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Comparing Cardinalities

• Let 𝐴𝐴,𝐵𝐵 be sets.
• If there exists an injection (1-1 mapping) between A and B, but no 

surjection (onto mapping) from A to B, we will say that 𝐴𝐴 < |𝐵𝐵|
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Comparing Cardinalities

• Let 𝐴𝐴,𝐵𝐵 be sets.
• If there exists an injection (1-1 mapping) between A and B, but no 

surjection (onto mapping) from A to B, we will say that 𝐴𝐴 < |𝐵𝐵|

𝐴𝐴 𝐵𝐵

Here’s an 
injection…

But there’s no 
surjection 



Re-Define Rationals

• A rational is the root of an equation of the form

𝑎𝑎 ⋅ 𝑥𝑥 + 𝑏𝑏 = 0

where 𝑎𝑎, 𝑏𝑏 ∈ ℤ.

• Also called algebraic numbers of degree 1 (ALG1)
• Note: ALG1 is countable.



ALG2

• A number is in ALG2 if it is a root of an equation of the form

𝑎𝑎 ⋅ 𝑥𝑥2 + 𝑏𝑏 ⋅ 𝑥𝑥 + 𝑐𝑐 = 0

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ



Examples of Numbers in ALG2

• 3 is a root of 𝑥𝑥2 − 9 = 0
• 2 is a root of 𝑥𝑥2 − 2 = 0 (so irrationals can be in ALG2!)
• − 2 is a root of 𝑥𝑥2 − 2 = 0
• 𝑖𝑖 is a root of 𝑥𝑥2 + 1 = 0 (so complex numbers can be in ALG2!)
• 3𝑖𝑖 + 1 is a root of 𝑥𝑥2 − 2𝑥𝑥 + 10 = 0 (convince yourselves)



ALG2

• Recall: a number is in ALG2 if it is a root of an equation of the form

𝑎𝑎 ⋅ 𝑥𝑥2 + 𝑏𝑏 ⋅ 𝑥𝑥 + 𝑐𝑐 = 0

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ
• Is ALG2 countable? Yes No Unknown 

to science
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• Recall: a number is in ALG2 if it is a root of an equation of the form

𝑎𝑎 ⋅ 𝑥𝑥2 + 𝑏𝑏 ⋅ 𝑥𝑥 + 𝑐𝑐 = 0

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ
• Is ALG2 countable? Yes No Unknown 

to science



ALG2 Caveat (Countability Proof Follows)

1. Yes, ALG2 does contain some irrationals, e.g 5
2. ALG2 does not contain all of the reals. There are notes on the 

class slides website to show that 21/3 is not in ALG2. The proof 
requires linear algebra. It is not hard; however, it is not 
required for this course.

3. ALG3 (you can guess) does not contain all of the reals. There 
are notes on the class website to show that 21/4 is not in ALG3. 
This proof also requires linear algebra. It is also not hard; 
however, it is not required for this course.

4. Key: there aren’t “that many” irrationals in ALG2.



ALG2 is Countable

1. We identify 𝑎𝑎 ⋅ 𝑥𝑥2 + 𝑏𝑏 ⋅ 𝑥𝑥 + 𝑐𝑐 = 0 with triple 𝑎𝑎, 𝑏𝑏, 𝑐𝑐
2. Recall: 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ × ℤ × ℤ .
3. Recall: ℤ × ℤ × ℤ is countable.
4. So we can list out all quadratic equations as 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 …

• Let 𝑟𝑟11, 𝑟𝑟12 be roots of 𝑞𝑞1,
• Let 𝑟𝑟21, 𝑟𝑟22 be roots of 𝑞𝑞2,
• …
• Let 𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2 be roots of 𝑞𝑞𝑖𝑖,

