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Abstract

We study problems for which the iterative method GMRES for solving linear systems of
equations makes no progress in its initial iterations. Our tool for analysis is a nonlinear system
of equations, the stagnation system, that characterizes this behavior. We focus on complete
stagnation, for which there is no progress until the last iteration. We give necessary and suffi-
cient conditions for complete stagnation of systems involving unitary matrices, and show that
if a normal matrix completely stagnates then so does an entire family of nonnormal matrices
with the same eigenvalues. Finally, we show that there are real matrices for which complete
stagnation occurs for certain complex right-hand sides but not for real ones.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

GMRES [16] is one of the most widely used iterations for solving linear systems of
equations Ax = b, where A is an n× n matrix and x and b are n-vectors. Although
it is guaranteed to produce the exact solution in at most n iterations, it is useful for
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large systems of equations because a good approximate solution is often computed
quite early, after very few iterations.

In this paper, we study an oddity: the class of problems for which the GMRES

algorithm, when started with the initial guess x(0) = 0 and using exact arithmetic,
computes m iterates x(1) = · · · = x(m) = 0 without making any progress at all. We
call this partial orm-step stagnation. Ifm = n− 1, we call this complete stagnation
of GMRES. In this case, GMRES will compute the exact solution at iteration n.

If GMRES frequently stagnated on practical problems, it would not be a popu-
lar algorithm. Clearly this set of problems is rather obscure. Why is it of interest?
Saad and Schultz presented an example of 1-step stagnation in the original paper on
GMRES [16]. Since then, a great deal of research has been invested in understanding
the causes and cures for stagnation (see, for example, [1–5,7,17–19,21]). Despite
the past 15 years of intense effort, the convergence of GMRES is not at all well-
understood and a great number of open questions remain. Although we study the
extreme case, we believe the new perspective lends insight into the factors that affect
convergence rate and provides tools that may be of use in studying problems for
which GMRES converges more favorably. In particular, this is demonstrated in [24,
Chapter 5] and a forthcoming paper [23]. In addition, most common implementations
of GMRES allow restarts after a small number of iterations to conserve storage space.
The restarted GMRES algorithm often makes rapid progress in the beginning itera-
tions but then nearly stagnates in the later ones. We hope that our study of stagnation
will eventually shed light on restarted stagnation, too.

We begin with a new tool for studying GMRES convergence, the stagnation system.
In Section 2, we derive this equation, which separates the effects of the eigenvalues
ofA, the eigenvectors ofA, and the right-hand side. In the rest of the paper, we focus
on complete stagnation. We present a geometric interpretation of complete stagnation
that illustrates how this phenomenon can be studied through interaction between
the eigenvalues and eigenvectors of A. In Section 3 we consider normal matrices.
It is well known that GMRES can stagnate on a particular set of unitary matrices
[14]; we show that this is the only set of stagnating problems for unitary matrices. We
further show that if a normal matrix stagnates then so does an entire family of nonnor-
mal matrices with the same eigenvalues. Results on real matrices and right-hand sides
are given in Section 4.

2. The stagnation equation

We apply GMRES to the linear system

Ax = b, x ∈ Cn, b ∈ Cn, A ∈ Cn×n

which we denote by GMRES(A, b). When the right-hand side vector is not specified,
we use the notation GMRES(A). Throughout this paper, a barred quantity denotes a
complex conjugate, and we make the following assumptions:
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1. The matrix A is diagonalizable and has the spectral decomposition A = V�V −1

where � = diag(λ1, . . . , λn) and the columns of V are the right eigenvectors of
A, which are linearly independent, and so the matrix W = V HV = (V )TV is
Hermitian positive definite.

2. The right-hand side b is normalized to Euclidean norm 1 and the initial guess for
GMRES is x0 = 0. We denote by rm the GMRES residual after m steps, so that
rm = b − Axm with r0 = b.

3. The matrix V has a singular value decomposition of the form P�QH, where Q
contains right singular vectors of V and � is a diagonal matrix with singular
values of V on the diagonal. Behavior of GMRES is essentially invariant to pre-
multiplication of V by a unitary matrix. Therefore, when convenient, we may
assume that P is the identity matrix. In other words, left singular vectors of V
are irrelevant to the apparatus we develop in this paper. Also, without loss of
generality, we may assume that columns of V have Euclidean norm 1.

