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Deterministic models of fluid flow and the transport of chemicals in flows in heterogeneous porous me-
dia incorporate partial differential equations (PDEs) whose material parameters are assumed to be known
exactly. To tackle more realistic stochastic flow problems, it is fitting to represent the permeability coeffi-
cients as random fields with prescribed statistics. Traditionally, large numbers of deterministic problems
are solved in a Monte Carlo framework and the solutions are averaged to obtain statistical properties
of the solution variables. Alternatively, so-called stochastic finite-element methods (SFEMs) discretize
the probabilistic dimension of the PDE directly leading to a single structured linear system. The latter
approach is becoming extremely popular but its computational cost is still perceived to be problematic
as this system is orders of magnitude larger than for the corresponding deterministic problem. A sim-
ple block-diagonal preconditioning strategy incorporating only the mean component of the random field
coefficient and based on incomplete factorizations has been employed in the literature and observed to
be robust, for problems of moderate variance, but without theoretical analysis. We solve the stochas-
tic Darcy flow problem in primal formulation via the spectral SFEM and focus on its efficient iterative
solution. To achieve optimal computational complexity, we base our block-diagonal preconditioner on
algebraic multigrid. In addition, we provide new theoretical eigenvalue bounds for the preconditioned
system matrix. By highlighting the dependence of these bounds on all the SFEM parameters, we illus-
trate, in particular, why enriching the stochastic approximation space leads to indefinite system matrices
when unbounded random variables are employed.

Keywords finite elements; stochastic finite elements; fast solvers; preconditioning; multigrid.

1. Introduction

Fluid flow and the transport of chemicals in flows in heterogeneous porous media are modelled mathe-
matically using partial differential equations (PDES). In deterministic modelling, inputs such as material
properties, boundary conditions and source terms are assumed to be known explicitly. Such assumptions
lead to tractable computations. However, simulations based on such over-simplifications cannot be used
in practice to quantify the probability of an unfavourable event such as, say, a chemical being transported
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at a lethal level of concentration in groundwater. If the input variables for the system being studied are
subject to uncertainty, then it is fitting to represent them as random fields. Solutions to the resulting
stochastic PDEs are then necessarily also random fields. Strategic decision making cannot be made
without some form of uncertainty quantification. Typically, a few moments of the solution variables are
required, or the probability distribution of a particular quantity of interest.

We focus on the case of uncertainty in material properties. The simplest and most commonly em-
ployed way of dealing with this is via the Monte Carlo Method (MCM). Large numbers of realizations
of the random system inputs are generated and each resulting deterministic problem is solved using the
available numerical methods and solvers. Results are post-processed to determine the desired statistical
properties of the solution variables. Care must be taken, however, to ensure that enough realizations are
generated so that the probability space is sampled appropriately. The exact number of trials required
depends on the problem at hand but hundreds of thousands of experiments are not untypical for realistic
flow problems with large variance. Easy access to parallel computers makes this feasible in the 21st
century. Quasi MCMs and variance reduction techniques can be used to reduce the overall number of
trials, making this technology even more competitive. However, minimizing the computational cost of
solving each deterministic problem is still a crucial and non-trivial step.

An alternative approach, pioneered@manem & Spanof003, couples a Karhunen—kwe (KL)
expansion of the random field coefficients in the stochastic PDE with a traditional finite-element dis-
cretization on the spatial domain. The stochastic dimension of the problem is discretized directly. The
advantage of this so-called stochastic finite-element method (SFEM) is that a single linear system needs
to be solved. However, this is orders of magnitude larger than the subproblems solved in the MCM. The
components of the discrete solution are coefficients of a probabilistic expansion of the solution variables
which can easily be post-processed to recover the mean, variance and probability distribution of quanti-
ties of interest. SFEMs are becoming increasingly popular but their computational cost is perceived to
be high. The linear systems in question are, however, highly structured and researchers have been slow
to take up the challenge of solving them efficiently. Initial attempts were ma@hanem & Kruger
(1996 andPellissetti & Ghanenf2000. More recently, a fast and efficient linear algebra for alternative
SFEMs (sed®ebet al, 200% Babwska & Chatzipantelidis2002 Babwskaet al, 2004 has been pro-
posed by linear algebra specialists (&@ermannet al,, 2007 Elmanet al,, 2005a ElIman & Furnival
2007 and fast solvers and parallel computer architectures have been exploedsr(2003 2004
andKeese & Matthieg2002 2003.

We focus on the numerical solution of the steady-state diffusion problem which, in its deterministic
formulation, is written as

—V.KVu=f, inDcRY,
u=g, onoDp #40,
KVu-fi=0, onoDy =6D\oDp. (1.1)

The boundary-value problen.Q) is the primal formulation of the standard second-order elliptic prob-

lem and provides a simplified model for single-phase flow in a saturated porous medium (Rigssek

& Wheeler, 1983 Ewing & Wheeler 1983. In that physical setting) andg = K Vu are the residual
pressure and velocity field, respectivel§.is a prescribed scalar function ordax d symmetric and
uniformly positive-definite tensor, representing permeability. Since the permeability coefficients of a
heterogeneous porous medium can never, in reality, be known at every point in space, we consider, here,
the case wher& = K (X, w) is a random field. We assume only statistical propertigs of
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To make these notions precise, (&, £, P) denote a probability space whefs £, andP are
the set of random events, the minimalalgebra of the subsets @ and an appropriate probability
measure, respectively. Théq(X, ) : D x Q — R. For a fixed spatial locatior € D, K(-, w) is a
random variable, while for a fixed realizatiane Q, K (X, -) is a spatial function irx. The stochastic
problem then reads: find a random fiel(k, w) : D x 2 — R such thatP-almost surely

— V. K& 0)VuX, 0)=f(X), %eD,
u(X,w) =g(X), X e aDp,
K (X, @) Vu(X, ) - i =0, X € 0DN = 0D\aDp, (1.2)

where f (X) andg(X) are suitable deterministic functions. The source tdrrwan also be treated as a
random field in a straightforward manner (d€lenanet al, 2005a Deb et al., 2001) but we shall not
consider that case.

1.1 Overview

The focus of this work is the design of fast solvers fbrZ. In Section2, we summarize the classi-

cal spectral SFEM discretization fro@hanem & Spanof2003 and discuss some modelling issues
that affect the spectral properties of the resulting linear systems and ultimately the solver performance.
We highlight the structure and algebraic properties of the resulting linear system and implement the
block-diagonal preconditioning scheme advocate@ivanem & Kruge(1996. For the subproblems,
however, we replace the traditional incomplete factorization schemes u&dthitem & Kruge1996

and Pellissetti & Ghanenf2000 with a black-box algebraic multigrid (AMG) solver. We also com-
pare the computational effort required with that of traditional MCMs. Our main contributions, namely
the derivation of key properties of the finite-element matrices and eigenvalue bounds for the precondi-
tioned system matrices, are presented in Se@&idrhe bounds are shown to be tight for test problems
commonly used in the literature. Numerical results are presented in Sdction

2. Spectral SFEMs for the steady-state diffusion problem

SFEMs can be divided into two categories: non-spectral and spectral methods. The forni2el{see
etal, 200 Elmanet al., 20053 achieves a prescribed accuracy via polynomial approximation of a fixed
degree on an increasingly fine partition of a probability range space. The latter requires no such formal
partition and error is reduced by increasing the degpe®f polynomial approximation. The methods
can be further subcategorized according to the choice of stochastic basis functions (orthogonal, as in
Ghanem(1998, doubly-orthogonal as iBabwskaet al. (2004, etc.) We focus on the classical spectral
method outlined inGhanem & Spano§2003 and employ a standard orthogonal polynomial chaos
basis. The main advantage is that the dimension of this space grows more slowly than for other choices
(seeBabuskaet al. (2004 or Debet al. (2007) for alternatives). However, the stochastic terms are fully
coupled and this is much more challenging for solvers. For notational convenience, we illustrate the
derivation of the spectral SFEM equations for the case of homogeneous Dirichlet boundary conditions
only. This derivation is completely standard and full details can be fou@hemem & Spano&003,
Debet al. (2001, Babwska & Chatzipantelidi§2002 andBabuskaet al. (2004).