5. List of roots: 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟21, 𝑟𝑟22, 𝑟𝑟31, 𝑟𝑟32, …



ALG2 is Countable

• List of roots: 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟21, 𝑟𝑟22, 𝑟𝑟31, 𝑟𝑟32, …
• This shows that ALG2 is countable 
• Caveat: some roots might appear more than once in the list.
• 2 solutions:

1. Just remove them (like in the proof that ℚ is countable)
2. Theorem: subset of countable set is countable. (prove it yourselves)



ALG3

• A number is in ALG3 if it is a root of an equation of the form

𝑎𝑎 ⋅ 𝑥𝑥3 + 𝑏𝑏 ⋅ 𝑥𝑥2 + 𝑐𝑐 ⋅ 𝑥𝑥 + 𝑑𝑑 = 0

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℤ
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ALG3

• A number is in ALG3 if it is a root of an equation of the form

𝑎𝑎 ⋅ 𝑥𝑥3 + 𝑏𝑏 ⋅ 𝑥𝑥2 + 𝑐𝑐 ⋅ 𝑥𝑥 + 𝑑𝑑 = 0

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℤ

• Is ALG3 countable? Yes No Unknown 
to science



ALG3 is Countable

1. We identify 𝑎𝑎 ⋅ 𝑥𝑥3 + 𝑏𝑏 ⋅ 𝑥𝑥2 + 𝑐𝑐 ⋅ 𝑥𝑥 + 𝑑𝑑 = 0 with triple 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑
2. Recall: 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℤ × ℤ × ℤ × ℤ.
3. Recall: ℤ × ℤ × ℤ × ℤ is countable.
4. Can list out all cubic equations as 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 …

• Let 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟13 be roots of 𝑞𝑞1,
• Let 𝑟𝑟21, 𝑟𝑟22, 𝑟𝑟23 be roots of 𝑞𝑞2,
• …
• Let 𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2, 𝑟𝑟𝑖𝑖3 be roots of 𝑞𝑞𝑖𝑖,

5. List of roots: 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟13, 𝑟𝑟21, 𝑟𝑟22, 𝑟𝑟23, 𝑟𝑟31, 𝑟𝑟32, 𝑟𝑟33, …



ALG3 is Countable

1. We identify 𝑎𝑎 ⋅ 𝑥𝑥3 + 𝑏𝑏 ⋅ 𝑥𝑥2 + 𝑐𝑐 ⋅ 𝑥𝑥 + 𝑑𝑑 = 0 with triple 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑
2. Recall: 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℤ × ℤ × ℤ × ℤ.
3. Recall: ℤ × ℤ × ℤ × ℤ is countable.
4. Can list out all cubic equations as 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 …

• Let 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟13 be roots of 𝑞𝑞1,
• Let 𝑟𝑟21, 𝑟𝑟22, 𝑟𝑟23 be roots of 𝑞𝑞2,
• …
• Let 𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2, 𝑟𝑟𝑖𝑖3 be roots of 𝑞𝑞𝑖𝑖,

5. List of roots: 𝑟𝑟11, 𝑟𝑟12, 𝑟𝑟13, 𝑟𝑟21, 𝑟𝑟22, 𝑟𝑟23, 𝑟𝑟31, 𝑟𝑟32, 𝑟𝑟33, …

Same argument: 
ALG3 is countable



ALG𝑖𝑖 Countable (𝑖𝑖 ∈ ℕ)

• We prove this:



ALG𝑖𝑖 Countable (𝑖𝑖 ∈ ℕ)

• We prove this:
• NOPE!

• We are busy people (class moto)



The Algebraic Numbers

• Definition: A number is algebraic if it’s a root of a polynomial with 
integer co-efficients.

• Denote the set 𝐴𝐴𝐴𝐴𝐴𝐴. Note that:

𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝑖𝑖=1

+∞

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

• Since union of countable sets is countable and each 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is 
countable, 𝐴𝐴𝐴𝐴𝐴𝐴 is countable



Definition

• A number is transcendental if it is does not satisfy any algebraic 
equation over the integers.