The GMRES algorithm computes a sequence of approximate solutions to Ax = b

so that the mth approximation is the member of the Krylov subspace

Km(A, b) = span
{
b,Ab, . . . , Am−1b

}
with minimal residual norm

‖rm‖ = min
x∈Km(A,b)

‖b − Ax‖.
It is well known [16] and evident from this definition that the residual norms are
monotonically nonincreasing with m, and that GMRES terminates with the exact so-
lution in at most n iterations.

A standard approach for analysis of GMRES uses the inequality

‖rm‖
‖r0‖ � κ(V ) min

pm(0)=1
max
λj

|pm(λj )|, (2.1)

where κ(V ) is the condition number of the matrix of eigenvectors of A and pm is
a polynomial of degree m. Typically, little is known about κ(V ), but insight into
performance is obtained from studying the polynomial term.

In this section we develop a new approach for analysis of GMRES, establishing
necessary and sufficient conditions for stagnation of GMRES. This is done using the
Krylov matrix

Km = [
b Ab · · · Am−1b

]
,

together with the eigenvalues and eigenvectors of the coefficient matrix A.
An important tool in our analysis is a factorization ofKm, separating the influence

of the eigenvalues of A, the eigenvectors, and the right-hand side b. This factoriza-
tion appears, for example, in [9, Proof of Theorem 4.1].

Lemma 2.1. Let y = V −1b and let Y = diag(y). Then

Km+1 = V YZm+1, (2.2)
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where Zm+1 is the Vandermonde matrix computed from eigenvalues of A,

Zm+1 =
1 λ1 . . . λm1
...

...
. . .

...

1 λn . . . λmn

 = (
e �e . . . �me

)
,

where e is the vector of ones.

Proof. The Krylov matrix satisfies

Km+1(A, b)=
[
Vy V�V −1Vy · · · V�mV −1Vy

]
= V

[
Ye �Ye · · · �mYe

]
= V Y

[
e �e · · · �me

]
= V YZm+1. �

We are now ready to prove the main result of this section.

Theorem 2.2. Let A be nonsingular with at least m+ 1 distinct eigenvalues. Let
y = V −1b. Then GMRES(A, b) m-stagnates if and only if y satisfies the stagnation
system

ZH
m+1YWy = e1, (2.3)

where e1 = [1, 0, . . . , 0]T ∈ Cm+1.

Proof. At themth step, GMRES minimizes the residual over all vectors x in the span
of the columns of Km. This means that the resulting residual rm is the projection
of b onto the subspace orthogonal to the span of the columns of AKm. Therefore,
GMRES stagnates at step m if and only if b is orthogonal to the columns of AKm, or,
equivalently, orthogonal to the last m columns of Km+1. Since the first column of
Km+1 is b, this is equivalent to stagnation if and only if KH

m+1b = e1. Substituting
the factorization of Km+1 from Lemma 2.1 yields the desired result. �

Note that without the assumption that ‖b‖ = 1, the right-hand side of the stagna-
tion system would be multiplied by ‖b‖2.

If m = n− 1, we have complete stagnation. Since complete stagnation is impos-
sible if eigenvalues of A repeat, we assume a distinct spectrum, which yields a full-
rank square Vandermonde matrix Zn. In this case, Theorem 2.2 takes the following
form:

Corollary 2.3. LetA be nonsingular with distinct eigenvalues. Let y = V −1b. Then
GMRES(A, b) completely stagnates if and only if y satisfies

YWy = Z−H
n e1 = u, (2.4)
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where the elements of u are defined by

uj = (−1)n+1 conj

 n∏
k=1
k /=j

λk

λj − λk

 , (2.5)

where conj denotes complex conjugate.

Proof. Denote the elements of the first column of Z−H
n by uj , j = 1, . . . , n. The

proof is a consequence of [8, Section 21.1], where an explicit construction of the
entries of the inverse of a Vandermonde matrix is derived. �

We can make a similar statement for partial stagnation.

Corollary 2.4. Let A be nonsingular with at least m+ 1 distinct eigenvalues. Let
y = V −1b. Then GMRES(A, b) m-stagnates if and only if y satisfies

YWy = (
ZH
m+1

)†
e1 + t, (2.6)

where t ∈ N(ZH
m+1), the null space ofZH

m+1, and (ZH
m+1)

† = Zm+1(Z
H
m+1Zm+1)

−1

is the pseudo-inverse of ZH
m+1 [10,20].

