
Small Ramsey Numbers

Exposition by William Gasarch

April 15, 2022



Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K6 there is a mono K3.

Question What if we color the edges of K5?
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Coloring of K5 with no Mono K3

0

1

23

4

This graph is not arbitrary.
SQ5 = {x2 (mod 5) : 0 ≤ x ≤ 4} = {0, 1, 4}.
I If i − j ∈ SQ5 then RED.

I If i − j /∈ SQ5 then BLUE.



Asymmetric Ramsey Numbers

Definition R(a, b) is least n such that for all 2-colorings of Kn

there is either a red Ka or a blue Kb.

1. R(a, b) = R(b, a).

2. R(2, b) = b

3. R(a, 2) = a



R(a,b) ≤ R(a − 1,b) + R(a,b − 1)

Theorem R(a, b) ≤ R(a− 1, b) + R(a, b − 1)
Proof
Let n = R(a− 1, b) + R(a, b − 1). COL :

([n]
2

)
→ [2].

Case 1 (∃v)[degR(v) ≥ R(a− 1, b)]. Look at the R(a− 1, b)
vertices that are RED to v . By Definition of R(a− 1, b) either

I There is a RED Ka−1. Combine with v to get RED Ka.

I There is a BLUE Kb.

Case 2 (∃v)[degB(v) ≥ R(a, b − 1)]. Similar to Case 1.

Case 3
(∀v)[degR(v) ≤ R(a− 1, b)− 1 ∧ degB(v) ≤ R(a, b − 1)− 1]
(∀v)[deg(v) ≤ R(a− 1, b) + R(a, b − 1)− 2 = n − 2]
Not possible since every vertex of Kn has degree n − 1.



R(a,b) ≤ R(a − 1,b) + R(a,b − 1)

Theorem R(a, b) ≤ R(a− 1, b) + R(a, b − 1)
Proof
Let n = R(a− 1, b) + R(a, b − 1). COL :

([n]
2

)
→ [2].

Case 1 (∃v)[degR(v) ≥ R(a− 1, b)]. Look at the R(a− 1, b)
vertices that are RED to v . By Definition of R(a− 1, b) either

I There is a RED Ka−1. Combine with v to get RED Ka.

I There is a BLUE Kb.

Case 2 (∃v)[degB(v) ≥ R(a, b − 1)]. Similar to Case 1.

Case 3
(∀v)[degR(v) ≤ R(a− 1, b)− 1 ∧ degB(v) ≤ R(a, b − 1)− 1]
(∀v)[deg(v) ≤ R(a− 1, b) + R(a, b − 1)− 2 = n − 2]
Not possible since every vertex of Kn has degree n − 1.



R(a,b) ≤ R(a − 1,b) + R(a,b − 1)

Theorem R(a, b) ≤ R(a− 1, b) + R(a, b − 1)
Proof
Let n = R(a− 1, b) + R(a, b − 1). COL :

([n]
2

)
→ [2].

Case 1 (∃v)[degR(v) ≥ R(a− 1, b)]. Look at the R(a− 1, b)
vertices that are RED to v . By Definition of R(a− 1, b) either

I There is a RED Ka−1. Combine with v to get RED Ka.

I There is a BLUE Kb.

Case 2 (∃v)[degB(v) ≥ R(a, b − 1)]. Similar to Case 1.

Case 3
(∀v)[degR(v) ≤ R(a− 1, b)− 1 ∧ degB(v) ≤ R(a, b − 1)− 1]
(∀v)[deg(v) ≤ R(a− 1, b) + R(a, b − 1)− 2 = n − 2]
Not possible since every vertex of Kn has degree n − 1.



Lets Compute Bounds on R(a, b)

I R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6

I R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 = 10

I R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 10 = 15

I R(3, 6) ≤ R(2, 6) + R(3, 5) ≤ 6 + 15 = 21

I R(3, 7) ≤ R(2, 7) + R(3, 6) ≤ 7 + 21 = 28

Can we make some improvements to this? YES!
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R(3, 4) ≤ 9

Theorem R(3, 4) ≤ 9.
Let COL be a 2-coloring of the edges of K9.
Case 1 (∃v)[degR(v) ≥ 4]. v1, v2, v3, v4 are RED to v .

If any of vi , vj is RED, then v , vi , vj are RED K3.
If not then v1, v2, v3, v4 is BLUE K4.

Case 2 (∃v)[degB(v) ≥ 6]. v1, v2, v3, v4, v5, v6 are BLUE to v .
Either:
(1) a RED K3, or
(2) a BLUE K3, which together with v is a BLUE K4.
NOTE Can’t have any degR(v) ≤ 2.

Case 3 (∀v)[degR(v) = 3]. The RED subgraph has 9 nodes each
of degree 3. Impossible!
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Reminder of the Odd Vertex Things

Lemma Let G = (V ,E ) be a graph.

