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BLOCK PRECONDITIONERS BASED ON APPROXIMATE
COMMUTATORS∗
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Abstract. This paper introduces a strategy for automatically generating a block precondi-
tioner for solving the incompressible Navier–Stokes equations. We consider the “pressure convection–
diffusion preconditioners” proposed by Kay, Loghin, and Wathen [SIAM J. Sci. Comput., 24 (2002),
pp. 237–256] and Silvester, Elman, Kay, and Wathen [J. Comput. Appl. Math., 128 (2001), pp. 261–
279]. Numerous theoretical and numerical studies have demonstrated mesh independent convergence
on several problems and the overall efficacy of this methodology. A drawback, however, is that it
requires the construction of a convection–diffusion operator (denoted Fp) projected onto the discrete
pressure space. This means that integration of this idea into a code that models incompressible
flow requires a sophisticated understanding of the discretization and other implementation issues,
something often held only by the developers of the model. As an alternative, we consider automatic
ways of computing Fp based on purely algebraic considerations. The new methods are closely related
to the “BFBt preconditioner” of Elman [SIAM J. Sci. Comput., 20 (1999), pp. 1299–1316]. We use
the fact that the preconditioner is derived from considerations of commutativity between the gra-
dient and convection–diffusion operators, together with methods for computing sparse approximate
inverses, to generate the required matrix Fp automatically. We demonstrate that with this strategy
the favorable convergence properties of the preconditioning methodology are retained.
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1. Introduction. Recently, the development of efficient iterative methods for
the fully implicit solution of the Navier–Stokes equations has seen considerable ac-
tivity. In this paper, we consider a promising class of methods (denoted pressure
convection–diffusion preconditioners) proposed by Kay, Loghin, and Wathen [11]
and Silvester, Elman, Kay, and Wathen [16]. These preconditioners are designed to
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solve linear systems associated with the incompressible Navier–Stokes equations

αut − ν∇2u + (u · grad)u + grad p = f
−div u = 0

in Ω ⊂ R
3,(1.1)

where u are the velocities, p are the pressures, and u satisfies suitable boundary
conditions on ∂Ω. The value α = 0 corresponds to the steady-state problem, and
α = 1 to the transient case. Linearization and stable discretization (discussed in
section 2) yield systems of equations of the form

(
F G
D 0

)(
u
p

)
=

(
f
g

)
,(1.2)

where G and D are discrete gradient and (negative) divergence operators, respectively,
and F contains all other terms coming from the linearized momentum equation and
time derivatives. These systems, which are the focus of this paper, must be solved at
each step of a nonlinear (Picard or Newton) iteration or at each time step.

The pressure convection–diffusion preconditioner is based on an approximate
block factorization of (1.2). The key to attaining mesh independent convergence
lies with the effective approximation of the inverse of the following operator:

S = DF−1G.(1.3)

S is the Schur complement of (1.2) and is obtained by algebraically eliminating the
velocity equations. Most effective block preconditioners for (1.2) must approximate
the inverse of the Schur complement in some fashion. The presence of the term F−1

between the rectangular operators D and G makes S prohibitively expensive to com-
pute and almost completely dense. The pressure convection–diffusion preconditioner
can be viewed as a way to approximate (1.3) by an expression in which the inverse
term is moved (or commuted) so that it no longer appears between the two rectangular
operators. This approximation takes the form

S ≈ Ŝ = DGF−1
p ,(1.4)

where Fp is a discrete convection–diffusion operator defined on the discrete pressure
space. This operator will be discussed in detail in section 2.

This idea requires the explicit construction of the matrix Fp. In all previous work
on these schemes, this operator has been constructed using a discretization consistent
with that used for the pressure term of the Navier–Stokes equations. For example, if
linear finite elements are used to discretize the pressures in (1.1), then Fp is defined
using the same basis. Although most codes used to model incompressible flow have
the primary kernels needed for such a construction, this places a significant burden
on a potential user of this methodology, something not found in standard algebraic
preconditioners.

Our aim in this study is to rectify this situation, and to enable the preconditioning
methodology derived from (1.4) to be available to users in “black-box” fashion requir-
ing nothing more than a statement of the problem (1.2). This is achieved using the
property of commutativity alluded to above. Specifically, we derive an approximate
solution to the algebraic problem

GFp ≈ FG,(1.5)
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where Fp must be determined given G and F . This is accomplished by considering a
least-squares approximation to (1.5). We show how this leads to a natural interpreta-
tion of the related “BFBt algorithm” [6]. We also illustrate how the above commutator
equation can be modified to incorporate diagonal scaling and how proper scaling is
critical to obtaining satisfactory convergence rates. In one algebraic variant, sparse
approximate inverse ideas are adapted to the above commutator strategy. We present
this approach in section 4, where we give a specific algorithm based on the methods
of Grote and Huckle [9]. In section 5, numerical results are given to illustrate the
competitiveness of the automatically computed pressure convection–diffusion precon-
ditioner with the original version of this approach [11, 16] (which requires the user to
provide the matrix Fp) in terms of convergence speed.

2. The pressure convection–diffusion preconditioner. We are concerned
with the incompressible form of the Navier–Stokes equations given by (1.1). Our
focus is on solution algorithms for the systems of equations that arise after lineariza-
tion of the system (1.1). We will restrict our attention to a Picard iteration for the
nonlinear system, derived by lagging the convection coefficient in the quadratic term
(u · grad)u. For the steady-state problem, this lagging procedure starts with some
initial guess u(0) (satisfying the discrete incompressibility constraint) for the veloci-
ties and then computes the kth Picard iterate for velocity and pressure by solving the
Oseen equations

−ν∇2u(k) + (u(k−1) · grad)u(k) + grad p(k) = f ,
−div u(k) = 0.