The usefulness of (2.3), as well as the related Eqs. (2.4) and (2.6), is that it sepa-
rates the influence of the eigenvalues, which determine Zn, and eigenvectors, which
determine W . Stagnation is explored through the interaction of W and Zn.

The systems (2.3) and (2.4) are not polynomial systems of equations since they
involve complex conjugation of the entries of the variable y. They can, however, be
rewritten as real polynomial systems with 2(m+ 1) and 2n equations, respectively,
by splitting all components into their respective real and imaginary parts. Partial or
complete stagnation of GMRES corresponds to the existence of a real solution of
such a polynomial system. If the total number of (real and complex) regular and
infinite solutions is finite, then, according to a result of Bezout [12], the number
does not exceed the total degree of the polynomial system, which in the case of
(2.3) is 22(m+1). Therefore, in practical experiments, we need to use a solver such as
POLSYS_PLP [22] that finds all solutions of the system. Stagnation takes place iff any
of these solutions is regular and real.

Next we establish the equivalence of stagnation of GMRES for A with stagnation
for AH.

Theorem 2.5. Let A be nonsingular with at least m+ 1 distinct eigenvalues. Then
GMRES(A, b) m-stagnates for some b ∈ Cn iff GMRES(AH, b) stagnates for the
same b.

Proof. GMRES(A, b) m-stagnates if and only if b is orthogonal to the columns
of AKm; i.e., bH[Ab A2b · · · Amb] = 0. Taking the conjugate transpose of each
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of the inner products yields bH[AHb (AH)2b · · · (AH)mb] = 0, so GMRES(AH, b)

also m-stagnates. �

The stagnation system can be used to completely analyze stagnation of GMRES

in the case when n = 2, and this analysis is given in [24]. In that case, stagnation
is determined by a simple relationship between the ratio of the eigenvalues and the
condition number of the eigenvector matrix. More specifically, given any set of dis-
tinct nonzero eigenvalues λ ∈ C2 and a set of eigenvectors V ∈ C2×2, there exists a
vector b ∈ C2 such that GMRES(V�V −1, b) stagnates iff the condition number of V
is large enough with respect to the ratio of the largest eigenvalue to the smallest one.
An explicit formula is provided for a stagnating right-hand side b. For more details,
see [24,25].

2.1. The geometry of stagnation

The complete stagnation system (2.4) can be written as

FV (y) = G(λ),

where FV (y) = YWy and G(λ) = u. Let us look at the domains and ranges of FV
and G. Since

1 = ‖b‖2 = ‖Vy‖2 = yHWy = ‖y‖2
W = eTu,

it follows that the domain of FV (y) is the hyper-ellipsoid surface

EV = {
y ∈ Cn | yHWy = 1

}
,

whose axes are determined by singular values and vectors of the matrix V . Moreover,
u lies in the hyperplane

Sn =
{
u = [u1 · · · un]T ∈ Cn

∣∣∣∣ n∑
j=1

uj = 1

}
.

The range of the operator FV (y) defined over EV is

SV = {
u ∈ Sn | there exists yu ∈ Cn such that FV (yu) = u

}
which is a subset of Sn. Due to scale-invariance of the function G(λ), without loss
of generality we can assume that all eigenvalue distributions lie in the box

B = {
λ = [λ1 · · · λn]T ∈ Cn | 0 � |λj | � 1

}
.

Therefore, the range of G(λ) defined over B is

Sλ = {
u ∈ Sn | there exists λu ∈ B such that G(λu) = u

}
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Fig. 1. A geometric interpretation of complete GMRES stagnation.

which is also a subset of Sn. To summarize,

FV : EV → SV ⊂ Sn, G(λ) : B → Sλ ⊂ Sn.

We can now give a geometric interpretation of complete stagnation of GMRES. It
is illustrated in Fig. 1. Let us fix a set of eigenvectors V , which fixes the domain
and range sets EV and SV , respectively. The intersection of SV with Sλ, which is the
meshed area in Fig. 1, can be thought of as a representation of all eigenvalue distri-
butions λ which yield a stagnating matrix A = V�V −1 for the given V . Why? Be-
cause, if we pick an eigenvalue distribution (labeled λS in the figure) such that it gets
mapped by G inside SV ∩ Sλ, then there exists a vector yS ∈ EV such that the stag-
nation equation is satisfied for the triple {V, λS, yS} and so GMRES(V�SV −1, VyS)

completely stagnates. Conversely, if G(λNS) /∈ SV ∩ Sλ for some λNS then no mat-
ter what y ∈ EV we pick, the stagnation equation (2.4) is never satisfied and so
GMRES(V�NSV −1, b) never stagnates.

