Homework 9 MORALLY Due Apr 18 at 9:00AM

- 1. (0 points but please DO IT) What is your name?
- 2. (30 points) Bill has the following:
 - A fair 6-sided die. So the $Pr(1) = \cdots = Pr(6) = \frac{1}{6}$.
 - A bias die with $Pr(1) = Pr(2) = Pr(3) = \frac{1}{4}$ $Pr(4) = Pr(5) = Pr(6) = \frac{1}{12}$

Emily picks one of these die at random (each with prob $\frac{1}{2}$).

- (a) (15 points) If she rolls it n times and gets n 1's, what is the prob she picked the biased die?
- (b) (15 points) If she rolls it n times and gets n 6's what is the prob she picked the biased die?

GOTO NEXT PAGE

- 3. (25 points) Emily tosses m balls into n boxes at random. Assume $m \ll n$.
 - (a) (15 points) What is the probability that at least FOUR balls are in the same box. (You may use the approximations we used for the problem of THREE balls.)
 - (b) (10 points) Let n be fixed and large. Fill in the following statement:

If m = XXX then the prob of having 4 people in a room is OVER $\frac{1}{2}$ and m is close to the least such value of m. (HINT: Use Part 1 of this problem.)

GO TO NEXT PAGE

4. (25 points) Do a COMBINATORIAL PROOF (NOT algebraic, NOT by induction) for the following statement:
For all n ≥ 0, ∑_{s=0}ⁿ (ⁿ_s)2^s = 3ⁿ.
(HINT: The Right Hand Side is the answer to the question:
How many ways can you 3-color {1,...,n}.
Argue that the Left Hand Side solves this same problem.)

GO TO NEXT PAGE

5. (20 points) We are playing with a normal Earth-poker: 13 ranks, 4 suites, hands of size 5.

What is the probability that a hand has a flush OR a straight but NOT a straight-flush. Give it both in terms of notation like $\binom{52}{5}$ and an actual number like 0.0414 (to 4 places).