Veven = {v : deg(v) ≡ 0 (mod 2)}
Vodd = {v : deg(v) ≡ 1 (mod 2)}

Then |Vodd| ≡ 0 (mod 2).

Recall that for any graph G = (V ,E ):∑
v∈Veven

deg(v)+
∑

v∈Vodd

deg(v) =
∑
v∈V

deg(v) = 2|E | ≡ 0 (mod 2).

∑
v∈Vodd

deg(v) ≡ 0 (mod 2).

Sum of odds ≡ 0 (mod 2). Must have even numb of them. So
|Vodd| ≡ 0 (mod 2).
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A Generalization of this Trick

What was it about R(3, 4) that made that trick work?

We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10

Key: R(2, 4) and R(3, 3) were both even!

Theorem R(a, b) ≤
1. R(a, b − 1) + R(a− 1, b) always.

2. R(a, b − 1) + R(a− 1, b)− 1 if
R(a, b − 1) ≡ R(a− 1, b) ≡ 0 (mod 2)



A Generalization of this Trick

What was it about R(3, 4) that made that trick work?
We originally had

R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 ≤ 10
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Some Better Upper Bounds

I R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6.

I R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6− 1 = 9.

I R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 9 = 14.

I R(3, 6) ≤ R(2, 6) + R(3, 5) ≤ 6 + 14− 1 = 19.

I R(3, 7) ≤ R(2, 7) + R(3, 6) ≤ 7 + 19 = 26

I R(4, 4) ≤ R(3, 4) + R(4, 3) ≤ 9 + 9 = 18.

I R(4, 5) ≤ R(3, 5) + R(4, 4) ≤ 14 + 18− 1 = 31.

I R(5, 5) ≤ R(4, 5) + R(5, 4) = 62.

Are these tight?



R(3, 3) ≥ 6

R(3, 3) ≥ 6: Need coloring of K5 w/o mono K3.

Vertices are {0, 1, 2, 3, 4}.

COL(a, b) = RED if a− b ≡ SQ (mod 5), BLUE OW.

Note −1 = 22 (mod 5). Hence a− b ∈ SQ iff b− a ∈ SQ. So the
coloring is well defined.
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R(3, 3) ≥ 6

COL(a, b) = RED if a− b ≡ SQ (mod 5), BLUE OW.

I Squares mod 5: 1,4.

I If there is a RED triangle then a− b, b − c , c − a all SQ’s.
SUM is 0. So

x2 + y2 + z2 ≡ 0 (mod 5) Can show impossible

I If there is a BLUE triangle then a− b, b − c , c − a all
non-SQ’s. Product of nonsq’s is a sq. So
2(a− b), 2(b − c), 2(c − a) all squares. SUM to zero- same
proof.

UPSHOT R(3, 3) = 6 and the coloring used math of interest!



R(4, 4) = 18

R(4, 4) ≥ 18: Need coloring of K17 w/o mono K4.

Vertices are {0, . . . , 16}.

Use
COL(a, b) = RED if a− b ≡ SQ (mod 17), BLUE OW.

Same idea as above for K5, but more cases.
UPSHOT R(4, 4) = 18 and the coloring used math of interest!
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R(3, 5) ≥ 14: Need coloring of K13 w/o RED K3 or BLUE K5.

Vertices are {0, . . . , 13}.

Use
COL(a, b) = RED if a− b ≡ CUBE (mod 14), BLUE OW.

Same idea as above for K5, but more cases.

UPSHOT R(3, 5) = 14 and the coloring used math of interest!
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Can we extend these Patterns?

Good news R(4, 5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.

R(5, 5)– I will give you a paper to read on that soon.
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Bad news

THATS IT.
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Revisit those Numbers

Int means Interesting Math. Bor means Boring Math.

I R(3, 3) ≤ 6. TIGHT. Int

I R(3, 4) ≤ 9. TIGHT. Int

I R(3, 5) ≤ 14. TIGHT. Int

I R(3, 6) ≤ 19. KNOWN: 18. Upper Bd Bor, Lower Bd Int

I R(3, 7) ≤ 26. KNOWN: 23. Upper Bd Bor, Lower Bd Int

I R(4, 4) ≤ 18. TIGHT. Int

I R(4, 5) ≤ 31. KNOWN: 25. Both bd Bor

I R(5, 5) ≤ 62. KNOWN: Will see it in the paper I give out.



Moral of the Story

1. At first there seemed to be interesting mathematics with
mods and primes leading to nice graphs.

(Joel Spencer) The Law of Small Numbers: Patterns that
persist for small numbers will vanish when the calculations
get to hard.

2. Seemed like a nice Math problem that would involve
interesting and perhaps deep mathematics. No. The work on
it is interesting and clever, but (1) the math is not deep, and
(2) progress is slow.
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