We make two remarks. First, the above interpretation allows us to make a generic
statement about what it means for a set of eigenvectors to be “good” or “bad” in
terms of complete GMRES stagnation. We see that the larger SV ∩ Sλ is for a given
V , the more stagnating λ’s one can find, and so the smaller this intersection is the
better. Second, this interpretation places primary emphasis on eigenvectors and then
incorporates eigenvalues into the picture. This is different from the analysis based on
(2.1), which uses only eigenvalues. So in order to get a better understanding of stag-
nation, we have to study properties of FV (y) andG(λ) as operators defined over their
respective domains. Compare with [6] for other results showing that eigenvalues do
not provide a complete analysis.
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Similar statements can be made for the domain and range for the partial stagnation
equation, but perhaps the most intuitive interpretation is that we seek an element of
EV that is orthogonal to the columns 2 through m+ 1 of Z.

2.2. The nature of Sλ

It follows from (2.5) that u ∈ Sn belongs to Sλ iff there exists a vector λ ∈ B such
that G(λ) = u. Since we may assume that all eigenvalues are distinct and nonzero,
this is equivalent to the following system of equations:

λ2λ3 · · · λn = (−1)n+1ū1(λ1 − λ2) · · · (λ1 − λn)
...
λ1 · · · λj−1λj+1 · · · λn = (−1)n+1ūj (λj − λ1) · · · (λj − λn)
...

λ1λ2 · · · λn−1 = (−1)n+1ūn(λn − λ1) · · · (λn − λn−1).

(2.7)

It appears from extensive numerical experiments that, in the case of arbitrary com-
plex eigenvalues, the system (2.7) has solutions for any u ∈ Sn, i.e. Sλ = Sn. Con-
sequently, in our analysis of the stagnation region SV ∩ Sλ, we focus most of our
attention on SV .

The system (2.7) is a parametrized polynomial system in λ with elements of the
given vector u ∈ Sn being the parameters. For certain values of u, it is possible to
compute solutions of (2.7) explicitly. For instance, any permutation of the vector

λ = [
eiθ1 , . . . , eiθn

]T
, θj = 2�(j − 1)

n
,

solves the system when uj = 1/n, j = 1, . . . , n. Thus, in order to establish equality
of Sn and Sλ analytically, it may be possible to use the theory of coefficient-parameter
polynomial continuation [13].

When only real or complex conjugate eigenvalues are allowed, Sn is significantly
larger than Sλ. However, in this case experimental data suggest that for any two
eigenvector distributions V1 and V2, the volume of SV1 ∩ Sλ is larger than that of
SV2 ∩ Sλ iff the volume of SV1 is larger than that of SV2 .

2.3. The nature of SV

Since EV is compact and FV (y) is continuous, SV is also compact, and we now
derive an explicit bound for elements of SV .

Lemma 2.6. If V is nonsingular and u ∈ SV , then ‖u‖ � κ(V ) ≡ maxi σi/mini σi .

Proof. Since ‖y‖W = 1 we can bound the 2-norm of y in terms of the singular
values of V :

1

maxi σi
� ‖y‖2 � 1

mini σi
.
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Eq. (2.4) implies that

u = YWy = YV Hb,

so

‖u‖ � ‖Y‖‖V ‖‖b‖ � 1

mini σi
max
i
σi . �

Lemma 2.6 implies that given eigenvectors V, any eigenvalue distribution λ such
that ‖G(λ)‖ > κ(V ) necessarily yields a matrix A = V�V −1 that does not com-
pletely stagnate.

3. Complete stagnation of normal matrices

A normal matrix A is one whose eigenvector matrix V is unitary. In this case, the
stagnation system (2.4) simplifies to

Yy = u = G(λ) (3.1)

which is a system of n decoupled equations of the form,

|yj |2 = uj , j = 1, . . . , n.

