary parts
of the eigenvalues and heuristic insight into properties of the real parts.

5.1. Small Reynolds numbers and the Stokes limit

Let
F = νA+N, Fp = νAp +Np,

where

A =
1
ν

(
F + FT

2

)
, Ap =

1
ν

(
Fp + FT

p

2

)

denote the (scaled) symmetric parts ofF andFp, respectively, and

N =
F − FT

2
, Np =

Fp − FT
p

2

denote the skew-symmetric parts. Consider the factorizations of the discrete
convection-diffusion operators,

F = νA+N = νA1/2
(
I + 1

ν N̂
)
A1/2

Fp = νAp +Np = νA
1/2
p

(
I + 1

ν N̂p

)
A

1/2
p ,

(5.3)

whereN̂ = A−1/2NA−1/2, N̂p = A
−1/2
p NpA

−1/2
p . (Here and in the fol-

lowing,A−1
p is to be understood as the inverse of the operator defined on
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the orthogonal complement of the null vectorp ≡ constant, or, equivalently,
as the pseudo-inverse on the complete pressure space.) It is well known
that the spectral radiiρ(N̂) andρ(N̂p) are bounded by constants that are
independent of the mesh parameterh [6]; these spectral radii are clearly
also independent ofν. We will use these observations to derive simplified
representations of the Schur complement and preconditioning operators for
largeν. The following result will be used in the derivation; the proof is
straightforward and is omitted.

Lemma 5.1. For any matrixC such thatI + C is nonsingular,

(I + C)−1 = I − C + C2(I + C)−1.

SinceN̂ is skew-symmetric,I + 1
ν N̂ is nonsingular, and the lemma

implies that (
I + 1

ν N̂
)−1

= I − 1
ν N̂ + 1

ν2E,

whereE = N̂2
(
I + 1

ν N̂
)−1

. Combining this with the first relation of (5.3)

gives the following expression for the Schur complement:

S = BF−1BT

= 1
ν

(
S∞ − 1

νBA
−1/2N̂A−1/2BT + 1

ν2BA
−1/2EA−1/2BT

)
,(5.4)

whereS∞ = BA−1BT is the Schur complement associated with the Stokes
operator. Note also that

‖E‖2 ≤ ρ(N̂)2 = O(1).

An identical argument for̂PS of (5.2) shows that(
I + 1

ν N̂p

)−1
= I − 1

ν N̂p + 1
ν2Ep ,

where

Ep = N̂2
p

(
I + 1

ν N̂p

)−1
, ‖Ep‖2 ≤ ρ(N̂p)2.

Consequently, the preconditioning operator has the form

P̂S = 1
ν

(
Mp − 1

νM
1/2
p N̂pM

1/2
p + 1

ν2M
1/2
p EpM

1/2
p

)
.

In essence, these derivations quantify the facts that for small Reynolds
number,S andP̂S are perturbations of1νS∞ and1

νMp, respectively. But the
eigenvalues for the generalized problem

S∞p = ηMpp(5.5)
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are contained in a mesh independent interval[γ2, Γ 2]. Here,γ is the inf-
sup constant associated with the discretization, andΓ = 1 for conforming
finite element approximations such asP2–P1, see [24]. The following result
shows that the eigenvalues of (5.1) lie in a region close to this interval.

Theorem 5.2. For large enoughν, the eigenvalues of the generalized prob-
lem(5.1)are contained in a region that is independent of the discretization
mesh sizeh.

Proof. The Rayleigh quotient for the eigenvalueµ is

µ =
(p, (S∞ − 1

νBA
−1/2N̂A−1/2BT + 1

ν2BA
−1/2EA−1/2BT)p)

(p, (Mp − 1
νM

1/2
p N̂pM

1/2
p + 1

ν2M
1/2
p EpM

1/2
p )p)

.

Dividing numerator and denominator by(p,Mpp), we rewrite this as

(5.6)

(p, S∞p)
(p,Mpp)

− 1
ν

(p,BA−1/2N̂A−1/2BTp)
(p,Mpp)

+
1
ν2

(p,BA−1/2EA−1/2BTp)
(p,Mpp)

1 − 1
ν

(p,M1/2
p N̂pM

1/2
p p)

(p,Mpp)
+

1
ν2

(p,M1/2
p EpM

1/2
p p)

(p,Mpp)

.