• Denote the set of transcendental numbers with 𝑇𝑇𝑇𝑇
• 𝑇𝑇𝑇𝑇= ℂ − 𝐴𝐴𝐴𝐴𝐴𝐴 (remember: ℂ is the set of complex numbers).



Numbers in 𝑇𝑇𝑇𝑇

• Can you name numbers in 𝑇𝑇𝑇𝑇?
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• 𝜋𝜋 (this is a hard theorem, says Bill)
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Numbers in 𝑇𝑇𝑇𝑇

• Can you name numbers in 𝑇𝑇𝑇𝑇?
• 𝜋𝜋 (this is a hard theorem, says Bill)
• 𝑒𝑒 (easier but still hard)
• Any more?
• “2𝜋𝜋𝜋, says Jason (“Don’t be a wiseguy”, says Bill)
• Any more actually different?
• 0.10100100000010000000000000000000000001 … .

• “We” (Bill) can prove that such numbers are not algebraic.
• The proof of this will not be in the final, unless..

1! zeroes
2!

zeroes
3!

zeroes
4!

zeroes



Any Other Numbers in 𝑇𝑇𝑇𝑇?

• Are there any other numbers in  𝑇𝑇𝑇𝑇?

Yes No Unknown 
to science



Any Other Numbers in 𝑇𝑇𝑇𝑇?

• Are there any other numbers in  𝑇𝑇𝑇𝑇?

• Can we name any?

Yes No Unknown 
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Any Other Numbers in 𝑇𝑇𝑇𝑇?

• Are there any other numbers in  𝑇𝑇𝑇𝑇?

• Can we name any?
• NO 

Yes No Unknown 
to science



Any Other Numbers in 𝑇𝑇𝑇𝑇?

• Are there any other numbers in  𝑇𝑇𝑇𝑇?

• Can we name any?
• NO 
• But hold on! We will talk about this matter soon. 

Yes No Unknown 
to science



Size of 𝑇𝑇𝑇𝑇

• Before we look inside 𝑇𝑇𝑇𝑇 any further, is it countable?

Yes No Unknown 
to science



Size of 𝑇𝑇𝑇𝑇

• Before we look inside 𝑇𝑇𝑇𝑇 any further, is it countable?

• Recall: 
1. 𝑇𝑇𝑇𝑇 = ℂ − 𝐴𝐴𝐴𝐴𝐴𝐴 (TransceNdental numbers are all non-ALGebraic complex numbers)
2. ℂ is uncountable (countability lecture)
3. 𝐴𝐴𝐴𝐴𝐴𝐴 countable
• From 1, 2 and 3 we can deduce that 𝑇𝑇𝑇𝑇 is uncountable

Yes No Unknown 
to science



Punchline

• Most numbers are transcendental!
• But most numbers we (humans) use are not!
• Recall the proof that there exist (uncountably many) transcendental 

numbers:
1. 𝐴𝐴𝐴𝐴𝐴𝐴 countable
2. ℂ is uncountable
3. So 𝑇𝑇𝑇𝑇 = ℂ − 𝐴𝐴𝐴𝐴𝐴𝐴 is uncountable, hence 𝑇𝑇𝑇𝑇 ≠ ∅

• This proof is non-constructive, since it does not produce a single 
transcendental number!



Punchline

• Most numbers are transcendental!
• But most numbers we (humans) use are not!
• Recall the second proof, that there exist (uncountably many) 

transcendental numbers:
1. 𝐴𝐴𝐴𝐴𝐴𝐴 countable
2. ℂ is uncountable
3. So 𝑇𝑇𝑇𝑇 = ℂ − 𝐴𝐴𝐴𝐴𝐴𝐴 is uncountable, hence 𝑇𝑇𝑇𝑇 ≠ ∅

• This proof is non-constructive, since it does not produce a single 
transcendental number!

• Hence, besides the ones we provided you with 
(𝜋𝜋, 𝑒𝑒, 0.10100100000010000000000000000000000001 … . ) we can’t give you 
more!