Theorem 3.1. Let A ∈ Cn×n be normal with distinct eigenvalues λ. If the vector
u = G(λ), defined by (2.5), satisfies u ∈ Rn, and 0 � uj � 1, j = 1, . . . , n, then
GMRES(A, b) stagnates for b = Vy, where

yj = √
uj eiθj , j = 1, . . . , n, (3.2)

and the phase angles θj are arbitrary. Conversely, if λ is such that the corresponding
G(λ) contains complex or real negative entries, then there is no right-hand side for
which GMRES(A, b) stagnates.

Proof. If u = G(λ) is real positive then y defined elementwise by (3.2) solves (3.1)
and thus causes stagnation of GMRES. Conversely, if at least one element of u is ei-
ther complex or real negative, the system (3.1) does not have a solution, so stagnation
is impossible. �

When A is normal, the corresponding SV has a simple form.

Corollary 3.2. Let V ∈ Cn×n be unitary. Then the corresponding set EV is the unit
sphere and the range of FV (y) is a real simplex

SI = {
u ∈ Rn | 0 � uj � 1, j = 1, . . . , n

}
.

When A is Hermitian or real symmetric, GMRES is equivalent to MINRES [15].
Proposition 3.3 below shows that in this case the two methods cannot stagnate,
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provided n � 3. This is a well known result, but we show how this fact is reflected
in the framework of the stagnation equation.

Proposition 3.3. Let λ ∈ Rn (n � 3) have distinct elements and let u = G(λ). Then
at least one element of the vector u is negative. Therefore GMRES cannot stagnate
when applied to a Hermitian or real symmetric matrix with distinct eigenvalues.

Proof. Without loss of generality, assume that eigenvalues are ordered λ1 < · · · <
λn. Choose an index j so that λj and λj+1 have the same sign. Then the numerators
in (2.5) have the same sign for j and j + 1 while the denominators have opposite
sign, so either uj or uj+1 is negative. Theorem 3.1 leads to the second part of the
result. �

Therefore, there are no normal matrices with real eigenvalues that stagnate, but
there are stagnating normal matrices with complex eigenvalues. The eigenvalues
constitute regular solutions with distinct nonzero elements of the polynomial system
(2.7), and therefore they are quite rare. For instance, the eigenvalue distribution

λ =


1.00000000000000

−0.30447006746090 − 0.06821372515028 i
0.35306441656578 − 1.49970031360021 i
0.10534543907217 + 1.04831885053493 i


generates

u = G(λ) =


0.17225711241368
0.66327345135404
0.04991016520560
0.11455927102668

 .

3.1. Stagnation of unitary matrices

A normal matrix A is unitary iff its eigenvalues satisfy

λj = eiφj , 0 � φj � 2�, j = 1, . . . , n. (3.3)

It has been shown that GMRES can stagnate when applied to a unitary matrix A with
eigenvalues distributed uniformly over the unit circle in the complex plane [14].
Using Theorem 3.1 we now show that those are the only unitary matrices for which
stagnation can occur.

Theorem 3.4. LetA ∈ Cn×n be unitary with distinct eigenvalues. GMRES stagnates
iff the phase angles φj satisfy

φj = φ + 2�(j − 1)

n
, j = 1, . . . , n, (3.4)
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where φ is arbitrary, which represents n eigenvalues distributed uniformly over the
unit circle in the complex plane.

We prove Theorem 3.4 in two steps. Given λ, a set of n distinct eigenvalues of
the form (3.3), define its image under the transformation G(λ) by

G(λ) = u = v + iw, v,w ∈ Rn.

In Lemma 3.5, we derive explicit formulations for v and w. Then, in Lemma 3.6, we
prove that the only set of phase angles {φj } that makes w zero is the one defined by
(3.4). For this set of angles, it can be shown by direct computation that v contains
only positive entries.

Lemma 3.5. Let λ ∈ Cn be a set of n distinct eigenvalues of the form (3.3). Without
loss of generality assume that

0 = φ1 < φ2 < · · · < φn < 2�. (3.5)

Then individual entries of the vector u = (u1, . . . , un)
T can be written in terms of

the phase angles as follows:
uj = γ (n)C

(n)
j d

(n)
j , (3.6)

where

γ (n) =
{
(−1)(n−2)/2 if n is even,
(−1)(n−1)/2 if n is odd,

C
(n)
j =

(
1

2

)n−1 n∏
k=1
k /=j

csc
φj − φk

2
,

and

d
(n)
j =

sin
α
(n)
j

2 + i cos
α
(n)
j

2 if n is even,

cos
α
(n)
j

2 − i sin
α
(n)
j

2 if n is odd,

where

α
(n)
j = (n− 1)φj −

n∑
k=1
k /=j

φk.