(2.1)

For transient problems, a strategy of this type can be combined with an implicit time
discretization; see [17, 18].

A stable finite difference, finite volume, or finite element discretization of (2.1)
leads to a linear system of equations of the form (1.2) which must be solved at each step
of the Picard iteration. For the steady problem, the matrix F has block diagonal form
in which each individual diagonal block consists of a discretization of a convection–
diffusion operator

−ν∇2 + (w · grad) ,(2.2)

where w = u(k−1). For the transient problem, the blocks of F represent discretizations
of an operator essentially of the form

1

Δt
I − ν∇2 + (w · grad) ,(2.3)

which arises from an implicit time discretization of the time-dependent convection–
diffusion equation.

The strategy we employ for solving (1.1) is derived from the block factorization

(
F G
D 0

)
=

(
I 0

DF−1 I

)(
F G
0 −S

)
,(2.4)

where S = DF−1G is the Schur complement. This implies that

(
F G
D 0

)(
F G
0 −S

)−1

=

(
I 0

DF−1 I

)
,(2.5)
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which, in turn, suggests a preconditioning strategy for (1.1). If it were possible to use
the matrix

Q =

(
F G
0 −S

)
(2.6)

as a right-oriented preconditioner, then the preconditioned operator would be the one
given in (2.5). All the eigenvalues have the value 1, and it can be shown that this
operator contains Jordan blocks of dimension at most 2, and consequently that at
most two iterations of a preconditioned GMRES iteration would be needed to solve
the system [12].

The key bottleneck in applying Q−1 is the action of the inverse Schur comple-
ment operator (DF−1G)−1. In practice, this must be replaced with an inexpensive
approximation. If it were possible to find a matrix Fp that makes (1.5) an equality,
then this would imply that

F−1G = GF−1
p ,(2.7)

which in turn would mean S = S̃ in (1.4). In general, (1.5) is an overdetermined
system (with range(G) a proper subset of range(F )), so it is not possible to find such
an Fp. Consequently, we have an approximation in (1.4). Using S̃ = (DG)F−1

p within
a preconditioning operation entails applying the action of the inverse, given by

S̃−1 = Fp(DG)−1.(2.8)

Note that DG is a scaled discrete Laplacian operator, so that working with (2.8) will
require a Poisson solve followed by a matrix-vector product with Fp. For purposes of
efficiency, the action of (DG)−1 is often approximated by an inexact Poisson solver
without any significant degradation in convergence. Thus, application of (2.8) is
inexpensive.

A good approximation can be expected in (1.5) because of the nature of the differ-
ential operators associated with the matrices. In particular, suppose the convection–
diffusion operator

(−ν∇2 + (w · grad))p(2.9)

can be defined on the pressure space (where the subscript p indicates that the operator
is acting on the pressure space). Consider the commutator with the gradient operator,
as follows:

(−ν∇2 + (w · grad)) grad − grad(−ν∇2 + (w · grad))p .(2.10)

If w is constant, then this expression would be zero on the interior of Ω, and it is
also reasonable to expect it to be small for smooth w. This suggests that if Fp is a
discretization of (2.9), then the discrete commutator

FG−GFp(2.11)

will also be small. A similar statement would apply if time derivatives are present: as
in (2.3), discretization in time would add terms essentially of the form 1

ΔtI to both
convection–diffusion operators in (2.10).

In [11, 16], Fp is obtained from discretization of the convection–diffusion operator
of (2.9). In this paper, we develop an automated construction of Fp designed explicitly
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to make the commutator (1.5) small. This removes the process of discretization from
the design of the iterative solution algorithm and enables the preconditioning to adapt
automatically to different discretizations without any intervention on the part of the
designer of a Navier–Stokes code. One of the ideas for approximating (1.5) is to adapt
methods for computing sparse approximate inverses to define sparse approximate
commutators. This will be considered in section 4.

Before exploring sparse approximations, it is worthwhile to consider a classical
normal equations solution to (1.5). In particular, suppose fj , the jth column of Fp,
is computed to solve the least-squares problem with respect to the Euclidean norm

min ‖Gfj − [FG]j‖2 ,

where [FG]j represents the jth column of the matrix FG. This leads to the normal
equations

(GTG)fj = GT [FG]j .

An equivalent formulation is that Fp minimizes the Frobenius norm of the error in
the complete system

min ‖GFp − FG‖F .(2.12)

Thus, the solution is

Fp = (GTG)−1 GTFG.(2.13)

When D = GT (as is normally the case), the resulting Schur complement precon-
ditioner becomes

(GTG)−1GTFG(GTG)−1.(2.14)

This corresponds exactly to the BFBt preconditioner proposed in [6] and also in [15].
This method can be considered as an alternative to the pressure convection–diffusion
preconditioner; it is of particular interest for Newton’s method, for which (in contrast
to Picard iteration) it is difficult to derive a discretization of (2.9) that will make
(2.11) small. We should also point out that the original derivation of the BFBt
preconditioner is considerably different from the viewpoint given here. The notion
of the normal equations solution to (1.5) is in our opinion more intuitive than the
description given in [6] and provides additional insight into this preconditioner. From
this perspective, however, the approximate solution of the commutator equation is
certainly not a new idea, as it has already been done with the BFBt preconditioner.
In effect, we are proposing alternate solutions and modifications to (1.5) that may
have better properties. These modifications will include the use of diagonal scaling in
(2.12) as well as boundary condition adjustments. It will be shown how these simple
improvements can significantly accelerate convergence. Note also that use of (2.14)
will entail two Poisson solves in each invocation of the preconditioner; it will become
apparent that sparse approximate inverses can be used to eliminate one of these two
solves.

