Small Ramsey Numbers

Exposition by William Gasarch

April 15, 2022

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

ション ふゆ アメリア メリア しょうくしゃ

We state this in terms of colorings of edges of graphs. For all 2-coloring of the edges of K_6 there is a mono K_3 . Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

ション ふぼう メリン メリン しょうくしゃ

We state this in terms of colorings of edges of graphs. For all 2-coloring of the edges of K_6 there is a mono K_3 .

Question What if we color the edges of K_5 ?

Coloring of K_5 with no Mono K_3

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

This graph is not arbitrary. $SQ_5 = \{x^2 \pmod{5} : 0 \le x \le 4\} = \{0, 1, 4\}.$ \blacktriangleright If $i - j \in SQ_5$ then RED. \blacktriangleright If $i - j \notin SQ_5$ then BLUE.

Asymmetric Ramsey Numbers

Definition R(a, b) is least *n* such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

- 1. R(a, b) = R(b, a). 2. R(2, b) = b
- 3. R(a, 2) = a

 $R(a,b) \leq R(a-1,b) + R(a,b-1)$

Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$ **Proof** Let n = R(a - 1, b) + R(a, b - 1). COL: $\binom{[n]}{2} \rightarrow [2]$. **Case 1** $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$. Look at the R(a - 1, b)vertices that are RED to v. By Definition of R(a - 1, b) either

▶ There is a RED K_{a-1} . Combine with v to get RED K_a .

• There is a BLUE K_b .

 $R(a,b) \leq R(a-1,b) + R(a,b-1)$

Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$ **Proof** Let n = R(a - 1, b) + R(a, b - 1). COL: $\binom{[n]}{2} \rightarrow [2]$. **Case 1** $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$. Look at the R(a - 1, b)vertices that are RED to v. By Definition of R(a - 1, b) either

• There is a RED K_{a-1} . Combine with v to get RED K_a .

• There is a BLUE K_b .

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b-1)]$. Similar to Case 1.

 $R(a,b) \leq R(a-1,b) + R(a,b-1)$

Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$ **Proof** Let n = R(a - 1, b) + R(a, b - 1). COL: $\binom{[n]}{2} \rightarrow [2]$. **Case 1** $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$. Look at the R(a - 1, b)vertices that are RED to v. By Definition of R(a - 1, b) either

- There is a RED K_{a-1} . Combine with v to get RED K_a .
- There is a BLUE K_b.

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b-1)]$. Similar to Case 1.

Case 3

 $(\forall v)[\deg_R(v) \le R(a-1,b) - 1 \land \deg_B(v) \le R(a,b-1) - 1]$ $(\forall v)[\deg(v) \le R(a-1,b) + R(a,b-1) - 2 = n - 2]$ Not possible since every vertex of K_n has degree n - 1.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Lets Compute Bounds on R(a, b)

- ▶ $R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$
- ▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$
- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- ▶ $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$

Lets Compute Bounds on R(a, b)

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$

▶
$$R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$$

▶
$$R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$$

▶
$$R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Can we make some improvements to this?

Lets Compute Bounds on R(a, b)

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$$

▶ $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$

▶
$$R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$$

▶
$$R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$$

▶
$$R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$$

Can we make some improvements to this? YES!

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Theorem $R(3,4) \leq 9$. Let *COL* be a 2-coloring of the edges of K_9 . **Case 1** $(\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Theorem $R(3,4) \leq 9$. Let *COL* be a 2-coloring of the edges of K_9 . **Case 1** $(\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v. If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Theorem $R(3,4) \leq 9$. Let *COL* be a 2-coloring of the edges of K_9 . **Case 1** $(\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v. If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 . If not then v_1, v_2, v_3, v_4 is BLUE K_4 .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Theorem $R(3,4) \leq 9$. Let *COL* be a 2-coloring of the edges of K_9 . **Case 1** $(\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v. If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 . If not then v_1, v_2, v_3, v_4 is BLUE K_4 .

Case 2 $(\exists v)[\deg_B(v) \ge 6]$. $v_1, v_2, v_3, v_4, v_5, v_6$ are BLUE to v. Either:

(1) a RED K_3 , or (2) a BLUE K_3 , which together with v is a BLUE K_4 . **NOTE** Can't have any $\deg_R(v) \le 2$.

Theorem $R(3,4) \leq 9$. Let *COL* be a 2-coloring of the edges of K_9 . **Case 1** $(\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v. If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 . If not then v_1, v_2, v_3, v_4 is BLUE K_4 .

Case 2 $(\exists v)[\deg_B(v) \ge 6]$. $v_1, v_2, v_3, v_4, v_5, v_6$ are BLUE to v. Either:

(1) a RED K_3 , or

(2) a BLUE K_3 , which together with v is a BLUE K_4 .

NOTE Can't have any $\deg_R(v) \leq 2$.

Case 3 $(\forall v)[\deg_R(v) = 3]$. The RED subgraph has 9 nodes each of degree 3. Impossible!

Lemma Let G = (V, E) be a graph.

$$V_{ ext{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$

 $V_{ ext{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then $|V_{\rm odd}| \equiv 0 \pmod{2}$.

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$. Recall that for any graph G = (V, E):

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$. Recall that for any graph G = (V, E):

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$. Recall that for any graph G = (V, E):

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds $\equiv 0 \pmod{2}.$ Must have even numb of them. So $|\mathit{V}_{\rm odd}| \equiv 0 \pmod{2}.$

What was it about R(3,4) that made that trick work?