Proof. The j th element of u is uj , defined by (2.5). Each term of (2.5) can be
rewritten as follows using (3.3)

λk

λj − λk
= − sin(φj − φk)/2 + i cos(φj − φk)/2

2 sin(φj − φk)/2

=
(

− 1

2

)
csc

φj − φk

2
i exp

{
i

(
φk − φj

2

)}
.
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This yields

uj = (−1)n
(

1

2

)n−1 n∏
k=1
k /=j

csc
φj − φk

2
in−1 exp

i
n∑
k=1
k /=j

φk − φj

2

 . (3.7)

Let us now assume that n = 2k is even. The case for odd n is treated similarly.
Since

(−1)n in−1 = (−1)(n−2)/2 i,

we can rewrite (3.7) as

uj = γ (n)C
(n)
j i exp

(
−i
α
(n)
j

2

)
,

where

i exp

(
−i
α
(n)
j

2

)
= sin

α
(n)
j

2
+ i cos

α
(n)
j

2
.

This completes the proof. �

Lemma 3.6. The vector w, the imaginary part of u defined by (3.6), is zero iff the
phase angles {φj } are given by (3.4).

Proof. We present a proof for even values of n. The proof for odd n is similar. First
we observe that since eigenvalues are distinct, the C(n)j terms are all well-defined and
nonzero. From (3.6) we see that u is real iff

ŵ =
(

cos
α
(n)
1

2
, cos

α
(n)
2

2
, . . . , cos

α
(n)
n

2

)T

= 0.

Thus

α
(n)
k = � + 2�mk, k = 2, . . . , n, (3.8)

where mk is an integer.
Our goal is to prove that the only combination of the indices mk that yields phase

angles φk that satisfy (3.5) is the one that gives (3.4). First we find phase angles
φ2, . . . , φn that set the bottom n− 1 entries of ŵ to zero; for this, we solve the
n− 1 × n− 1 system

Mφ̂ = β,

where

M =


n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1

 , φ̂ =


φ2
φ3
...

φn

 ,
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β =


� + 2�m2
� + 2�m3

...

� + 2�mn

 .
Now

M−1 = 1

n


2 1 1 · · · 1
1 2 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2

 ,
so

φ̂ = M−1β = �

n


n+ 2(m2 + · · · +mn)+ 2m2
n+ 2(m2 + · · · +mn)+ 2m3

...

n+ 2(m2 + · · · +mn)+ 2mn

 .
From (3.5) it follows that m2 < m3 < · · · < mn, so we can write

mj = mj−1 + δj , j = 3, . . . , n,

where δj is a positive integer. We consider two cases.

Case I. δj = 1, j = 3, . . . , n. In this case mj = m2 + (j − 2) and so

φ̂j = �

n

(
n2 − 2n− 2 + 2nm2 + 2j

)
, j = 2, . . . , n.

In order to satisfy (3.5), φ̂2 must be positive. Solving φ̂2 > 0 for m2, we obtain

m2 > −n
2

+ 1 − 1

n
⇒ m2 � −n

2
+ 1,

because both m2 and n are integers and n > 1. Similarly, solving φ̂n < 2�, we get

m2 < −n
2

+ 1 + 1

n
⇒ m2 � −n

2
+ 1.

We conclude that only when m2 = (2 − n)/2 do we get a valid set of phase angles
φ̂, namely,

φ̂ = 2�

n
(1, 2, . . . , n− 1)T. (3.9)

Case II. First, suppose that δj = 1, j = 3, . . . , n− 1 and δn = 2 + ε, where ε is a
nonnegative integer. Then we obtain

φ̂2 = �

n

(
n2 − 2n+ 2 + 2nm2 + 2(1 + ε)

)
,

φ̂n = �

n

(
n2 − 2 + 2nm2 + 4(1 + ε)

)
.
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Solving φ̂2 > 0 and φ̂n < 2� we obtain, respectively,

m2 > α ≡ −n
2

+ 1 − 1

n
− 1 + ε

n
, m2 < β ≡ −n

2
+ 1 − 1

n
− 2

1 + ε

n
.