3. Diagonally scaled commutators. The construction of an algebraic com-
mutator need not explicitly rely on the PDE analogue used to derive the pressure
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convection–diffusion preconditioning. This implies that alternative relationships de-
rived from commutators can be explored when developing Schur complement approx-
imations. Consider, for example,

M−1
2 GFp ≈ M−1

2 FM−1
1 G,(3.1)

where M2 and M1 are diagonal matrices. The operator M−1
2 can be thought of as

a weight matrix that transforms (2.12) into a weighted least-squares problem. The
introduction of M−1

1 can be viewed as a way to precondition F and G so that they
are more amenable to commuting. After premultiplying (3.1) by DF−1M2, it is easy
to show that the inverse Schur complement is now approximated by

(DF−1G)−1 ≈ Fp(DM−1
1 G)−1,(3.2)

where

Fp = (GTM−2
2 G)−1GTM−2

2 FM−1
1 G(3.3)

when the normal equations are used to produce an approximate solution to (3.1).
The net effect of “preconditioning” the commutator equation in this way is that a
new definition of Fp is given and the inverse discrete Poisson operator in (2.8) is now
replaced by a discrete variable-coefficient diffusion operator (when M1 is a diagonal
matrix), which can still be effectively handled with solution methods such as multigrid.
In this paper, we will primarily consider choices for M1 and M2 that are based on the
diagonal of the velocity mass matrix. However, before exploring this, it is worthwhile
to consider another choice for M1 and M2 that highlights connections between Fp

solvers and the well-known SIMPLE method [13].

3.1. Diagonal scaling and SIMPLE. One interesting aspect of the diagonally
scaled commutator equation is that it bridges the gap between pressure convection–
diffusion solvers and traditional pressure-correction methods such as SIMPLE [13]. In
particular, the original SIMPLE method is a numerical time marching procedure for
incompressible flow in which the inverse Schur complement is approximated by (D
diag(F )−1G)−1, where diag(F ) is the diagonal matrix whose entries are taken from
the main diagonal of F . When M1 = diag(F ) and Fp is the identity matrix, the right
side of (3.2) is identical to SIMPLE’s approximation of the inverse Schur complement.
In general, Fp will be close to the identity when F diag(F )−1 is close to the identity.
This, in turn, occurs when the entries on the diagonal of F are much larger than the
off-diagonal entries, as is often the case for time-dependent problems with small
time steps. Thus, we can conclude that the Schur complement approximations for the
diagonally scaled commutator and SIMPLE are basically the same in the small time-
step scenario.

The true advantage of the Fp solvers occurs for larger time steps or steady-state
problems. Let A denote the coefficient matrix of (1.2). Consider the new block
preconditioner based on the factorization

Ã ≡
(
F 0
D −D diag(F )−1G

)(
I diag(F )−1G
0 I

)(
I 0
0 F−1

p

)
.(3.4)

This new preconditioner is similar to standard Fp methods with the exception that the
underlying block decomposition is built on SIMPLE’s approximate block factorization
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as opposed to (2.4). It is well known that when Fp is the identity, the LU decompo-
sition given by (3.4) corresponds to SIMPLE’s underlying matrix factorization [14].
By multiplying out matrices, it is easy to show that

Ã =

(
F Fdiag(F )−1GF−1

p

D 0

)

and that the difference between Ã and the discrete incompressible Navier–Stokes
operator, A, of (1.2) is given by

A− Ã =

(
0 (GFp − Fdiag(F )−1G)F−1

p

0 0

)
.(3.5)

It follows once again that the SIMPLE method (where Fp is the identity) will perform
well when G−F diag(F )−1G is small, i.e., when F has relatively large diagonal entries.
On the other hand, comparison of the structure of the nonzero block in the (1, 2) entry
of (3.5) with (3.1), the “preconditioned commutator relation” using M1 = diag(F )
and M2 = I, indicates that the error matrix A− Ã will be small if the commutator is
small, irrespective of the size of the diagonal of F .

3.2. Diagonal scaling and the mass matrix. Replacement of a differential
commuting relationship with an algebraic commuting relationship assumes certain ad-
ditional properties of the discrete operator. If, for example, a finite difference approach
such as the marker-and-cell method [10] is used to discretize the Navier–Stokes equa-
tions, then the relation (2.11) looks very much like its continuous analogue (2.10), and
heuristic justification for the validity of (2.11) comes from Taylor series arguments.
On the other hand, for mixed finite element discretizations with different order el-
ements, such as the stable Q2–Q1 (biquadratic velocity, bilinear pressure) element,
the discrete commutator (2.11) will typically not be small. This does not present a
problem when the required matrix Fp is obtained, as in [11, 16], by constructing a
discrete convection–diffusion operator using the given pressure discretization (bilinear
elements in the example noted above). However, it complicates the construction of
Fp when a purely algebraic approach is used.