If the coefficientK (X, w) is bounded and strictly positive, i.e.

0 <ki <KX w) <k <400, a.e.inD x Q, (2.1)
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then (L.2) can be cast in weak form in the usual way, and existing theory (i.e. the classical Lax—Milgram
lemma) can be used to establish existence and uniqueness of a solution. In the present stochastic setting,
the idea is to seek a weak solution in a Hilbert spate= H(}(D) ® L2(Q), consisting of tensor
products of deterministic functions defined on the spatial domain and stochastic functions defined on
the probability space.

In order to set up variational problems, some notation is first requiredXLeé a real random
variable belonging t¢2, 2 , P) and assume that there exists a density fungtio®® — R such that
the expected value can be expressed via the integral

(X) :/ Xp (X)dX.
R

If (X) < oo, thenX e L1(Q). The spacd.?(D) ® L2(Q) = {v(X,w) : D x 2 — R||jv| < oo}
consists of random functions with finite second moment where the fieiphis defined via

lo(X, w)||? = </D 02(X, cu)d)?>. (2.2)

Next, we define/ = {v(X,w) : Dx Q2 — R |jo|lv < o0, v]|spxe = 0}, where the ‘stochastic energy’
norm| - ||v is defined via

lo(X, w)|13 = </ K(%,w)|vu(>%,m)|2d>z>. (2.3)
D

If condition (2.1) holds, then the norm is well defined and it can be shown that there exists a unique
u = u(X, w) € V satisfying the continuous variational problem

</ KX, ) Vu(X, o) - Vo(X, w)d)?> = </ f X)X, w)d)?> Yo(X,w) e V. (2.4)
D D

To convert the stochastic probler®.4) into a deterministic one, we require a finite set of random
variables{&) (w), .. ., v ()} that represent appropriately and sufficiently the stochastic variability of
K (X, w). One possibility is to approximaté (X, w) by a truncated KL expansion, a linear combination
of a finite set of uncorrelated random variables. We discuss this in SextioAfter formally replac-
ing K (X, ) by Kw (X, &), it can be shown that the corresponding solution also has finite stochastic
dimension and the variational problet4) can be restated as follows: find= u(X, E) e W satisfying

/ @ / K (%, VUK, &) - Vuo(X, Edi dE = / @) / fRwE O (2.5)
I D I D

Y w(X, Z‘) e W. Here,p(E) denotes the joint probability density function of the random variables and

I' = I1 x---x Iy is the jointimage of the random vectbrA key point is that if the random variables

are mutually independent, then the density function is separablp((f.)e.: p1(&1) - p2(E2) -+ - pm (Em)

and the integrals in25) simplify greatly. Many practitioners use Gaussian random variables because
uncorrelated Gaussian random variables are independent (e@harem & Spang003 or Elman &
Furnival 2007). However, R.1) is not satisfied in this case, so the resulting problém)(is not well

posed. Other authors (s&eb et al, 2003, Elmanet al, 2005a Babwska & Chatzipantelidis2002

work with random variables with bounded images in order to satiafl) @nd introduce independence

as an extra modelling assumption. An approach that leads to well-posed problems without an explicit
assumption of independent variables is giveBabuskaet al. (2007).
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Formally, the spackV differs fromV since the definition of the norm induced by the inner product
in (2.5) is defined in terms of the densip(¢). Hence, to make(5) understood, we define

W = H}(D) ® L2(I") = {w(X, &) € LD x I') | |w(X, &)llw < oo andwlopxr =0} (2.6)

and the energy norm
&1 = [ p@ [ Ku&IvVer. Oz e,

Representing the stochastic behaviourkadX, w) by a finite set of random variables (a form of
model order reduction) can be viewed as the first step in the discretization process. To obtain a fully
discrete version ofd.5), we now need a finite-dimensional subspidec W = Hol(D) Q L2(I"). The
key idea of the SFEM is to discretize the deterministic sridéeD) and the stochastic spat&(I")
separately. Hence, given bases

Xn = sparii (X)}[25  Hg(D), S=spariy; (E)}}El c L3I, (2.7)
which may be chosen independently of one another, we define
WP = Xp® S={0(X,&) € L%(D x I') | v(%,&) € spagp(X)y (), ¢ € Xn, y € S}). (2.8)

We choose the basis fof}, by defining the functions (X) to be the standard hat functions associated
with piecewise linear (or bilinear) approximation associated with a partifipaf the spatial domain
D into triangles (or rectangles). Different classes of SFEMs are distinguished by their choic&s for
In Elmanet al. (20053, Deb et al. (2001 and Babiska et al. (2004, tensor products of piecewise
polynomials on the subdomair$ are employed. In this approach, the polynomial degree is fixed and
approximation is improved by refining the partition Bf The classical, so-called spectral SFEM (see
Ghanem & SpanQ2003 Elman & Furnival 2007 Le Maitre et al., 2003 Sudret & Der Kiureghian
2000 employs global polynomials of total degr@en M random variableg; on I". In this approach,
there is no partition of " and approximation is improved by increasing the polynomial degree. We shall
adopt the latter method.

When the underlying random variables are Gaussian, the spectral approach uses a basis of multidi-
mensional Hermite polynomials of total degrpgetermed the ‘polynomial chaos’ (s&®iener, 1938.
The use of Hermite polynomials ensures that the corresponding basis functions are orthogonal with
respect to the Gaussian probability measure. This leads to sparse linear systems, a crucial property that
must be exploited for fast solution schemes. If alternative distributions are used to model the input
random field, then appropriate stochastic basis functions should be used to ensure orthogonality with
respect to the probability measure they induce {ee% Karniadakis 2003. For example, if uniform
random variables with zero mean and unit variance (having support on the bounded irtef@ak{3])
are selected, Legendre polynomials are the correct choice. Convergence and approximation properties
of the resulting SFEM, when random variables with bounded images are employed, are discussed in
Babwskaet al. (2004).

To illustrate the construction db, consider the case of Gaussian random variables Mitk- 2
andp = 3. ThenSis the set of two-dimensional Hermite polynomials (the product of a univariate Her-
mite polynomial inf; and a univariate polynomial i#p) of degree less than or equal to three. Each basis
function is associated with a multi-index= (a1, a2), where the components represent the degrees of
polynomials in¢; and&,. Since the total degree of the polynomial is three, we have the possibilities



PRECONDITIONING SPECTRAL STOCHASTIC FINITE-ELEMENT SYSTEMS 355

= (0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(0,2),(1,2) and (0, 3). Given that the univari-
ate Hermite polynomials of degrees102, 3 are Ho(x) = 1, Hi(X) = X, Ha(x) = x? — 1 and
Ha(x) = x3 — 3x, we obtain

S=spariy; (©)}}2,
=(1,&,88 1,8 - 38, &, &é, (8 — Dé, &2 — 1, (65 — Dér, & — 35).

Note that the dimension of this space is

I

N;: =1+Z g H(M +r) = MTp'?) .

S=

In the sequel, we provide results for Gaussian random variables and Hermite polynomials, which are
popular with practitioners (seelman & Furniva] 2007 Ghanem & Kruger1996 Ghanem & Spangs
2003 Keesg 2004 Pellissetti & Ghanem2000 as well as bounded, independent uniform random
variables with Legendre polynomials (d8ebet al, 2001, EImanet al,, 20053. Other distributions can
be accommodated in the same framework provided that the correct choice of orthogonal polynomial is
made.