It is easy to see that α is always bigger than β for any nonnegative integer ε. A
similar result could be obtained if any other δj > 1. We therefore conclude that (3.9)
is the only valid combination of phase angles. Direct substitution also shows that this
combination zeroes out the first entry of ŵ. �

3.2. Does normal stagnation imply nonnormal stagnation?

For n = 2, we found that, given λ ∈ C2, as long as κ(V ) is larger than a certain
value that depends on λ, the correspondingA = V�V −1 is stagnating [24]. In partic-
ular, this implies that if A ∈ C2×2 is normal and stagnating then so is Ã = Ṽ�Ṽ −1

for any nonsingular Ṽ . Does this extend to n > 2?
While running extensive testing to determine properties of SV for low-dimension-

al real matrices V we have noticed that in all the tested cases, SV included SI, where
SI is the real simplex defined in Section 2.1 which constitutes the range of FV (y) for
any orthonormal V .

Stagnation of a normal matrix does imply stagnation of an entire family of matri-
ces with the same eigenvalues:

Theorem 3.7. Suppose we have a vector λ ∈ Cn with distinct elements such that
u = G(λ) satisfies u ∈ Rn with 0 < ui � 1. Then for any nonsingular eigenvector
matrix V with W = V HV real, GMRES(A, b) stagnates for A = V�V −1 and b =
Vy, where y ∈ Rn satisfies YWy = u.

Proof. If W is real, then it is symmetric positive definite. Solving the stagnation
equation YWy = u is equivalent to finding a diagonal scaling matrix Y so that YWY
has row sums u. Since 0 < ui � 1, then [11, Corollary 2] tells us that such a scaling
matrix exists. �

4. Complete stagnation of real matrices

In this section, we investigate the special form that the stagnation system (2.4)
takes when A is real, and we determine whether it is sufficient to consider real right-
hand side vectors when studying stagnation of GMRES for real matrices A.

When A is real, our stagnation equation (2.4) becomes a polynomial system in
y, considerably simplifying analysis and numerical experimentation. To form this
polynomial system, let A ∈ Rn×n have eigenvalues λ ∈ Cn×n and eigenvectors V ∈
Cn×n. Let P ∈ Rn×n be the permutation matrix that interchanges the complex con-
jugate pairs in λ. Then
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λ̄ = Pλ, V = VP. (4.1)

It follows that GMRES(A, b) stagnates for b = Vy ∈ Cn iff ‖b‖ = 1 and y solves

YPWTy = u, (4.2)

whereWT = V TV . Furthermore, GMRES(A, b) stagnates for b = Vy ∈ Rn iff ‖b‖ =
1 and y solves the polynomial system

YWTy = ū, ȳ = Py. (4.3)

4.1. Real eigenvalues

When the spectrum of A is real, the stagnation system simplifies even further.
Both W and G(λ) are real in this case, P is the identity matrix and WT = W . If we
consider only real right-hand sides then we get the real polynomial stagnation system

YWy = u, (4.4)

where y ∈ Rn satisfies yTWy = 1 and u = G(λ).
Note that when (2.4) or (4.2) is solved, the corresponding domain for FV (y) =

YWy is

EV = {
y ∈ Cn | yHWy = 1

}
.

When we consider (4.3), the domain changes to

EV = {
y ∈ Cn | ȳ = Py, yHWy = yTWTy = 1

}
,

where WT = V TV and P is defined by (4.1). Finally, for (4.4) the domain has the
form

EV = {
y ∈ Rn | yTWy = 1

}
.

4.2. When real vectors b are sufficient

Suppose A is real with real spectrum. Is it possible that GMRES(A, b) stagnates
for some complex b but does not stagnate for any real b? If V is 3 × 3 or extreme,
the answer is no: existence of a complex stagnating b implies existence of a real one.

Theorem 4.1. Let A ∈ Rn×n with real eigenvalues λ and eigenvectors V . If V is
of size 3 × 3 then existence of a complex stagnating right-hand side vector implies
existence of a real one.

Proof. Let u = G(λ) ∈ Rn. Suppose there exists stagnating y ∈ Cn of the form

y = (
y1eiφ1 , . . . , yneiφn

)T
,

where, for every j = 1, . . . , n, yj ∈ R and 0 � φj � 2�. We may assume that b =
Vy has unit norm. This implies that y satisfies YWy = u.
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We show that if V is 3 × 3, the phase angles φ1, φ2, and φ3 are all equal. This
implies that the real vector yR = e−iφ1y satisfies and therefore corresponds to a stag-
nating right-hand side.