To gain insight into this matter, consider the differential operators

L1u ≡ −uxx and L2u ≡ ux

on the one-dimensional domain 0 ≤ x ≤ 1, with periodic boundary conditions.
Clearly, the differential operators formally commute. That is, L1L2 is equivalent
to L2L1. Now let L1 and L2 be the discrete approximations to L1 and L2 obtained
from piecewise linear nodal finite elements

φi(x) =

⎧⎪⎪⎨
⎪⎪⎩

αi
x−xi−1

xi−xi−1
, xi−1 ≤ x ≤ xi,

αi
x−xi+1

xi−xi+1
, xi ≤ x ≤ xi+1,

0 otherwise

and a Galerkin discretization. Here xi denotes the location of the ith mesh point and
αi effectively scales each element in an arbitrary way. Standard nodal elements have
αi = 1 for all i, and it can be shown that on uniform meshes

Ls
1L

s
2 = Ls

2L
s
1 ,
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where the superscript s indicates standard (or unscaled) nodal element discretization.
The use of arbitrary scaling, however, effectively scales the corresponding discrete
operators:

L1 = DαL
s
1Dα and L2 = DαL

s
2Dα,

where L1 and L2 denote discretizations generated with arbitrary scaling and Dα is
the diagonal matrix with αi in the (i, i)th entry. Although L1 and L2 do not commute
for arbitrary scaling, we do have

L1D
−2
α L2 = L2D

−2
α L1,(3.6)

that is, an appropriate scaling enables commutativity.
The example above is artificial, but an analogous strategy can be used to enhance

performance in the setting we are concerned with. In particular, it is possible to
choose a diagonal matrix M1 so that a version of the commutator is small on some
components of the pressure space. For the Q2–Q1 discretization, if M1 is chosen to be
diag(M), the diagonal matrix whose entries are those on the diagonal of the velocity
mass matrix M , then M−1

1 Gq is constant on grid points at the interior of Ω whenever
the nodal vector q comes from a linear function. Moreover, for such q and this choice
of M1, if Fp is a discrete bilinear approximation to (2.9) with constant w, then

(GFp − FM−1
1 G)q = 0 in the interior of Ω.

Thus, we use this strategy for choosing M1. Note that in the example leading to (3.6),
the diagonal of the mass matrix is simply D2

α, and thus this choice of M1 is consistent
with the motivating example.

We will derive an automated version of the pressure convection–diffusion precon-
ditioner in the following section. We conclude here by presenting a variant of the
BFBt method based on this approach. Insertion of the normal equations solution to
(3.1) into (3.2) yields the following approximation to the inverse Schur complement
(assuming D = GT ):

(DF−1G)−1 ≈ (GTM−2
2 G)−1(GTM−2

2 FM−1
1 G) (GTM−1

1 G)−1.

As noted above, M1 is the diagonal of the velocity mass matrix. We take M2 =
sqrt(M1) to make the two variable-coefficient Poisson operators identical. The result-
ing preconditioner, with these choices for M1 and M2, will be referred to as the scaled
BFBt method. It can also be shown that the matrix Fp obtained from the normal
equations for (3.1) corresponds to a convection–diffusion operator in (2.9) for which
the L2-norm of the commutator (2.10), viewed as an operator on the (finite element)
pressure space, is approximately minimized; see [8, Chapter 8] for details. As will be
seen in section 5, the introduction of this diagonal scaling can have a dramatic impact
on the overall convergence of the method.

4. Sparse approximate commutator (SPAC ). One disadvantage of both
the BFBt and scaled BFBt methods is that they require two Poisson-like solves during
each invocation, as opposed to the single solve needed by the pressure convection–
diffusion preconditioners. This implies that the application of the approximate inverse
Schur complement is more costly for BFBt methods than for pressure convection–
diffusion methods.

To alleviate the burden of the additional solve required by BFBt methods, we
consider approximate solutions to (1.5) built on concepts from sparse approximate
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inverses. The resulting method will still require only one invocation of the Poisson
solver per iteration, although there is an additional setup cost associated with building
the sparse approximate inverse. Since sparse approximate inverses are typically used
to approximate the matrix inverse of a square matrix, an adaptation that is suitable
for the rectangular matrix associated with the approximate commutator equation is
considered. We begin by discussing standard sparse approximate inverses.

Sparse approximate inverses were originally developed as preconditioning opera-
tors for sparse matrices; they were designed to be easier to compute and use on parallel
architectures than other preconditioners such as incomplete LU factorizations. Given
a large, sparse matrix A, these methods produce a sparse matrix Q that approxi-
mates A−1. The sparse approximate inverse is inherently parallel and intended to
retain the convergence properties of an incomplete LU factorization. In addition,
sparse approximate inverses are important for situations in which incomplete LU fac-
torizations have difficulties, such as when the factorization encounters a zero pivot
or produces unstable factors [5]. Let A represent a generic matrix of order n, and
let I denote the identity matrix of order n. Typically, sparse approximate inverse
techniques are based on producing a sparse matrix Q that minimizes the Frobenius
norm of the residual matrix

min
Q

‖AQ− I‖F ,(4.1)

which was first suggested by Benson and Frederickson [1, 2]. The residual matrix
minimization reduces to n independent least-squares problems

min
qj

‖Aqj − ej‖2, j = 1, . . . , n,(4.2)

where qj is the jth column of Q and ej is the jth unit vector, i.e., the jth column of
I.

Note that our task is less difficult than that required for construction of sparse
approximate inverses. The key obstacle in the latter setting is picking the proper
sparsity pattern of Q to capture enough of A−1, which is usually dense even when
A is sparse. In our case, it is reasonable to expect that the matrix Fp needed in the
discrete commutator equation is sparse (as we know this to be the case in standard
pressure convection–diffusion preconditioning). Thus we have the simpler task of
computing a sparse approximation to a sparse matrix.