2.1 KL expansion

A random fieldK (X, w) with continuous covariance function
C(X, y) = (KX, ) — (KENK (Y, 0) = (KE)) = 0%(X, y), X,¥eD,

admits a proper orthogonal decomposition (seeve 1960 or KL expansion

K& o) = u+0 D /i, (2.9)

i=1

whereu = (K (X)), the random variableg, &, ...} are ‘uncorrelated’ andli;, ¢ (X)} are the set of
eigenvalues and eigenfunctionsgdk, ). Here,C(-, -) is non-negative definite, the eigenvalues are real
and we label them in descending order> /2 > .... Now we can employ the truncated expansion

M
KX, &)~ Ku(,&) = p+0 D ViG (X4, (2.10)

i=1

for computational purposes ir2.6). This choice is motivated by the fact that quadratic mean square
convergence oKy (X, Z—‘) to K(X, w) is guaranteed aBl — oo. The truncation criterion, and hence

the choice ofM, is usually based on the speed of decay of the eigenvalues |[§d\dar(K)= > 4;.

Hence, in applications where the eigenvalues decay slowly, due to small correlation Iévgtiight

be very large. However, care must be taken to ensure that for the chséh5) is well posed. For

the conventional analysis, we require that the truncated coefficient be strictly positive and bounded, and
thus satisfy

0<ki <KyX,m) <ky<oo a.e.inDx .
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This is not the same a&.Q). In Babuska & Chatzipantelidi§2002), it is shown that we requirk v (X, o)

to converge tK (X, w) uniformly asM — oo. To achieve this, we require tha, ..., &w have uni-

formly bounded images and that the eigenvalues of the covariance function decay sufficiently fast (see
Frauenfeldeet al, 2005. Gaussian random variables have unbounded images, but are widely used by
practitioners, as we previously mentioned, because uncorrelated Gaussian random variables are inde-
pendent and this simplifie® 6). At a discrete level, it often seems that Gaussian random variables are
adequate since, for a fixed variance, it is always possible to choose the paravhetedp so that the

system matrix to be defined if3.4) is positive definite. This is misleading since it is not clear what
solution is being approximated. Indeed, we will show that it is always possible to choose values of
M and p that lead to an indefinite or singular system matrix. Using random variables with bounded
images is not a simple fix, however. Uncorrelated random variables with bounded images are not neces-
sarily independent. Independent random variables are assumed for the standard stochastic finite-element
technology described here. If it is not fitting, however, to assume independence of the random variables,
alternative techniques such as those considerdghlmskaet al. (2007 and Eiermannet al. (2007

should be considered.

2.1.1 Truncated KL expansion.To illustrate the positivity issue, consider the following example. The
covariance function employed lBhanem & Spano&003, Elman & Furnival(2007), andDebet al.
(2007 and in the MATLAB-based code describedSndret & Der Kiureghiarf2000 is

(2.11)

CX,y) = azexp(— X =yil X = YZI) ,

C1 C2

wherec; andc; are correlation lengths and = [—a, a] x [—a, a]. The attraction of working with

(2.1)) is that analytical expressions for the eigenfunctions and eigenvalues exist. To see this, note that
the kernel is separable and so the eigenfunctions and eigenvalues can be expressed as the products of
those of two corresponding 1D problems. Thatdgx) = ci(x1)cf(x2) and 4i = ix%, where the

eigenpairdcl(x1), AL}, and{cJ?(xz), /1]2}‘1?0:1 are solutions to

a
/ exp(—b1[x1 — y1|)Ci(y1)dyr = AEci(x),

—a

a
| exat-balxz = yahFy2ida = £t . (2.12)

—a

with by = ci_l, i =1, 2. Solutions are given iGhanem & Spano®003. Asi increases, the eigenfunc-
tions become more oscillatory. The more random variables we use to reﬂKe(sé&l), the more scales

of fluctuation we incorporate. In Fid, we plot a sample of the eigenfunctions for the case- 1 = c,.

In Fig. 2, we plot three realizations of the corresponding truncated coeffi@eh)(with standard de-
viation ¢ = 0.5. Observe that in one of these realizatiois & 50), the truncated KL expansion is
not strictly positive. This fits with theoretical arguments giverBabuska & Chatzipantelidig2002.

The truncated coefficient is not strictly positive a.eDnx Q. However, if the variance is ‘not large’,

we can still chooséM and p so that the discrete SFEM system has a positive-definite system matrix.
We investigate this issue further in Sectidand4.
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FiG. 2. Realizations oK (X, @) with M = 5,20,50,c1 =1=cp, u = 1,6 =05ands ~ N(0,1),i =1: M.

3. Linear algebra aspects of spectral SFEM formulation

GivenKy (X, E) and bases foKy andS, we now seek a finite-dimensional solutiogfy (X, E) e Wh =
Xh ® Ssatisfying

/ @) / K (%, &) Vnp(X, &) - Vo (%, E)d dE = / @ / FOwEHKE  (3.0)
I D I D

Y w(X, &) e WM. Expanding the solution and the test functions in the chosen basgd)inwe see that

Ne Ny Ne
Unp(X, &) = D> Urspr K ys(©) = D Usys(©), (3.2)
s=1lr=1 s=1

leads to a linear systefiu = fof dimensionNy Nz x Ny Ng with block-structure

A1l Ao ... Ag N; u; il
Az1 A2 ... Ao u, iz

A == . . . . 9 H = . b i - . M (3'3)
AN:1 o ANs2 oo ANgN: Un. iNg
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The blocks ofA are linear combinations d¥l + 1 weighted stiffness matrices of dimensiblp, each
with a sparsity pattern equivalent to that of the corresponding deterministic problem. That is,

M
Ars = (e ©)ws@)Ko+ D (&kyr ©)ys(@)) Kk,

k=1
Ko(i,i)=/D#V¢i(7<)V¢j (X)dX, Kk(i,J)=0\/E/|30k(>?)v¢i(>?)v¢j dx,  (3.4)

wherek = 1 : M andu = (K(X)). Kp contains the mean information of the permeability coefficient,
while the otherKg blocks represent fluctuations. In tensor product notation, we have

M
A=Go® Ko+ D Gk ® Kk, f=g,®f, (3.5)
k=1

where the stochastic matric€ are defined via

Go(r,s) = (wr, ys), Gk(r,s) = (Ckyrys), k=1:M, (3.6)

and the vectorxg;0 and f0 are given byg (i) = , f (|) = fD f (X)¢ (X)dX. Since the stochastic
basis functions are orthogonal with respect to the probab|llty measure of the distribution of the chosen
random variablesGg is diagonal. If doubly orthogonal polynomials are used Baleiskaet al., 2004,

then eachGy is diagonal, so thaA is block-diagonal. This can be handled very easily by sohhizg
decoupled systems of dimensibly. We do not consider that case here.

The block-structure ofA obtained from the spectral SFEM is illustrated in F&y.Many of the
coefficients in the summation ir8{) are zero, due to the orthogonality properties of the stochastic
basis functions (see Sectiéhl), and the matrix is highly sparse in a block sense. In particidar,
occurs only on the main diagonal blocks. It should also be notedAhatnever fully assembled. As
pointed out inGhanem & Kruger(1996, we store onlyM + 1 matrices of dimensiofNy x Ny and
the entries of eaclksy in (3.6). If the discrete problem is well posed, théns symmetric and positive
definite but is ill conditioned with respect to the discretization parameters. We can solve the system

88%%%p 0 o
D u D D D E ul'.l nnugu nl:l
oo oo o o g B3
A & & = .0 o o oo o o By "o, “Bg "o, m,
o u] ooo o a8 CH og o a
o o = o O oo o %o %o 985 o By
o o %o % -
= - o, o, oooo
oo =}
o o =] o nngu nnn
|g . °."8 )
oo o oo a
= o o o o B o,
o o o o og o
o o o ] g
o u] o_ oo o
oo B nunnE I“':'l:l
o u] [=1+] o
a a

FiG. 3. Matrix block-structure (each block has dimensipx Nx), M = 4 with p = 1, 2, 3 (left to right).