We expand YWy and conclude that y must satisfyu1
u2
u3

 =
x

2
1 + x1x2ei(φ2−φ1) + x1x3ei(φ3−φ1)

x2
2 + x2x1ei(φ1−φ2) + x2x3ei(φ3−φ2)

x2
3 + x3x1ei(φ1−φ3) + x3x2ei(φ2−φ3)

 . (4.5)

Each entry on the left of Eq. (4.5) is real, so, clearly, each entry on the right must also
be real. The first term, x2

j , j = 1, 2, 3 is real. In order for two complex numbers to
have a real sum, they must have identical magnitudes and opposite phases. Therefore

φ2 − φ1 = φ1 − φ3, φ1 − φ2 = φ2 − φ3.

Solving the above pair of equations we conclude that φ1 = φ2 = φ3. �

We say that a matrix is an extreme matrix if its singular values can be ordered
to satisfy σ1 = σ2 = · · · = σn−1 /= σn, The theorem above also holds for extreme
matrices [24, Section 4.3.2, Lemma 7]. If V is not extreme or three-dimensional,
however, it is possible for a corresponding matrix A to have a complex, but no real,
stagnating right-hand side.

Example. Let the matrix A be defined by its eigenvector matrix

V =


−0.3998204 0.2414875 −0.0877858 −0.4306034
−0.5786559 −0.8362391 0.4920379 0.3213318
0.6984230 0.0537175 −0.7499413 0.5155494

−0.1323115 0.4893898 −0.4333364 −0.6674844


and its eigenvalues

λ = (1.0000000,−0.7658066,−0.2656295, 0.8705277).

The mapping G(λ) is

G(λ) = (−0.6120,−0.1600, 0.9269, 0.8451).

The vector

y =


1.5564116 + 1.5564116 i

−1.2084570 − 0.3414864 i
0.7066397 + 1.5089330 i

−1.8679775 − 1.2644748 i


solves (2.4) and it can be verified directly that GMRES(A, b) stagnates when b = Vy.
In order to determine whether any real stagnating b exists, we solve the polynomial
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system (4.4) with W and u as above. Note that if a complex y solves (4.4) then so do
−y, ȳ, and −ȳ. Applying the POLSYS_PLP solver we obtain exactly 24 = 16 complex
solutions. The four “fundamental” ones are listed below:

yI =


0.7391037 + 0.2570027 i

−0.1534853 + 0.5091449 i
1.2414730 + 0.3333155 i

−1.2276988 + 0.1269897 i

 ,

yII =


0.1578663 + 0.9757913 i
0.1463589 + 0.0364812 i
0.9548215 + 0.3991290 i
0.8611411 − 0.2115472 i

 ,

yIII =


−0.9785711 − 2.1552377 i
3.4382447 + 2.1527698 i
1.8727147 − 0.2306006 i
2.7341793 + 2.2536406 i

 ,

yIV =


2.4426010 + 0.4870174 i

−1.1947469 − 0.5787159 i
1.7072389 + 0.0030895 i

−2.3718795 − 0.5254314 i

 .
The degree of the system is 16, and all 16 solutions are verified to be isolated. We
conclude that the given system (4.4) has no other real or complex solutions. On the
other hand, a complex solution of (4.4) does not produce a stagnating b.
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1.5

1

0.5

0
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1
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2

U3   =   0.9269

Real Stagn b   
Complex Stagn b

Fig. 2. Real vectors b are not sufficient (Section 4.2).
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It appears, however, that at least for small n, A can be expected to have a real
stagnating right-hand side if it has a complex one. For instance, let us examine Fig. 2,
which shows a slice of SV for the matrix V defined above. The slice is the intersection
of SV with the plane u3 = 0.9269. The dotted points correspond to vectors u ∈ Sn for
which there are both real and complex stagnating vectors b. For the points marked
with ‘+’, only complex ones exist. We see that the dotted region is significantly
larger.

5. Conclusions

We have presented several results on the stagnation behavior of GMRES. We gave
necessary and sufficient conditions for stagnation of systems involving unitary ma-
trices, and showed that if a normal matrix stagnates then so does an entire family
of nonnormal matrices with the same eigenvalues. Finally, we showed that there are
real matrices for which stagnation occurs for certain complex right-hand sides but
not for real ones.

The stagnation system was a crucial tool in developing these results and we be-
lieve its analysis will contribute to the solution of other open problems as well.
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