There are several strategies for computing sparse approximate inverses (see, e.g.,
[3, section 5]). Many sparse approximate inverse methods (e.g., Chow [4]) require
iterated applications of matrix-vector products of the form Ar,A(Ar), . . . . The SPAI
algorithm of Grote and Huckle [9] avoids this construction and is natural to apply
in the present setting where a commutator is required for a rectangular matrix. We
call this adaptation SPAC (for sparse approximate commutator). Before discussing
the adaptation of SPAI to commutators, it is important to note that approximate
inverses based on square matrices can also be used by instead considering the normal
equations

(GTM−2
2 G)Fp = GTM−2

2 FM−1
1 G.

In this case, one replaces (4.1) with

min
Fp

‖GTM−2
2 GFp −GTM−2

2 FM−1
1 G‖2

F ,
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which involves square matrices. We do not pursue this further but instead consider
ideas for computing sparse matrices that directly address the commutator relationship.

SPAC is based on replacing (4.1) with

min
Fp sparse

‖G̃Fp − F̃ G̃‖2
F ,(4.3)

where G̃ = M−1
2 G and F̃ = M−1

2 FM−1
1 M2. This reduces to a set of n constrained

least-squares problems as follows:

min
fj sparse

‖G̃fj − bj‖2
2,(4.4)

where bj is the jth column of F̃ G̃ and fj is the jth column of Fp.
Our SPAC algorithm follows the technique of Grote and Huckle [9]. We will use

the following notation: given index sets I, J , let G̃(I,J ) denote the submatrix of G̃
with entries g̃ij , where i ∈ I, j ∈ J ; by analogy with MATLAB, a colon (:) represents
the complete index set {1, . . . , n}. Similarly, for a vector v, v(I) or v(J ) denotes the
subvector of v with entries vi or vj , where i ∈ I and j ∈ J . As in [9], we describe the
algorithm for one column of Fp. We begin by getting an initial sparsity pattern. Let
B be the set of indices of the nonzero rows in bj , let J be the set of indices of nonzero

columns of G̃(B, :), and let I be the set of indices of the nonzero rows of G̃(:,J ). The
algorithm starts by solving the n1 × n2 least-squares problem G̃(I,J )fj(J ) = bj(I),
where n1 = |I| and n2 = |J |. The vector fj obtained by inserting fj(J ) into the
zero vector is the initial approximation to the jth column of Fp. We improve Fp by
augmenting the sparsity structure to obtain a more effective commutator.

As in [9], we accomplish this by reducing the current error ‖G̃Fp − F̃ G̃‖2
F , i.e.,

reducing ‖G̃fj − bj‖2
2 for each column j = 1, . . . , n of Fp. Let the residual r =

G̃fj − bj . If r = 0, then fj is exactly the jth column of the commutator and no
improvement is possible. If r 	= 0, we augment the sets of indices I and J to reduce
‖r‖2. Let R be the set of indices of the nonzero elements of r, and let J̃ be the
set of new column indices that appear in R but not in J . To determine the most
profitable reduction in ‖r‖2, for each k ∈ J̃ we solve the one-dimensional minimization
problem

min
μk

‖r + μkG̃(:, J̃ (k))‖2,(4.5)

whose solution is given by

μk = − (rT G̃(:, J̃ (k)))2

‖G̃(:, J̃ (k))‖2
2

,(4.6)

where J̃ (k) is the kth element of the index set J̃ . For each k, we compute ρk =
‖r + μkG̃(:, J̃ (k))‖2

2, the square of the Euclidean norm of the new residual, us-
ing

ρk = ‖r‖2
2 −

(rT G̃(:, J̃ (k)))2

‖G̃(:, J̃ (k))‖2
2

.(4.7)

We reduce J̃ to the set of indices with the lowest ρk. In particular, we delete from
J̃ the indices whose ρ values are greater than the median of the ρk. We improve J
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by augmenting it with J̃ , J = J ∪ J̃ . I is updated to contain the indices of the
nonzero rows of G̃(:,J ). We then repeat the solution of the least-squares problem
G̃(I,J )fj(J ) = bj(I), updating the elements of fj indexed by J to produce an im-
proved column of Fp. To reduce fill, we drop entries of fj that are less than a given
tolerance.

We stop improving J and the current column of the commutator Fp when we

have achieved sufficient reduction in the error ‖G̃Fp− F̃ G̃‖2
F . The entire algorithm is

given below.

Algorithm 1. SPAC

For each column bj of F̃ G̃:

• Find initial index sets of nonzero rows & columns (I,J ) of G̃
– Let B = indices of nonzero rows in bj
– Let J = indices of nonzero columns of G̃(B, :)
– Let I = indices of nonzero rows of G̃(:,J )

• Set rnorm = 1
• Set reduction = 1
• while(reduction/rnorm > tol1 & rnorm > tol2)

– Let Jprev = J
– Solve the least-squares problem min ‖G̃(I,J )fj(J ) − bj(I)‖2

2 for fj(J )
updating the elements of fj indexed by J

– Compute the residual r = G̃fj − bj
– Set rnorm = ‖r‖2

– Let R = indices of nonzero entries of r
– Let J̃ = the set of new column indices of G̃ that appear in all R rows

but not in J
– For each k = 1, . . . , |J̃ |

∗ Compute μk = (rT G̃(:, J̃ (k)))2/(G̃(:, J̃ (k))T G̃(:, J̃ (k)))
∗ Set ρk = ‖r‖2