Now consider the individual quotients appearing in (5.6). For the numer-
ator, we have already observed that the first term is contained in[γ2, Γ 2].
The second term is imaginary and satisfies∣∣∣∣∣(p,BA

−1/2N̂A−1/2BTp)
(p,Mpp)

∣∣∣∣∣ =
∣∣∣∣∣(p,BA

−1/2N̂A−1/2BTp)
(p, S∞p)

∣∣∣∣∣ (p, S∞p)
(p,Mpp)

≤ ρ(N̂)Γ 2.

Similarly, the third quotient is bounded by∣∣∣∣∣(p,BA
−1/2EA−1/2BTp)
(p,Mpp)

∣∣∣∣∣ ≤ ‖A−1/2BTp‖2
2

(p,Mpp)
‖E‖2 ≤ ρ(N̂)2Γ 2.

Analogous arguments apply for the two quotients appearing in the de-
nominator of (5.6). It follows that the eigenvalueµmust be of the form

α+ iβ

τ + iη

whereα ∈ [γ2 − cν−2, Γ 2 + cν−2], τ ∈ [1 − cν−2, 1 + cν−2], andβ, η are
real of orderν−1. ��
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5.2. General results

For the case of generalν, we begin with the generalized eigenvalue problem(
F BT

B 0

)(
u
p

)
= λ

(
F 0
0 P̂S

)(
u
p

)
,(5.7)

which arises from application of a block diagonal preconditioner to (1.4),
as in [4,20,23]. It follows from the first equation of (5.7) that forλ /= 1,
u =

(
1

λ−1

)
F−1BTp, and the problem (5.1) for the Schur complement

can be derived by eliminatingu from the coupled system and settingµ =
λ(λ − 1). Alternatively, the second equation of (5.7) givesp = 1

λ P̂
−1
S Bu,

and elimination ofp yields the generalized problem

BTP̂−1
S Bu = µFu.(5.8)

By analogy with terminology used in the optimization literature, we refer to
(5.8) as theprimal problemassociatedwith (5.7); equation (5.1) is the related
dual problem. The eigenvalues of (5.8) consist of the nonzero eigenvalues of
(5.1) together with a zero eigenvalue of multiplicity equal to the dimension
of the null space ofB.

We will use the primal problem to derive a bound on the imaginary parts
of these eigenvalues. Making the change of variablesu = A−1/2v in (5.8)
and premultiplying both sides byA−1/2 leads to the equivalent problem

A−1/2BTM−1/2
p A−1/2

p FpA
−1/2
p M−1/2

p BA−1/2v = µA−1/2FA−1/2v.

We rewrite this in shorthand notation as

(νJ +K)v = µ(νI + N̂)v(5.9)

whereN̂ is as in Sect. 5.1 and

J = A−1/2BTM−1
p BA−1/2,

K = A−1/2BTM
−1/2
p A

−1/2
p NpA

−1/2
p M

−1/2
p BA−1/2.

(5.10)

We have noted the boundedness ofλmax(N̂) andλmax(N̂p) above. The
following result establishes similar bounds onJ andK.

Lemma 5.3. The maximum eigenvalues of the matricesJ andK of (5.10)
are bounded in magnitude by constants that are independent of the param-
etersh andν.

Proof. The assertion forJ follows from the boundedness of the maximum
eigenvalue of the generalized problem (5.5). For a bound on the eigenvalues
ofK, we have

|λmax(K)| ≤ ‖A−1/2BTM−1/2
p ‖2

2 ‖A−1/2
p NpA

−1/2
p ‖2

The expression on the right isλmax(J)ρ(N̂p) = O(1). ��
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That is, the matrices on each side of equation (5.9) consist of the sum
of a bounded symmetric operator (timesν) and a bounded skew-symmetric
operator. A heuristic explanation for the effectiveness of the preconditioner
is that, from (5.5),J behaves loosely like an identity operator on the space
range(A−1/2BT), andK and N̂ are derived in a similar manner from
the underlying discrete convection operators. We also have the following
result establishing a bound on the imaginary parts of the eigenvalues of the
preconditioned system consistent with the behavior reported in Sect. 3.

Theorem 5.4. For small values of the viscosity parameterν, the maximum
values of the imaginary parts of the eigenvalues of(5.1) are bounded by
a quantity that grows likeO(ν−1) and is independent of the discretization
parameterh.