PRECONDITIONING SPECTRAL STOCHASTIC FINITE-ELEMENT SYSTEMS 359

iteratively, using the conjugate gradient (CG) method (performing matrix—vector products intelligently)
but a preconditioner is required. We discuss this in Se@i@n

3.1 Matrix properties

We examine first the properties of the stocha&timatrices in 8.6). Each stochastic basis functiw(f)

is the product ofM univariate orthogonal polynomials. That i;zi,(f) = i, C) iy (&2) - - - wiy Em),

where the index into the stochastic basis is identified with a multi-index (i1, ...,im), > is < p,

where p is the total polynomial degree, arM is the number of random variables retained 2iL().

If Gaussian random variables are used, eaglkts) is a univariate Hermite polynomial of degriae If

uniform random variables are more appropriate, we use Legendre polynomials. The ordering of these
multi-indices is not important for the calculations but some simple eigenvalue bounds for these matrices
are obvious if a specific ordering is used.

Using orthogonality of the polynomials and independence of the random variables yields

M

M
Goi. ) = /F i @wi@p&d =[] /F Vi @V E)ps@)dss = [ (w2 @) b
s=1 s

s=1

Gg is a diagonal matrix and is the identity matrix if the stochastic basis functions are normalized. For
example, if Hermite polynomials in Gaussian random variables on the infereal co) are employed,
we obtain

Goi ‘)—]M[ila- s = IM[il b= [yt i i =1, 3.7)
ot o Seds ey =) o, otherwise '
Using, in addition, the well-known three-term recurrence for the Hermite polynomials,
Wit1(X) = Xy (X) — Kyk—1(X) (3.8)

fork =1 : M, we obtain

Gk(i,j):/_Z/_:--/_Z@w(é)w,-(é)p(é)dé
M

s=1,s#k

=1 1 (ms(fs)ms(és))> (wi (GO wi (60)

(T8 s scistdia jo) Gk + DY, if ik = jk — 1,
= (H'sw:l,s;ék is!éis’js)ik!’ if ik = jk +1,
0, otherwise

(T i) ik + D)1, if ik = jk — Landis = js, s={1: M} \ {k},

=1 ([T¥,is), if ix = jx+ 1 andis = js, s={1: M} \ {k},
0, otherwise.
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Due to @.8), Gk has at most two nonzero entries per r@y(i, j) is nonzero only when the multi-
indices corresponding foand j agree in all components except tkth one, where the entries differ by
one. This is true when the basis is built from any set of univariate orthogonal polynomials.

In Section3.2, it will be necessary to have a handle on the eigenvalu@g&Gk or, equivalently,
the symmetrically preconditioned matrices

~ _1 _1
szGoszGoz, k=1:M,

for a fixed value ofp. The next result relies on the well-known fact that roots of orthogonal polynomials
are eigenvalues of certain tridiagonal matrices Getub & Welsch(1969 or a standard numerical
analysis text such &toer & Bulirsch(1980).

LEmMA 3.1 If Hermite polynomials of total degregin M Gaussian random variables are used for

the stochastic basis, the eigenvalueé@f: Gal/szGal/Z, for eachk = 1 : M, lie in the interval
[—Hgff, Hg‘fﬁ, where Hg‘j‘i‘ is the maximum positive root of the univariate Hermite polynomial of
degreep + 1.

Proof. Using the definitions 06 andGg, observe thaGy has at most two nonzeroes per row:

(Myspis) @Dt o o _
’ , k= Jk—landis = js, s={1:M}\ {k},
A i)y (M1 i)
Gk, j)= (1,1
Vst (11 )

| O, otherwise

ifixk = jk+1andis=js, s={1:M}\ {k},

Vik+1, ifigk=jk—1andis = js, s={1:M}\ {k},

0, otherwise

Let M and p be fixed but arbitrary and consider, first, the magix It is possible to choose an ordering
of the stochastic basis functions that cau€asto be block tridiagonal. Recall that the sum of the
multi-index components does not exceedrirst, list multi-indices with first component ranging from
0 to p with entries in the second tdth components summing to zer@, 0, ..., 0), (1,0,...,0), ...,

(p, 0, ...,0). This accounts fop + 1 basis functions. Given the definition G, the leading(p + 1) x

(p + 1) block, namelyTp, 1, is then necessarily tridiagonal

0 1
1 0 42

Tp41 = : (3.9)

5 o
° %
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Next, we list multi-indices with first components ranging from (pte- 1 and with entries in the second
to Mth components that add up to one, but grouped to have the same entries in those components:

(0,0,...,0,1) ©,0,...,,00 ©0,1,...,0,0
(1,0,...,0,1) L0,...,1,0 (1,1,...,0,0)
(p-10,....00) (p-1,0,...,1,00 - (p-1,1,...,0,0)

This accounts fofM — 1) x p basis functionsG; then hasM — 1 copies of a tridiagonal matriXp
defined analogously t®,,1. We continue to order the multi-indices in this way until, finally, we list
multi-indices that are 0 in the first component and in the secorMttocomponents are the same and
have entries that add up f@ Then,G is a symmetric block tridiagonal matrix with multiple copies of
the symmetric tridiagonal matricd$41, Tp, ..., T1 = 0 as the diagonal blocks. The number of copies
of Tpy1 is one and the number of copiesTf, ] = 1: p, that appear is

1 p—j
_— (M —=1+r).
(P—j+Dr 1Y

The eigenvalues abq are the eigenvalues of th&;j }. The eigenvalues of each tridiagonal block are
just roots of a characteristic polynomipj (1) that satisfies the recursio8.g). That is,

Pj+1(2) = (A — 0)pj (1) — (—/1)?Pj—1(2).

Hence,p; (1) is the Hermite polynomial of degreje(seeGolub & Welsch 1969 or Stoer & Bulirsch

198Q Chapter 3). Since the roots of lower-degree Hermite polynomials are bounded by the extremal
eigenvalues of higher-degree polynomials, the maximum eigenvalGe &f the maximum root of the

(p + Dth-degree polynomiaHp 1 or, equivalently, the maximum eigenvaluef, 1. The minimum
eigenvalue is identical to the maximum eigenvalue but with a sign change.

Now, if the basis functions have not been chosen to @yexplicitly as a block tridiagonal matrix,
there exists a permutation matri (corresponding to a reordering of the stochastic basis functions)
such thaG; = P1G1P] is the block tridiagonal matrix described above. The eigenvalués aire the
same as those @ 1. The same argument applies for the other matriégesk = 2 : M. There exists a
permutation matrix so thatGy = PGy PkT is block tridiagonal and whose extremal eigenvalues are
given by those offp 1. O

REMARK 3.2 The above result refers specifically to Gaussian random variables. However, it can be
easily extended to other types of random variables. The stochastic basis is always constructed from a
set of orthogonal univariate polynomials that satisfy a three-term recurrence. iariselways a per-
mutation of a symmetric, block tridiagonal matrix. The characteristic polynomial for the eigenvalues of
each block always inherits the same three-term recurrence as the original set of orthogonal polynomials.
Further discussion and generalization of this point, as well as a discussion of other properties of the
matricesGy, can be found irfErnst & Ullmann(2008.