New topic: Cardinality



Cardinality

• Recall: 𝐴𝐴 and 𝐵𝐵 of the same size if there’s a bijection from 𝑨𝑨 to 𝑩𝑩.
• ℕ,ℤ,ℚ>0,ℚ<0,ℚ,ℕ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℕ𝑜𝑜𝑜𝑜𝑜𝑜, ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℤ𝑜𝑜𝑜𝑜𝑜𝑜 ,ℕ × ℕ,ℕ × ℕ × ℕ are all 

of the same size



Cardinality

• Recall: 𝐴𝐴 and 𝐵𝐵 of the same size if there’s a bijection from 𝑨𝑨 to 𝑩𝑩.
• ℕ,ℤ,ℚ>0,ℚ<0,ℚ,ℕ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℕ𝑜𝑜𝑜𝑜𝑜𝑜, ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℤ𝑜𝑜𝑜𝑜𝑜𝑜 ,ℕ × ℕ,ℕ × ℕ × ℕ are all 

of the same size
• This cardinality is denoted ℵ0 (aleph-naught)



Cardinality

• What about 0,1 , [0, 1],ℝ,ℝ × ℝ,ℝ × ℝ × ℝ? Are all of these the 
same size?

Yes No Unknown 
to science



Cardinality

• What about 0,1 , [0, 1],ℝ,ℝ × ℝ,ℝ × ℝ × ℝ? Are all of these the 
same size?

• Proof follows

Yes No Unknown 
to science



(−𝜋𝜋
2

, 𝜋𝜋
2

) Same Size as ℝ

• Tangent function: domain (−𝜋𝜋
2

, 𝜋𝜋
2

) , co-domain ℝ.
• Both onto and 1-1, so bijection.



Bijection from 0, 1 to −𝜋𝜋
2

, 𝜋𝜋
2

• This linear function is a bijection from (0,1) to −𝜋𝜋
2

, 𝜋𝜋
2

:

𝑓𝑓 𝑥𝑥 = 𝜋𝜋 ⋅ 𝑥𝑥 −
𝜋𝜋
2

• So we have a bijection from 0, 1 to −𝜋𝜋
2

, 𝜋𝜋
2

…

• ... and a bijection from −𝜋𝜋
2

, 𝜋𝜋
2

to ℝ…

• Which means that 0, 1 , −𝜋𝜋
2

, 𝜋𝜋
2

and ℝ are all the same size!



0, 1 , 0, 1 , 0, 1 , (0, 1)

• All the same size.
• We are busy people and will not prove this.



0, 1 , 0, 1 × (0, 1)

• We define a bijection 𝑓𝑓: 0, 1 ↦ 0, 1 × (0, 1) as follows:

𝑓𝑓 0. 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝑥𝑥5𝑥𝑥6 … =
(0. 𝑥𝑥1𝑥𝑥3𝑥𝑥5 … , 0. 𝑥𝑥2𝑥𝑥4𝑥𝑥6 … , )

• Surprising, since 0, 1 is 1D and 0, 1 × (0, 1) is 2D.
• Bijections do not necessarily preserve dimension!



0, 1 , 0, 1 × 0, 1 × 0, 1

• We define a bijection 𝑓𝑓: 0, 1 ↦ 0, 1 × 0, 1 × 0, 1 as follows:

𝑓𝑓 0. 𝑥𝑥1𝑥𝑥2𝑥𝑥3 … =
(0. 𝑥𝑥1𝑥𝑥4𝑥𝑥7 … , 0. 𝑥𝑥2𝑥𝑥5𝑥𝑥8 … , 0. 𝑥𝑥3𝑥𝑥6𝑥𝑥9 … )



0, 1 , 0, 1 × 0, 1 × 0, 1

• We define a bijection 𝑓𝑓: 0, 1 ↦ 0, 1 × 0, 1 × 0, 1 as follows:

𝑓𝑓 0. 𝑥𝑥1𝑥𝑥2𝑥𝑥3 … =
(0. 𝑥𝑥1𝑥𝑥4𝑥𝑥7 … , 0. 𝑥𝑥2𝑥𝑥5𝑥𝑥8 … , 0. 𝑥𝑥3𝑥𝑥6𝑥𝑥9 … )

𝑥𝑥𝑖𝑖 with 𝑖𝑖 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑 3) 𝑥𝑥𝑖𝑖 with 𝑖𝑖 ≡ 2 (𝑚𝑚𝑚𝑚𝑑𝑑 3) 𝑥𝑥𝑖𝑖 with 𝑖𝑖 ≡ 2 (𝑚𝑚𝑚𝑚𝑑𝑑 3)



Explaining the Result of our Earlier Voting

• Recall that we now know 0,1 same size as ℝ
• We have also established that 0,1 , [0, 1],ℝ,ℝ × ℝ,ℝ × ℝ × ℝ all 

the same size, which explains the vote of “Yes”.

Yes No Unknown 
to science



𝒫𝒫 ℕ ,ℝ Same Size?

• ℝ uncountable
• 𝒫𝒫 ℕ uncountable
• Are they the same size?

Yes No Unknown 
to science



𝒫𝒫 ℕ ,ℝ Same Size!

• ℝ uncountable
• 𝒫𝒫 ℕ uncountable
• Are they the same size?

Yes No Unknown 
to science



Digression: Real Numbers in Base 10

• Normally, reals are in base 10. Example: 

3.14159 … = 3 × 100 +
1

10
+

4
102

+
1

103
+

5
104

+
9

105
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Digression: Real Numbers in Base 2

• Could just as easily express all reals in base 2.

11.0110 … = 1 × 21 + 1 × 20 +
0

21
+

1
22

+
1

23
+

0
104

• So, all numbers in [0, 1] are expressible as an infinite sequence of 0s 
and 1s in base 2.



Endpoints of [0, 1]

• Note that:

0.1111111(2) =
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Endpoints of [0, 1]

• Note that:

0.1111111(2) = 1
21

+ 1
22

+ 1
23

+ 1
24

+ ⋯ ↦ 1 (by convention, = 1)

• Upshot: we view elements of [0, 1] as infinite sequences of 0s and 1s



𝒫𝒫 ℕ ,ℝ Same Size!

• View 𝒫𝒫 ℕ as an infinite sequence of 0s and 1s

• Let’s see how this would work for 𝐏𝐏, the set of primes:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 …

0 0 1 1 0 1 0 1 0 0 0 1 0 1 …



𝒫𝒫 ℕ ,ℝ Same Size!

• View 𝒫𝒫 ℕ as an infinite sequence of 0s and 1s

• Let’s see how this would work for 𝐏𝐏, the set of primes:

We map this to

which is a real number in (0, 1) expressed in base 2!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 …

0 0 1 1 0 1 0 1 0 0 0 1 0 1 …

0 . 0 0 1 1 0 1 0 1 0 0 0 1 0 1 …



Bijection from 𝒫𝒫 ℕ to [0, 1]

• 𝑎𝑎1𝑎𝑎2𝑎𝑎3 … ∈ {0, 1}𝜔𝜔 (infinite sequences of 0s and 1s), hence an 
element of 𝒫𝒫 ℕ

maps to 

0.𝑎𝑎1𝑎𝑎2𝑎𝑎3 …

which is a real number in base 2.



Shorter Version

1. [0, 1] can be viewed as the set of all infinite sequences of 0s and 1s. 
({0, 1}𝜔𝜔)

2. 𝒫𝒫 ℕ can also be viewed as the same set.
3. Hence, they are the same size.