2 − μk

– Set reduction = maxk μk

– Improve J by taking the J̃ indices with the smallest ρ. Delete from J̃
the indices whose ρ value is greater than the median value of the ρk. Let
J = J ∪ J̃

– Improve I by setting I = nonzero rows of G̃(:,J )
• Drop entries of fj < drop tol. Let ind = indices of the remaining elements
• Set Fp(Jprev(ind), j) = fj(ind)

The resulting SPAC algorithm is almost identical to the method presented by
Grote and Huckle. Therefore, its cost should be similar to this sparse approximate
inverse algorithm. It is also important to keep in mind that the dimension of the
Schur complement system is only a small fraction of the entire system (often about
one quarter for three-dimensional problems) and that fairly sparse approximations
can be used (as Fp in pressure convection–diffusion preconditioning is sparse). Thus,
it is natural to expect that the cost to construct the SPAC operator (relative to the
cost of solving the entire saddle point system) is considerably less than the setup costs
associated with standard sparse approximate inverses.

5. Results. Numerical experiments are presented for two benchmark problems
in two dimensions: models of flow over a backward facing step and in a lid driven cavity
application. The linear problems were generated by applying a Picard iteration to
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the nonlinear system and stopping this iteration when the nonlinear residual satisfied
∥∥∥∥
(

f −
(
F(u(m))u(m) + Gp(m)

)
g −Du(m)

)∥∥∥∥
2

≤ 10−5

∥∥∥∥
(

f
g

)∥∥∥∥
2

,(5.1)

where F(u)u is the discretization of the nonlinear convection–diffusion operator,
−ν∇2u + (u · grad)u, and g comes from boundary data. At each Picard step m,
the Oseen equations (1.2) are solved for a correction to the current iterate; the right-
hand side of the linear system is the nonlinear residual given on the left of (5.1).
The numbers reported correspond to the total number of GMRES iterations (without
restarting) required to solve the saddle point system associated with the last Picard
iteration, using various preconditioners. The linear iteration was stopped when the
residual of the linear system (1.2) satisfied

‖r(k)‖2 ≤ 10−6‖f (m)‖2(5.2)

starting with a zero initial iterate, where f (m) is the current nonlinear residual vector
and r(k) is the residual at the kth linear iteration. The performance of the iterative
solvers was not sensitive to the particular Picard step, and these results are represen-
tative.

All the preconditioners are of the form given by (2.6) where an exact solver
is used for all needed Poisson solves and convection–diffusion solves. The inverse
Schur complement is the only aspect that is varied; preconditioners tested include an
application-provided pressure convection–diffusion preconditioner (i.e., the method of
[11, 16], denoted “Fp” in the tables), BFBt, scaled BFBt (denoted Sc-BFBt), SPAC
Fp without diagonal scaling, and SPAC–M Fp (SPAC using the same diagonal scaling

as scaled BFBt to define F̃ and G̃). For the application-provided pressure convection–
diffusion preconditioner, the matrix Fp is obtained from the convection–diffusion op-
erator that determines F , discretized on the pressure space. Two discretizations were
considered: the Q2–Q1 (biquadratic velocity/bilinear pressure) mixed finite element
discretization [8] and the marker-and-cell (MAC) finite difference discretization [10].
The experiments were done in MATLAB. The Q2–Q1 discretization and all tests of
iterative methods were performed using the Incompressible Flow Iterative Solution
Software package ifiss [7] developed in conjunction with [8].

First, we compare methods on the backward facing step. In this example, a
Poiseuille flow profile (steady horizontal flow in a channel driven by pressure difference
between the two ends) is imposed on the inflow boundary (x = −1; 0 ≤ y ≤ 1), and
a no-flow (zero velocity) condition is imposed on the walls. At the outflow boundary
(x = 5;−1 < y < 1), the Neumann condition

ν ∂ux

∂x − p = 0,
∂uy

∂x = 0
(5.3)

is satisfied and automatically sets the mean outflow pressure to zero [8]. (Here the
velocity vector is u = (ux, uy)

T .) The Q2–Q1 discretization is performed on a uniform
finite element grid, where the grid is set up so that the rectangle enclosing the step
would contain a uniform n × 3n grid of velocity nodes of width h = 2/n. Figure 5.1
shows the velocity field and pressure field for a representative solution to a two-
dimensional backward facing step problem with n = 64.

In Table 5.1 and Table 5.2, the number of GMRES iterations needed to satisfy the
stopping criterion (5.2) are shown for a variety of Reynolds numbers Re = 2/ν, where
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Fig. 5.1. Streamline contours (left) and pressure plot (right) of a Q2–Q1 approximation to a
backward facing step problem with parabolic inflow boundary conditions and natural outflow boundary
conditions with Re = 100 on an underlying 64 × 192 grid.

the viscosity ν is as in (1.1). For the SPAC-generated Fp (both diagonally scaled and
unscaled), we use the following drop tolerances in Algorithm 1: drop tol = 0.1, tol1 =
0.01, and tol2 = 0.1.

Table 5.1

Preconditioned GMRES iterations for backward facing step problem with an underlying 64×192
grid, Q2–Q1 discretization.

Re Fp BFBt Sc-BFBt SPAC SPAC–M
10 30 54 19 55 23
100 42 64 21 76 30
200 47 65 22 86 41

Table 5.2

Preconditioned GMRES iterations for backward facing step problem with an underlying 128 ×
384 grid, Q2–Q1 discretization.