Proof. From the equivalence of (5.1), (5.8) and (5.9), we seek a bound on
the imaginary part of the Rayleigh quotient

µ =
ν(v, Jv) + is1(v)
ν(v, v) + is2(v)

,

whereis1(v) = (v,Kv), is2(v) = (v, N̂v). This can be rewritten as

µ =
ν2(v, Jv)(v, v) + s1(v)s2(v)

ν2(v, v)2 + s2(v)2
+ i

ν [(v, v)s1(v) − (v, Jv)s2(v)]
ν2(v, v)2 + s2(v)2

.

The imaginary part is bounded by

�(µ) ≤ ν [(v, v)|s1(v)| + (v, Jv)|s2(v)|]
ν2(v, v)2 + s2(v)2

≤ 1
ν

(
|λmax(K)| + λmax(J)|λmax(N̂)|

)
.

��

6. Full Picard iteration

All the results above are for a fixed velocity fieldw in the Oseen equations
(1.2) where, in the experiments,w was chosen to resemble the driven cavity
flow field. The fixed wind was used for convenience but it is somewhat
artificial, since the structure of the solution to (1.1) and of the iterates of (1.3)
will depend on the viscosityν. In this section, we show the results of some
experiments with the full nonlinear Picard iteration, for both discretizations
andh = 1/64.

Table 6.1 shows the average iteration counts required when precondi-
tioned GMRES is used to solve each linear system arising during the non-
linear iteration. For completeness, the number of Picard iterations is also
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Table 6.1. Average inner iteration counts for Picard iteration, with outer iterations in paren-
theses, forh = 1/64

ν
1/20 1/40 1/80 1/160 1/320

MAC 6.5 (4) 9.0 (5) 11.6 (7) 15.6 (9) 22.5 (11)
P2-P1 6.8 (4) 8.3 (4) 9.6 (5) 13.2 (6) 18.1 (7)
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Inner iterations, ν=1/160, h=1/64

Fig. 6.1. Convergence histories of preconditionedGMRES inner iteration for the full Picard
iteration withν = 1/160, P2-P1 discretization,h = 1/64

shown, in parentheses. These tests were run using an “inexact” nonlinear
iteration (1.3), with the stopping criterion for the linear solver tied to the
residual of the nonlinear system. That is, the linear iteration was stopped at
stepk when the linear residual vectorrk satisfied

‖rk‖2 ≤ 10−2‖F (x(m−1)‖2 ,

wherex(m−1) =
(

u(m−1)

p(m−1)

)
andF (x(m−1)) is the nonlinear residual. The

starting iterates werex(0) ≡ 0 for the nonlinear system and the most recent
nonlinear iterate for the linear system.

These results are consistent with what we observed for a fixed velocity
field. In particular, the dependence onν shown in Table 6.1 is essentially the
same as that depicted in Table 2.1. Similar results are also given in [14]. The
lower iteration counts are due to the less stringent stopping criterion. Further
comparison is provided by Fig. 6.1, which shows the complete convergence
histories of the linear solves for one problem, withν = 1/160 and theP2-P1
discretization. This data is typical of the results for all the problems. Except
in the first nonlinear step, which requires a Stokes solve, there is a latency
exactly like that observed above (Fig. 2.2).
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7. Concluding remarks

Thepurposeof this studywas toexplore thepropertiesof thepreconditioning
operator (1.5) proposed by Kay and Loghin, and to explain its behavior for
the steady-state Navier-Stokes equation. Our results indicate that the eigen-
values of the preconditioned operator determine the convergence properties
of preconditioned GMRES. Eigenvalue distributions and convergence rates
are independent of discretization mesh size, and a small,ν-dependent num-
ber of outlying eigenvalues lead to some dependence of performance on
ν−1.

We conclude with a few comments on issues not explored here. First, we
have not considered algorithmic costs. An iterative solver using this precon-
ditioner can be constructed with building blocks consisting of a convection-
diffusion solver (forP−1

F ), a Poisson solver (forA−1
p ), a solver for the pres-

sure mass matrix (i.e., forM−1
p ), and various matrix products. The latter

two operations have negligable costs, and if fast algorithms such as multi-
grid or domain decomposition are used for the other tasks, then the cost per
step of the complete iteration will be low. Kay and Loghin [14] showed that
use of such inner iterations leads to performance consistent with that of the
“exact” preconditioner. In addition, although we have restricted our atten-
tion to GMRES for the Krylov subspace method, we expect other solvers to
perform well also.

Finally, this study has been limited to the steady-state problem. For evo-
lutionary problems, the same solution algorithm can be applied at each step
of a time-implicit iteration. Results in [22] suggest that in this setting, for
small enough time steps, iteration counts appear to be independent of the
viscosity.
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