Shorter Version

1. [0, 1] can be viewed as the set of all infinite sequences of 0s and 1s. 
({0, 1}𝜔𝜔)

2. 𝒫𝒫 ℕ can also be viewed as the same set.
3. Hence, they are the same size.
• Recall: {0, 1}𝜔𝜔 uncountable.



Between ℕ and ℝ

• ℕ,ℤ,ℚ>0,ℚ<0,ℚ,ℕ × ℕ,ℕ × ℕ × ℕ are all of the same size
• 0,1 , [0, 1],ℝ,ℝ × ℝ,ℝ × ℝ × ℝ also of the same size
• |ℕ| < |ℝ| (by diagonalization)
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Yes No Unknown 
to science



Between ℕ and ℝ

• ℕ,ℤ,ℚ>0,ℚ<0,ℚ, ,ℕ × ℕ,ℕ × ℕ × ℕ are all of the same size
• 0,1 , [0, 1],ℝ,ℝ × ℝ,ℝ × ℝ × ℝ also of the same size
• |ℕ| < |ℝ| (by diagonalization)
• Does there exist a set 𝐴𝐴 such that ℕ < 𝐴𝐴 < |ℝ|?

Yes No Unknown 
to science

Continuum 
Hypothesis



It’s Actually Worse than Unknown!

• Let CH be the statement: “There is no set A such that ℕ < 𝐴𝐴 < |ℝ|”
• ZFC is a set of 9 axioms from which you can derive all mathematics 

• Example: If 𝐴𝐴 and 𝐵𝐵 are sets, so is 𝐴𝐴 ∪ 𝐵𝐵, and so are 𝒫𝒫 𝐴𝐴 , 𝒫𝒫 𝐵𝐵 ,
1. 𝑍𝑍𝑍𝑍𝑍𝑍 ∪ 𝑍𝑍𝐶𝐶 does not lead to a contradiction.
2. 𝑍𝑍𝑍𝑍𝑍𝑍 ∪ (∼ 𝑍𝑍𝐶𝐶) also does not lead to a contradiction!
3. Hence, 𝑍𝑍𝐶𝐶 will never be proven or disproven.



“Resolving” CH

• There are those who think CH can be resolved by adding new axioms 
to Set Theory.

• Bill says they’re stupid, because the axioms are not obviously true.



Alephs

• Reminder: ℕ,ℤ,ℚ>0,ℚ<0,ℚ, ,ℕ × ℕ,ℕ × ℕ × ℕ are all of the same 
cardinality, denoted ℵ0 (aleph-naught)

• 0,1 , 0, 1 ,ℝ,ℝ × ℝ,ℝ × ℝ × ℝ,𝑃𝑃(ℕ) also of the same size.
• How do we denote the cardinality of those sets?

ℵ1 2ℵ0 Something 
elseℵ0 + 1
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Why is ℝ not denoted ℵ1?

• If there’s no set A such that ℕ < 𝐴𝐴 < ℝ then ℝ = ℵ1.
• If there is one such set, then ℝ = ℵ2.
• If there are two such sets, then…
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• We won’t continue adding indices to ℵ, we are busy people.



Why is ℝ not denoted ℵ1?

• If there’s no set A such that ℕ < 𝐴𝐴 < ℝ then ℝ = ℵ1.
• If there is one such set, then ℝ = ℵ2.
• If there are two such sets, then…

• We won’t continue adding indices to ℵ, we are busy people.

• We do not (and cannot) know which among those two holds, so can’t 
use any ℵ𝑖𝑖 for ℝ .



Why is ℝ denoted 2ℵ0?

• ℝ = 𝒫𝒫(ℕ)
• Recall: For any 𝑛𝑛 ∈ ℕ, |𝒫𝒫 1, 2, 3, … ,𝑛𝑛 | = 2𝑒𝑒

• We extend this notation to |𝒫𝒫 𝐴𝐴 | = 2|𝐴𝐴|.

Hence 𝒫𝒫(ℕ) = 2|ℕ| = 2ℵ0



STOP 
RECORDING
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