We specify the result in the case of uniform random variables as follows.
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LEMMA 3.3 If Legendre polynomials of total degrgein M uniform random variables with support
on the bounded symmetric intervat}, y ] are used for the stochastic basis, the eigenvalu€ypfor
eachk = 1 : M, lie in the interval [—Lg‘j’r"i, L’g‘i{], where L’g‘ﬂ is the maximum positive root of the
univariate Legendre polynomial of degrpet 1.
Proof. Follow the proof of LemmaB.1, replacing the definitions 06y and Gk and the three-term
recurrenced.8) by those appropriate to the Legendre polynomials on the interval § . O
For Hermite polynomials Sfi( is bounded by,/p—1 4+ ,/p. This is observed by applying
Gershgorin’s theorem td,41 in (3.9). In contrast, for Legendre polynomialts,’;}ﬁ is bounded by
y independently op. If the uniform random variables have mean zero and unit varianceytker/3.

We now examine the eigenvalues of the matrikgscoming from the spatial discretization.
LEMMA 3.4 LetKp andKy be the stiffness matrices defined %14). If ¢ (X) > 0, where{Ak, ck(X)} is
thekth eigenpair ofp (X, ¥), then

xTKkx
XxTKox

0< %w//lkcﬂ‘i” < < %w//lkcﬂax vx e RM,

WherecE‘in = infyep ck(X) and ™ = supp ck(X) = [lck(X)[loo- Alternatively, if cx(X) is not uni-
formly positive, then

xTKkx
XTKox

o N o N
—;\/Aknck(x)noo < < ;\/Aknck(x)noo vx e RM.

Proof. Given anyx e RNx, define a functiom e X;, viav = > xi¢i (X). If ck(X) > 0, then

o

XTKQ:/ o/ ikek(X)Vo - Vo dD < Z,Mkc{g‘ax/ 1Vo - VodD = —/ kel T Kox,
D M D H

kagz/ o/ kek(X)Vo - Vo dD > EMCL“‘”/ 1Vo - VodD = Z/ZcMxTKox.
D H D u

If u is positive, dividing through by the quanti®/ Kox gives the first result. Now, ifx(X) also takes
on negative values, we have

IXTKkX| = o /7 / () Vo - Vo dD‘ < 2 Vi) 10X Kox.
D H
Arguing as in the first case gives the second result. O

3.2 Preconditioning

When the global matribA is symmetric and positive definite, we can use the CG method as a solver.
However, the system is ill conditioned and a preconditioner is requirdekellissetti & Ghanen2000
andGhanem & Kruge(1996), it is noted that if the variance &€ (X, ) is small, then the preconditioner

P composed of the diagonal blocks Af i.e.

P =Go® Kp, (3.10)
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is heuristically the simplest and most appropriate choice. Working under the assumption that the variance
is ‘sufficiently small’ is not suitable for some applications but the user is, in fact, limited to this if
employing Hermite polynomials in Gaussian random variables. In this section, we obtain a theoretical
handle on these observations. First, we explain why preconditioning is required.

LEMMA 3.5 If Gg is defined using Hermite polynomials in Gaussian random variables and piecewise
linear (or bilinear) approximation is used for the spatial discretization, on quasi-uniform meshes, the
eigenvalues ofGo ® Ko) lie in the interval kaih?, uazp!], where u is the mean value ok (X, ),

p is the degree of stochastic polynomidisis the characteristic spatial mesh-size andandas are
constants independentlof M and p.

Proof. If v is an eigenvector 06o with corresponding eigenvalug andu, is an eigenvector oKo

with corresponding eigenvalug, then(Go ® Ko) (v ® vy) = Lex (v ® vy). Using @.7), we deduce
that 1< As < pl. A bound for the eigenvalues ¢fg can be obtained in the usual way, e.g. Béman
et al. (2005h pp. 57-59), to give

-
v, Kov

,uoc1h2 < ﬁ <uaz Vo, € RN,
=X=X

The result immediately follows. O

REMARK 3.6 Note that if the polynomial chaos basis functions are normalized (\withy ) = dij,

then with any choice of random variables, the stochastic mass matrix is the identity matrix and the above
eigenvalue bound is simply:p1h?, uas] and is independent gf. It is always worthwhile normalizing

the basis functions for this reason. We shall assume that this is the case in the sequel.

Now, we can expect the eigenvalues of the global unpreconditioned system n3afjito(be a
perturbation of the eigenvalues G ® Ko.

LEMMA 3.7 If the matricesGk in (3.6) are defined using either normalized Hermite polynomials in
Gaussian random variables or normalized Legendre polynomials in uniform random variables on a
bounded symmetric intervaHy, y], and piecewise linear (or bilinear) approximation is used for the
spatial discretization, on quasi-uniform meshes, then the eigenvalues of the global stiffnesgriratrix
(3.5) are bounded and lie in the intervald¢1h? — d, pa + ], where

M
6 = a20CP% D" VKl lloo,
k=1

Cg“ff is the maximal root of an orthogonal polynomial of degmee- 1, h is the spatial discretization
parameter and; anday are constants independentgfM and p.

Proof. First note that the maximum and minimum eigenvalugs andvmin of

M
((Go ® Ko)+ D (Gk ® Kk))Q = v

k=1

can be bounded in terms of the maximum and minimum eigenvalues of the matrices in the sum. Using
normalized stochastic basis functions, the matriGgsin Lemmas3.1 and 3.3 are the same as the

matricesGg in (3.6). Hence, the eigenvalues &f belong to the symmetric interva#pg‘f{, C’gff],
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whereC'?} is equal toH "2 or L’I‘)‘j}}. Using a similar argument to that presented in Len8rithe

i + p+1 ' " :
e|genvaf)ues oKk, k =1: M, lie in the bounded interval
[0 V212, o /T ®az], if c(X) >0,

[—o VAklIck(X) lootr2, 0/ AklICk(X) lsc2],  Otherwise

Denoting the minimum and maximum eigenvalues @k ® K) by yX.. andyX.,, respectively, and
applying the result of Lemma.5, we have

M M
2 k k
vmin > 1oah? + D 7fin Vmax < 4a2+ D iax
k=1 k=1

Now, noting that the eigenvalues of the Kronecker product of two matrices are the products of the
eigenvalues of the individual matrices, we have, for kny

M M
2 S H
Vmin > pagh® — UOCZCBE% E VAkllek®) loos  Vmax < po2 + O'OCZCg"fi E VAklIek(X) lloo-
k=1 k=1

O
Using the preceding arguments, we can now establish a result that determines the efficiency of the
chosen preconditioner.