(ロト (個) (E) (E) (E) (E) のへの

What was it about R(3, 4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

What was it about R(3, 4) that made that trick work? We originally had

 $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$

Key: R(2,4) and R(3,3) were both even!

What was it about R(3, 4) that made that trick work? We originally had

 $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$ Key: R(2,4) and R(3,3) were both even! Theorem $R(a,b) \le$ 1. R(a,b-1) + R(a-1,b) always. 2. R(a,b-1) + R(a-1,b) - 1 if $R(a,b-1) \equiv R(a-1,b) \equiv 0 \pmod{2}$

Some Better Upper Bounds

▶
$$R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6.$$

▶
$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 - 1 = 9.$$

- ▶ $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- ► $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- ▶ $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- ▶ $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- ▶ $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$

• $R(5,5) \le R(4,5) + R(5,4) = 62.$

Are these tight?

$R(3,3) \ge 6$: Need coloring of K_5 w/o mono K_3 .

 $R(3,3) \ge 6$: Need coloring of K_5 w/o mono K_3 . Vertices are $\{0, 1, 2, 3, 4\}$.

$R(\mathbf{3},\mathbf{3}) \geq \mathbf{6}$

 $R(3,3) \ge 6$: Need coloring of K_5 w/o mono K_3 .

Vertices are $\{0, 1, 2, 3, 4\}$.

 $COL(a, b) = \text{ RED if } a - b \equiv SQ \pmod{5}$, BLUE OW.

$R(\mathbf{3},\mathbf{3}) \geq \mathbf{6}$

 $R(3,3) \ge 6$: Need coloring of K_5 w/o mono K_3 .

Vertices are $\{0, 1, 2, 3, 4\}$.

 $COL(a, b) = \text{ RED if } a - b \equiv SQ \pmod{5}$, BLUE OW.

Note $-1 = 2^2 \pmod{5}$. Hence $a - b \in SQ$ iff $b - a \in SQ$. So the coloring is well defined.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$R(3,3) \ge 6$

 $COL(a, b) = \text{ RED if } a - b \equiv SQ \pmod{5}$, BLUE OW.

- Squares mod 5: 1,4.
- ► If there is a RED triangle then a b, b c, c a all SQ's. SUM is 0. So

 $x^2 + y^2 + z^2 \equiv 0 \pmod{5}$ Can show impossible

If there is a BLUE triangle then a − b, b − c, c − a all non-SQ's. Product of nonsq's is a sq. So 2(a − b), 2(b − c), 2(c − a) all squares. SUM to zero- same proof.

UPSHOT R(3,3) = 6 and the coloring used math of interest!

R(4,4) = 18

$R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

R(4,4) = 18

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use COL(a, b) = RED if $a - b \equiv SQ \pmod{17}$, BLUE OW.

R(4,4) = 18

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use COL(a, b) = RED if $a - b \equiv SQ \pmod{17}$, BLUE OW.

Same idea as above for K_5 , but more cases. UPSHOT R(4,4) = 18 and the coloring used math of interest!

ション ふゆ アメリア メリア しょうくしゃ

R(3,5) = 14

$R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

R(3,5) = 14

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = RED \text{ if } a - b \equiv CUBE \pmod{14}$, BLUE OW.
R(3,5) = 14

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = RED \text{ if } a - b \equiv CUBE \pmod{14}$, BLUE OW.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Same idea as above for K_5 , but more cases.

R(3,5) = 14

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = RED \text{ if } a - b \equiv CUBE \pmod{14}$, BLUE OW.

Same idea as above for K_5 , but more cases.

UPSHOT R(3,5) = 14 and the coloring used math of interest!

A D > A P > A E > A E > A D > A Q A

This is a subgraph of the R(3,5) graph

R(3,4) = 9

This is a subgraph of the R(3,5) graph

UPSHOT R(3,4) = 9 and the coloring used math of interest!

・ロト・日本・ビー・ ビー・ ひくぐ

Good news R(4,5) = 25.

Good news R(4,5) = 25.

Bad news

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Good news R(4,5) = 25.

Bad news THATS IT.

Good news R(4,5) = 25.

Bad news THATS IT. No other R(a, b) are known using NICE methods.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Good news R(4,5) = 25.

Bad news THATS IT. No other R(a, b) are known using NICE methods. R(5,5)- I will give you a paper to read on that soon.

・ロト・四ト・モート ヨー うへの

Revisit those Numbers

Int means Interesting Math. Bor means Boring Math.

- ▶ $R(3,3) \le 6$. TIGHT. Int
- ▶ $R(3,4) \leq 9$. TIGHT. Int
- ▶ $R(3,5) \le 14$. TIGHT. Int
- ▶ $R(3,6) \le 19$. KNOWN: 18. Upper Bd Bor, Lower Bd Int
- ▶ $R(3,7) \leq 26$. KNOWN: 23. Upper Bd Bor, Lower Bd Int
- ▶ $R(4,4) \le 18$. TIGHT. Int
- ► R(4,5) ≤ 31. KNOWN: 25. Both bd Bor
- ▶ $R(5,5) \le 62$. KNOWN: Will see it in the paper I give out.

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Moral of the Story

 At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

Moral of the Story

- At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
- Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.

ション ふゆ アメリア メリア しょうくしゃ