Re Fp BFBt Sc-BFBt SPAC SPAC–M
10 33 82 23 83 32
100 58 104 29 124 39
200 63 106 29 142 60

As the tables illustrate, the standard BFBt method requires noticeably more it-
erations than the application-provided pressure convection–diffusion method. This
type of behavior has been observed by others and has led to the perception that the
BFBt method is largely inferior to the pressure convection–diffusion method. How-
ever, inclusion of diagonal scaling improves the method so that it now significantly
outperforms the pressure convection–diffusion method (often achieving a factor of two
improvement in the number of iterations for higher Reynolds numbers). The tables
further illustrate how the SPAC method somewhat mirrors the behavior of BFBt.
In particular, the nonscaled version does not perform well while the scaled version is
quite competitive with the application-provided pressure convection–diffusion precon-
ditioner. It is also worth noting that these SPAC iterations correspond to relatively
large drop tolerances. We have performed additional experiments with smaller tol-
erances and have noticed only modest reductions in iteration counts. (See also some
comments below on use of larger tolerances.) It should be kept in mind that in the
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Fig. 5.2. Exponentially spaced streamline contours (left) and pressure plot (right) of a Q2–Q1

approximation to a two-dimensional lid driven cavity problem with Re = 500 on a 64 × 64 grid.

limit as the drop tolerance goes to zero, the SPAC methods become identical to the
BFBt methods. Of course, in this limit the computation of the sparse approximate
commutator would be quite costly compared to one using a large tolerance.

Next, we compare preconditioners on the lid driven cavity in two dimensions
using a Q2–Q1 discretization. Specifically, we consider a square region with unit
length sides. Velocities are zero on all edges except the top (lid), which has a driving
velocity of one. The two-dimensional lid driven cavity is a well-known benchmark
for fluids problems and contains many features of harder flows. Figure 5.2 shows a
representative solution.

In Table 5.3 and Table 5.4, the numbers of iterations needed to reduce the initial
residual by 106 are shown for a variety of Reynolds numbers Re = 2/ν; the SPAC
drop tolerances are identical to those used for the backward facing step.

Table 5.3

GMRES iterations for lid driven cavity problem on a 64 × 64 grid, Q2–Q1 discretization.

Re Fp BFBt Sc-BFBt SPAC SPAC–M
100 27 46 21 49 21
500 47 77 34 81 38
1000 70 93 55 98 63
2000 130 131 110 132 119

Table 5.4

GMRES iterations for lid driven cavity problem on a 128 × 128 grid, Q2–Q1 discretization.

Re Fp BFBt Sc-BFBt SPAC SPAC–M
100 27 68 27 73 27
500 43 106 37 127 42
1000 56 125 45 149 65
2000 106 154 85 192 105

In this case, the BFBt results are better relative to the pressure convection–
diffusion method than in the case of the backward facing step. Once again the use
of diagonal scaling improves the BFBt method so that it outperforms the pressure
convection–diffusion method (though not as dramatically as in the backward facing
step problem). Similar to the results for the backward facing step, SPAC and SPAC–
M roughly mirror their BFBt counterparts, and the scaled algebraic methods compare
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quite well with results for the application-provided pressure convection–diffusion pre-
conditioners. We believe that in the large Reynolds number case, lack of accuracy
of the discrete convection–diffusion operators F and Fp hinders the effectiveness of
the pressure convection–diffusion preconditioner; comparison of Tables 5.3 and 5.4
shows that performance of the pressure convection–diffusion preconditioner and of
the scaled algebraic methods improves as the mesh is refined. This is in contrast to
the backward facing step problem where all the preconditioners exhibit some iteration
growth. We suspect that iteration growth on the backward facing step problem (for
all the preconditioners) is associated with the boundary conditions of the Fp system.
This will be explored in our final example.

Next, we verify that similar convergence behavior is exhibited for different dis-
cretizations. Specifically, iterations for a lid driven cavity problem with a MAC dis-
cretization are given in Table 5.5 and Table 5.6. (Here the problem is posed on
[0, 1] × [0, 1] and Re = 1/ν.) In this case, scaled versions of BFBt and SPAC are not
considered, as all the velocity basis functions effectively have the same scaling. That
is, the equivalent of the mass matrix for the MAC scheme has a constant diagonal and
so the introduction of M1 and M2 does not change the method. In the last column of
these tables (SPACbc), we consider a further modification to the matrix Fp produced
by SPAC so that the boundary conditions correspond to those in the application-
provided version of Fp. In particular, for problems such as the lid driven cavity with
enclosed flow, it is standard for the application-provided method to enforce Neumann
boundary conditions when discretizing the convection–diffusion operator on the pres-
sure space. For problems such as the backward facing step where both inflow and
outflow conditions are present the situation is somewhat more complicated [8]. Un-
fortunately, the SPAC preconditioner does not automatically reproduce the proper
boundary conditions. This should not be surprising as the notion of commuting does
not apply at the boundaries. This implies that the algebraic commuting equation is
not satisfied near boundaries and therefore the computed Fp stencil at the boundaries
may not be best. To mimic Neumann boundary conditions, the diagonal of the SPAC
Fp is modified so that the row sums are identically zero.

Table 5.5

Preconditioned GMRES iterations for lid driven cavity problem on a 64 × 64 grid, MAC dis-
cretization.