THEOREM 3.8 The eigenvaluefj} of the generalized eigenvalue probled = vPXx, where the
matricesGg are defined using either normalized Hermite polynomials in Gaussian random variables
or normalized Legendre polynomials in uniform random variables on a bounded symmetric interval
[—7, 7], lie in the interval [1— 7, 1 + 7], where

M
o >
e = 2P VAWl (3.11)
k=1

o andy are the standard deviation and mearKak, o), {1k, ck(X)} are the eigenpairs ¢f(X, y) and

Cg‘f{ is a constant (possibly) depending pn

Proof. First note that the eigenvalues that we are seeking satisfy) + 1, where

M

> (Go® Ko)™(Gk ® Ki)n = fu.
k=1

Hence, using standard properties of the matrix Kronecker product, and assuming normalized stochastic
basis functions, we have

M
> Gk ® KgKip = bo.
k=1

Now, letKy = Ky K. Applying Lemmass.4, 3.1and3.3, the eigenvalues @By belong to the symmet-

ric interval [—Cg“jf, C?j}], wherecg“jf is equal toH g“ff or L’[‘)‘f_i depending, on the choice of random
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variables, and the eigenvaluestof belong to the interval

g f g o N o N
[;Jﬂcﬂ“'”, ;ﬁkcﬂ“ﬂ or [—;Mnck(x)noo, ;Jﬂnck(x)noo} ,

depending on the positivity afAk(i). Proceeding as in Lemma7, and denoting the minimum and
maximum eigenvalues @y ® Kg by yrlr(ﬂn andy,‘ﬁax, we have, in both cases,

M M M M
g o o N
Omin > D vokin = — D CI= /TlIck®)lloor  Omax < D iax < D, CX—\/Zl| Gk (X) | oo-
k=1 k=1 # k=1 k=1 K
The eigenvalues that we need are the valges 1+ 6;,i =1 : Ny N¢. O

REMARK 3.9 Asou~! — 0, the bound collapses to a single cluster at one. This is intuitively correct,
since the off-diagonal blocks, which are not represented in the preconditioner, become insignificant. For
increasings 11, the upper and lower bounds move away from one. The lower bound may be negative.
Note that whens x~1 is too large, the condition2(1) is violated for even low values dfl and the
unpreconditioned matriA is not positive definite.

REMARK 3.10 The bound depends on the v j{ As we have seen, if Gaussian random variables

are used, this constant grows likép — 1 + ,/p. Hence, the preconditioné? does not improve the
condition_ing ofA with respect tap. If uniform r_qndom variables are_(_employ@g‘ﬁ = L_gj’r"i <y and
so there is no ill-conditioning in the preconditioned or unpreconditioned systems with resjpect to

REMARK 3.11 The bounds are pessimistichh, due to the fact that we have bounded the maximum
eigenvalue of a sum of matrices by the sum of the maximum eigenvalues of the individual matrices (and
similarly with the minimum eigenvalue). The bound is sharp wier= 1 with any p, x andeo (since

then there is no sum) and is tighterlih when the eigenvalues decay rapidly or wleis very small.

For the case = 1, a tighter bound (with respect #d) can be established. We illustrate this below
for Gaussian random variables.

THEOREM3.12 Whenp = 1, for anyM, the eigenvalueg; } in Ax = v Px, whereAandP are defined
in (3.5 and B.10 and the matrice&y are defined as ir3(6) using normalized Hermite polynomials in
Gaussian random variables, lie in the intervaH, 1 + ], where

M 3
r=2 (Z Aknck(i)nio) , (3.12)
A\

o andyu are the standard deviation and mearkdi, w) and{ Ak, ck(X)} are the eigenpairs gf(X, y).

Proof. Whenp = 1, eachGy is a permutation of agM + 1) x (M + 1) block tridiagonal matrixG..

with leading block
T 01
27\1 o
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and all remaining rows and columns filled with zeros. Hence, following the proof of Thed&m

0 Kum Ky
M Km O 0
ZGK®KK= )
k=1 :

Ki O 0

(or some block permutation thereof). It is then a trivial task to show that the eigenvalues of this sum are
either 0 ori,/i(zl'z"zl Klf) or, in other words, the eigenvalues of the matrix

v\
é*®(2 Kg)

k=1

(since the eigenvalues @&, are—1, 0, 1). Using the result of Lemnt4, noting that the eigenvalues
of KE are non-negative, and denoting the maximum eigenvalilg, dfy Vrlr(1ax’ we have

M 3 (M 2
emax<(2(yr§ax>2) <;(szuck(x>n§o) ,
k=1

k=1
1 1
M 2 o M 2
Ormin > — (Z(ynﬁax)z) > - (Z zknck(fouio) .
k=1 k=1

The eigenvalues we need are the valyes 1+ 6;,i = 1 : NyNe. O

REMARK 3.13 The above bound is tighter with respectMaas the sequenchi, A2, ... decays more
rapidly than the sequenggly, +/22, . . .. Unfortunately, for other values qf there is no nice represen-
tation for the sum of matrices in the for@®, ® X for some matrixX that is easy to handle.

We now explore the accuracy of the bounds. In each example below, we list the computed extremal
eigenvalues oP~1 A and the bounds on those eigenvalues calculated using The8r8arsd3.12 For
the stochastic basis, we employ Hermite polynomials in Gaussian random variables.

EXAMPLE 3.14 We consider first the case where the covariance functi@nli$) vitho = 0.1, u = 1,
ci=1=cyandh = %. Computed eigenvalues and their estimated bounds are listed inTlable

ExAMPLE 3.15 Next, we consider the same example but with a very small standard deviatidnO1.
Computed eigenvalues and their estimated bounds are listed inZable

ExamPLE 3.16 Observe what happens when we use a large standard deviatiod.3 and increase

p, the stochastic polynomial degree. In this example, in T&bige also list the extremal eigenvalues

of A. Thus, it can be seen that when Hermite polynomials (with infinite support) are employed, for
fixed values oh, M ands, we can always find a value @f that causes the system matéxand the
preconditioned system matrR—1 A to be indefinite. The eigenvalue bounds in Theor&®and3.12
predict this. Figurel summarizes this for the casé = 1.
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TABLE 1 Example3.14: extremal eigenvalues of B A and bounds on
extremal eigenvalues of BA

M p  vmin(P7IA)  vmad(P71A) Bounds Hoey

1 1 0.9155 1.0845 [0.9151, 1.0849] 1
2 0.8537 1.1463 [0.8529,1.1471] 1.7321
3 0.8028 1.1972 [0.8017,1.1983] 2.3344
4 0.7586 1.2414 [0.7573, 1.2427] 2.8570

2 1 0.9125 1.0875 [0.9037, 1.0963] 1
2 0.8485 1.1515 [0.7743,1.2257] 1.7321
3 0.7959 1.2041 [0.6958, 1.3042] 2.3344
4 0.7502 1.2498 [0.6277, 1.3723] 2.8570

3 1 0.9107 1.0893 [0.8935, 1.1065] 1
2 0.8453 1.1547 [0.6957,1.3043] 1.7321
3 0.7915 1.2085 [0.5899, 1.4101] 2.3344
4 0.7449 1.2551 [0.4981, 1.5019] 2.8570

TABLE 2 Example3.15: extremal eigenvalues of B A and bounds on
extremal eigenvalues of BA

M p vmin(PIA)  vmad(P71A) Bounds Hoey

1 1 0.9916 1.0170 [0.9915, 1.0085] 1
2 0.9854 1.0146 [0.9853,1.0147] 1.7321
3 0.9803 1.0197 [0.9802,1.0198] 2.3344
4 0.9759 1.0241 [0.9757, 1.0243] 2.8570

2 1 0.9913 1.0176 [0.9904, 1.0096] 1
2 0.9849 1.0151 [0.9774,1.0226] 1.7321
3 0.9796 1.0204 [0.9696, 1.0304] 2.3344
4 0.9750 1.0250 [0.9628, 1.0372] 2.8570

3 1 0.9911 1.0089 [0.9893, 1.0107] 1
2 0.9845 1.0155 [0.9696, 1.0304] 1.7321
3 0.9792 1.0208 [0.9590, 1.0410] 2.3344
4 0.9745 1.0255 [0.9498, 1.0502] 2.8570

367

ExamMPLE 3.17 Finally, consider the case where the covariance functiéhig)(witho = 0.1, u = 1,
c1 =10=cyandh = %. Here, the eigenvalues of the covariance functions decay more quickly than in
the first two examples. Eigenvalues of the preconditioned system are listed idTable

In all cases, the extremal eigenvalueskof! A exhibit the behaviour anticipated by the bounds in
Theorems3.8and3.12 They are symmetric about one, increase very slightly \piind retract to one
for small variance. For small values 6f the dependence op is not evident. These results together
with Theorem3.8 tell us that when Gaussian random variables are used, the preconditioned system is
positive definite only when the variance and the polynomial degree are not too large. Now we turn to
the question of implementation and focus on cases whdsepositive definite.
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FIG.4.h = %. Example3.16 eigenvalues oP~1A ¢ = 0.3, M = 1, varyingp.

TAI?LLE 3 Example3.16: extremal eigenvalues of A and™®A and bounds on extremal eigenvalues of
P~A

M Vmin(A) Vmax(A) Vmin(P_lA) 1)max(P_lA) Bounds H 2

P pt1
1 4 0.1080 6.4326 0.2758 1.7242 [0.2720, 1.7280] 2.8570
5 0.0756 6.8636 0.1574 1.8426 [0.1529, 1.8471] 3.3243
6 0.0427 7.2569 0.0493 1.9507 [0.0443, 1.95578.7504
7 —0.1545 7.6206 —0.0506 2.0506 [—0.0561, 2.056]] 4.1445
8 —0.4640 7.9605 —0.1439 2.1439 [—0.150Q 2.1504 45127
2 4 0.1052 6.5085 0.2505 1.7495 —0.1169 2.1169] 2.8570
5 0.0717 6.9464 0.1279 1.8721 —(.2996 2.2996] 3.3243
6 0.0333 7.3450 0.0161 1.9839 —0.4662 2.4662] 3.7504
7 —-0.2725 7.7130 —0.0873 2.0873 [—0.6202 2.6207 4.1445
8 —0.5972 8.0563 —0.1838 2.1838 [-0.7642 2.7642 45127

4. Numerical results

In this section, we present iteration counts and timings for two test problems using Gaussian random
variables. We implement block-diagonal preconditioning with CG. The theoretical results above tell us
that we can expect the iteration count to be independent of the spatial discretization paranaeier,
almost independent gb (polynomial degree) anil (KL terms). It is required, however, in each CG
iteration to approximate the quantiBr, wherer is a residual error vector. Applying the precondi-
tioner therefore requirebl: approximate solutions of subsidiary systems with coefficient matgx

The number of subproblems can be very large for increasirand p. (See Tablé for details.) Fortu-

nately, approximately inverting each of the diagonal blocks of the preconditioner is equivalent to solving
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TABLE 4 Example3.17: extremal eigenvalues of P A and bounds
on extremal eigenvalues of PA

M p vmin(P7TA)  vma(P71A) Bounds Ho

1 2 0.8298 1.1702 [0.8297,1.1703] 1.7321
3 0.7706 1.2294 [0.7704,1.2296] 2.3344
4 0.7192 1.2808 [0.7190, 1.2810]2.8570

2 2 0.8291 1.1709 [0.7961, 1.2039] 1.7321
3 0.7697 1.2303 [0.7252,1.2748] 2.3344
4 0.7182 1.2818 [0.6637, 1.3363]2.8570

3 2 0.8286 1.1714 [0.7626, 1.2374] 1.7321
3 0.7689 1.2311 [0.6800, 1.3200] 2.3344
4 0.7172 1.2828 [0.6084, 1.3916]2.8570

TABLE 5 Values of N (dimension of stochastic basis) for varying M apd

p M=2 M=4 M=6 M=8 M=10 M=15 M=20 M =30
1 3 5 7 9 11 16 21 31
2 6 15 28 45 66 136 231 992
3 10 35 84 165 286 816 1,771 32,736

a standard diffusion problem. Exact solves are too costly for highly refined spatial meshes. However, we
can benefit from our experience of solving deterministic problems by replacing the exact soligs for
with either an incomplete factorization preconditioner (Bedlissetti & Ghanem200Q and Ghanem

& Kruger, 1996 or a multigrid V-cycle. In fact, any fast solver for a Poisson problem is a potential
candidate. Moreover, thl: approximate solves required at each CG iteration are independent of one
another and can be performed in parallel. Crucially, set-up of the approximation to or factorization of
Ko needs to be performed only once.

Below, we implement the preconditioner using both incomplete Cholesky factorization arvtone
cycle of AMG with symmetric Gauss—Seidel (SGS) smoothing to approximately ikyerthe latter
method has the key advantage that the computational cost grows linearly in the problem size. Our partic-
ular AMG code (se&ilvester & Powell2007) is implemented in MATLAB and based on the traditional
Ruge-Siiben algorithm (seBuge & Stiben 1985. No parameters are tuned. We apply the method as a
black box in each experiment. Using geometric multigrid to solve these systems is discuskedrir&
Furnival(2007) andLe Maitreet al.(2003. All iterations are terminated when the relative residual error,
measured in the Euclidean norm, is reduced to®0All computations are performed in serial using
MATLAB 7.3 on a laptop PC with 512MB of RAM.

4.1 Homogeneous Dirichlet boundary condition

First, we reproduce an experiment performedib et al. (2001). The chosen covariance function is
(2.11) with c; = 1 = cp, standard deviatior = 0.1 and mearu = (K (X)) = 1. We solve {.2) on
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D = [-0.5, 0.5]x[—0.5, 0.5] with homogenous Dirichlet boundary condition ahe= 2(0.5—x2—y?).
Post-processing the coefficient blocks of the solution in the spectral expaBs¥pto(recover the mean
and variance of the solution is trivial. Solutions obtained on & 32 uniform spatial grid are plotted in
Fig. 5. The maximum values of the mean and variance obtainediwith= 16, p = 4 andM = 6 are
0.063113 and B3600x 10-9, respectively. Using the SFEM, a single system of dimensién1810

is solved. By way of comparison, in Talbeve record the maximum values of the estimated mean and
variance of the pressure solution obtained using a traditional MCM, Witiealizations ofK (X, ).

The random field inputs were generated using the circulant embedding method desciibetticn

& Newsam (1997, with the same grid used for the spatial discretization. Note that the veire

is sufficiently small in this example that no negative values of the sampled diffusion coefficients are
encountered.

In Table7, we record iteration counts and timings for preconditioned CG applied to the SFEM sys-
tems, with varyinch, M and p. Now we can compare implementations based on incomplete Cholesky
factorization and on our suggested AMG solver. Note that the performance of the former is sensitive to
the choice of drop tolerance parameter and we have not sought to optimize this. The black-box AMG
version of the preconditioning scheme proved to be optimal with respect to the spatial discretization
without tuning any parameters. Indeed, the matfixorresponding to a singé¢-cycle of the AMG
algorithm is a spectrally equivalent approximationkg (see Table8). The maximum eigenvalue of
V~1Kq is one, independently df. The efficiency of this approximation is completely unaffected by the
choice ofp, M and standard deviatian.

The efficiency of both implementations of the block-diagonal preconditioner deteriorates with in-
creasingo 1 L. For fixed u, aso increases, the off-diagonal blocks 8f become more significant
and they are not represented in the preconditioner. Iteration counts, for exact preconditioning, for fixed
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FiG. 5. Mean (left) and variance (right) of pressure on ax322 mesh for the casel = 4 with p = 2.