Re Fp BFBt SPAC SPACbc
10 15 18 21 15
100 26 25 30 23
1000 54 42 51 50

Table 5.6

Preconditioned GMRES iterations for lid driven cavity problem on a 128 × 128 grid, MAC
discretization.

Re Fp BFBt SPAC SPACbc
10 16 22 27 15
100 26 32 39 24
1000 57 53 65 54

Once again the results indicate that both the BFBt and the SPAC precondi-
tioners are competitive with the application-provided pressure convection–diffusion
preconditioner. Further, the inclusion of the boundary modification to SPAC ’s Fp
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yields an additional reduction in the number of required iterations, with boundary-
modified SPAC performing better than the application-provided version of the pres-
sure convection–diffusion method. More importantly, the SPACbc method appears to
exhibit mesh independent convergence while mesh independence is less clear for the
other two algebraic algorithms. Given this impact on convergence, further study of
boundary conditions within these preconditioners needs to be explored.

We conclude this section with some observations on the costs, in CPU time, of
the SPAC preconditioning. It has been observed [4] that the setup cost may be signif-
icant when computing a sparse approximate inverse with a dynamically determined
sparsity pattern. We have observed a similar phenomenon in computing SPAC. As
with standard sparse approximate inverses, the cost can be significantly reduced for
the SPAC algorithm if a predetermined sparsity pattern is employed. As we recall
from section 4, the basic computational task involves the solution of the least-squares
problem min ‖G̃(I,J )fj(J )−bj(I)‖2

2, where bj is the jth column of F̃ G̃ and fj is the
jth column of Fp to be computed. Instead of dynamically determining the index sets,
I and J , as in section 4, we can simply define I to be the set of nonzero row indices
in bj and J to be the set of nonzero column indices in G(I, :). The least-squares
problem is then solved without any additional computation to reduce the size of the
residual commutator. This algorithm may not lead to as accurate a construction of
the commutator, but it tends to perform almost as well and is significantly cheaper
than the construction given in Algorithm 1.

Table 5.7 shows the iteration counts and timings using the simplified version of the
SPACbc preconditioner for the driven cavity problem using a MAC discretization on a
128×128 grid. For the sake of comparison, timings for the application-provided pres-
sure convection–diffusion preconditioner are also provided. These data were obtained
in serial on a 3.20GHz Intel Xeon processor using the GMRES algorithm provided by
MATLAB; the factors of F and GTG used by the preconditioners were computed once
and used throughout the iterations. The SPACbc iteration counts should be compared
with those of Table 5.6. It is evident that this variant of the SPAC preconditioner is
competitive with that defined by Algorithm 1 (in terms of iteration counts), and the
overhead associated with computing the preconditioner is small.

Table 5.7

Comparison of CPU times and iterations for simplified SPAC preconditioning, on a 128 × 128
grid, MAC discretization.

Fp SPACbc
Re Iters Time Build time Iters Time
10 16 37.40 7.17 16 37.46
100 26 60.56 7.45 25 58.53
1000 57 131.61 6.90 55 127.42

6. Conclusions. Variants of the pressure convection–diffusion preconditioning
have been considered for the solution of the linear systems associated with the incom-
pressible Navier–Stokes equations. Standard versions of this method require users to
provide a discretization of a convection–diffusion equation over the pressure space.
Although kernels needed for this discretization are available within most applica-
tion codes, the additional burden of supplying this somewhat unnatural operator,
denoted Fp, can be quite cumbersome. As an alternative, we have considered the
use of an algebraic commuting relationship to determine the Fp operator automati-
cally. We have shown that automatic techniques for generating Fp compete quite well
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with application-provided pressure convection–diffusion methods in terms of conver-
gence rates. These automatic methods are based on solving an algebraic commuting
equation in a least-squares sense.

Two solution strategies to the commuting equation have been considered. The
first centers on the normal equations and actually corresponds to a new interpretation
of the BFBt method. This new interpretation is somewhat more natural than that
given in the original paper proposing the BFBt method. Further, this new perspective
leads to a diagonally scaled variant of the BFBt preconditioner. This diagonal scaling
is based on the diagonal of the mass matrix associated with the velocity equations
and yields significantly improved convergence rates for the method. Overall, the diag-
onally scaled BFBt method converges in a similar fashion to the application-provided
pressure convection–diffusion method and actually outperforms it many times. It
should, of course, be kept in mind that applying a BFBt method is more costly than
an application-provided pressure convection–diffusion method, because two Poisson
solves and one convection–diffusion solve are required for each preconditioner invoca-
tion as opposed to only one Poisson solve and one convection–diffusion solve for the
pressure convection–diffusion preconditioning. The significance of this extra Poisson
solve is often quite modest, however, as the convection–diffusion system is much larger
than the Poisson system and frequently dominates the run time.

The second solution strategy for the commuting equation builds on sparse ap-
proximate inverse techniques. Each column of Fp is built independent of every other
column. The basic idea is to identify a sparsity pattern within each column and solve
a local least-squares problem to minimize the error in the residual of the commuting
equation. To some extent, this method can be viewed as an approximation of the
BFBt methods. The main advantage of the sparse approximate commutator, SPAC,
computed in this way is that it requires one Poisson solve per preconditioner invoca-
tion similar to the application-provided pressure convection–diffusion methods. Thus,
the cost per iteration should be nearly identical for the SPAC and the application-
provided pressure convection–diffusion methods. Numerical results have been given to
illustrate how this method also competes quite effectively with application-provided
pressure convection–diffusion preconditioners.
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