TABLE 6 Maximum values of sample mean and standard deviation aftexalNzations

N = 100 N = 1,000 N = 10,000 N = 40, 000
Max(sample mean) 0.063608 0.063299 0.063127 0.063134
Max(sample variance) .2611x 1079 2.4065x 107%° 2.2584x 1079 2.3160x 10°%°
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TABLE 7 Preconditioned CG iterations and timings in seconds (set-up + total iterdiines)

Preconditioner h p=2 p=3 p=4
M =4
None 711 19 30 55
i 43 73 139
& 92 161 314
3 188 335 666
Block-diagonal s 10(0.00+0.33)  11(0.00+1.05)  12(0.00 +2.88)
(cholinc, 1x 1073) 3i2 11 (0.02 + 1.23) 13 (0.01 + 4.24) 15(0.01 + 9.42)
& 21(0.10+9.68)  22(0.10+30.33) 24 (0.09 + 67.74)
g 38(0.61+91.44) 42(0.61+272.17) 45(0.66%3.92)
Block-diagonal 1—16 10 (0.06 + 0.53) 12 (0.06 + 1.76) 13 (0.13 + 4.50)
(AMG) 2 11(0.20+1.60)  12(0.20+5.71)  13(0.29 +13.41)
& 11(0.88+6.38)  12(0.99 +20.50) 13 (0.96 + 47.15)
s 12(6.72+36.40) 13 (6.84+104.64) 14 (5.1233.44)
M=6
None 3 19 29 55
i 4 76 146
& 93 169 332
3 190 350 702
Block-diagonal 1—16 10 (0.07 + 0.90) 11 (0.00 + 4.11) 12 (0.00 + 17.21)
(cholinc, 1x 107%) &  13(0.01+3.98)  13(0.00 +14.51) 15 (0.01 + 44.00)
& 21(0.09+24.17) 23(0.10+91.21) 24 (0.60 + 242.06)
s 38(0.61+240.10) 42 (0.68 +876.49) 46 (0.6@,610.48)
Block-diagonal % 11 (0.06 + 1.39) 12 (0.06 + 6.06) 13 (0.06 + 24.02)
(AMG) & 11(0.20+4.37)  12(0.20 +16.66) 13 (0.20 + 51.93)
6—111 11 (0.88 + 15.67) 13(0.98+58.32) 14 (6.75 + 180.48)

12 (6.78 +89.66) 13 (6.75+310.61) 14 (6.7886.46)

=)
N
[0

TABLE 8 M = 4. Minimum eigenvalue of V1Ko where V
is one V-cycle of AMG (with SG$noothing)

h p=2 p=3 p=4
3 0.9882 0.9882 0.9882
x 0.9707 0.9707 0.9707
5 0.9525 0.9525 0.9252
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TaBLE 9 CG iteration counts with exact block-diagonal precon-
ditioning, h= 7, M = 4

g p=2 p=3 p=4
0.1 8 10 11
0.2 11 14 17
0.3 14 21 30
0.4 18 35 532

TABLE 10 Dimension of global stiffnegsatrix

p=2 p=3 p=4

M=4 4,335 10,115 20,230
16,335 38,115 76,230
63,375 147,875 295,750
249,615 582,435 1,116,870
M=6 8,092 24,276 60,690

30,492 91,476 228,690
121,968 365,904 887,250
465,948 1,397,844 3,494,610
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FIG. 6. Mean (left) and variance (right) of pressure on ax322 mesh for the casel = 4 with p = 2.

M andh and varyinge are listed in Table®. Choosings to be too large compared 0 causesA to

become indefinite and in that case, CG breaks down. This is observedpvaehands 1 —t = 0.4.
Dimensions of the global systems for the problems considered are summarized ihdabiserve

then that using our multigrid method, we can solve more than 3.5 million equations on a laptop PC in un-

der 15 min. Furthermore, it should be noted that multigrid algorithms have lower memory requirements

than incomplete factorization methods, even with optimized parameters.
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4.2 Mixed boundary conditions

Next we consider steady flow from left to right on the dom&n= [0, 1] x [0, 1] with f = 0,

0Dp ={0,1} x [0,1] andéDy = 6D\oDp. We setj - i = 0 at the two horizontal walls so that flow

is tangent to those boundaries. The Dirichlet datauate 1 on{0} x [0, 1] andu = 0 on{1} x [0, 1].
Again, we employ the covariance functiod.11) with c; = 1 = ¢z, ¢ = 0.1 andu = 1. The mean

and variance of the primal variable, obtained on ax322 uniform grid using four terms in the KL ex-
pansion ofK (X, w) and quadratic Hermite polynomial chaos functions for the stochastic discretization,
are plotted in Fig6. Preconditioned CG iteration counts and timings are recorded in Tdbl&gain

we observe that convergence is insensitivéitandh and slightly dependent op (since we have used

TABLE 11 Preconditioned CG iterations and timings in seconds (set-up + total iterdiioes)

Preconditioner h p=2 p=33 p=4
M =4
None 3 39 61 118
z 73 129 247
& 139 246 498
& 266 485 984
Block-diagonal & 10(0.00 + 0.45) 11 (0.00 + 1.11) 11 (0.00 + 2.75)
(cholinc, 1x 107%) & 13(0.02 + 1.55) 14 (0.18 +4.71) 15 (0.02 + 10.97)
&  23(0.10+11.63) 24(0.12+32.78)  26(0.11+76.11)
s 42(0.66+106.59) 45 (0.66 +284.94) 49 (0.6650.37)
Block-diagonal %3 10 (0.07 + 0.75) 11 (0.07 + 1.89) 12 (0.07 + 4.70)
(AMG) & 10(0.27 +1.95) 11 (0.21 +5.63) 12 (0.21 + 12.25)
&  10(0.91+6.36) 11 (1.00 + 18.63) 12 (0.91 + 40.64)
g 10(5.25+32.62)  11(6.89+84.65)  12(6.8493.24)
M=6
None 3 40 68 128
i 75 138 270
& 142 264 533
& 273 511 1,029
Block-diagonal i 10(0.00 +0.88) 11 (0.00 + 4.42) 11 (0.00 + 16.51)
(cholinc, 1x 107%) &5 13(0.02 + 3.44) 14 (0.18 +16.69) 15 (0.02 + 53.79)
& 22(0.11+26.93)  24(0.11+103.18) 26 (0.11 + 307.86)
s 42(0.66+260.22) 45(0.66 +877.54) 48 (0.68,566.47)
Block-diagonal %3 10 (0.07 + 1.54) 11 (0.07 + 6.40) 12 (0.07 + 23.21)
(AMG) & 10(0.22+4.53) 11(0.22+16.91)  12(0.22 + 52.48)
6—111 10 (1.00+15.34)  11(0.92+54.60) 12 (1.02 + 166.29)

10 (6.90 + 73.30) 11 (7.05+270.38) 12 (6.7467.19)

(i
NI
[0
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Gaussian random variables). The efficiency of the preconditioning deteriorates for increasing standard
deviation,o.

5. Conclusions

The focus of this work was the design of a fast and robust solver for the model elliptic stochastic
boundary-value problem(2). Our goals were to provide a theoretical basis for a simple, popular pre-
conditioning scheme employed by other authors and to suggest a practical, efficient implementation
based on multigrid. We described the classical spectral SFEM discretization and outlined the structure
of the resulting symmetric linear systems. We analysed the exact block-diagonal preconditioner pro-
posed inGhanem & Kruge(1996, based on the mean component of the system matrix, and established
an eigenvalue bound for the preconditioned system in the case that either Gaussian random variables
or uniform random variables are employed to represent the diffusion coefficient. Those eigenvalues are
independent ofi but depend oa and additionally orp if unbounded random variables are used. In that
case, the bounds predict that the system matrix will become indefinite when the stochastic approxima-
tion space is enriched. This corresponds to the fact that the underlying variational problem is not well
posed. The bound is slightly pessimistichh, the number of terms retained in the truncated KL expan-
sion of K (X, w), but the dependence on all other SFEM parameters is sharp. We tested the robustness
of the preconditioner with approximate solves for the mean stiffness matrix computed via incomplete
Cholesky factorization and using\é-cycle of black-box AMG. The black-box AMG scheme was ro-

bust with respect to the spatial discretization parameter without tuning any parameters. It also has lower
memory requirements than factorization methods for fine spatial meshes.
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