Sets of Functions that are Uncountable

Exposition by William Gasarch

May 4, 2022

Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm The set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable. Pf

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm The set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable. Pf

Assume, BWOC, that set of functions $\mathbb N$ to $\mathbb N$ is countable.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm The set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable. Pf

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm The set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable. Pf

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots Consider the function

$$F(x)=f_x(x)+1.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm The set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable. Pf

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots . Consider the function

$$F(x)=f_x(x)+1.$$

ション ふゆ アメリア メリア しょうくしゃ

F cannot be f_1 since $F(1) \neq f_1(1)$.

Thm The set of all functions from $\mathbb N$ to $\mathbb N$ is uncountable. Pf

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots . Consider the function

$$F(x)=f_x(x)+1.$$

ション ふゆ アメリア メリア しょうくしゃ

F cannot be f_1 since $F(1) \neq f_1(1)$. F cannot be f_{83} since $F(83) \neq f_{83}(83)$.

Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable. **Pf**

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots . Consider the function

$$F(x)=f_x(x)+1.$$

ション ふゆ アメリア メリア しょうくしゃ

F cannot be f_1 since $F(1) \neq f_1(1)$. F cannot be f_{83} since $F(83) \neq f_{83}(83)$. For all *i*, *F* cannot be f_i since $F(i) \neq f_i(i)$.

Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable. **Pf**

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots . Consider the function

$$F(x)=f_x(x)+1.$$

ション ふぼう メリン メリン しょうくしゃ

F cannot be f_1 since $F(1) \neq f_1(1)$. F cannot be f_{83} since $F(83) \neq f_{83}(83)$. For all *i*, *F* cannot be f_i since $F(i) \neq f_i(i)$. So *F* is NOT on the list and IS from \mathbb{N} to \mathbb{N} , contradiction.

Key to Last Proof

We had to make sure that the final object we produced was

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Key to Last Proof

We had to make sure that the final object we produced was

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Not in the list

We had to make sure that the final object we produced was

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

- Not in the list
- A function from \mathbb{N} to \mathbb{N} .

We had to make sure that the final object we produced was

- Not in the list
- A function from \mathbb{N} to \mathbb{N} .

For future proofs you must check both properties.

Thm The set of all functions from $\ensuremath{\mathbb{N}}$ to EVENS is uncountable.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm The set of all functions from $\mathbb N$ to EVENS is uncountable. Pf

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm The set of all functions from \mathbb{N} to EVENS is uncountable. **Pf**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume, BWOC, set of functions $\ensuremath{\mathbb{N}}$ to EVENS is countable.

Thm The set of all functions from \mathbb{N} to EVENS is uncountable. **Pf**

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Assume, BWOC, set of functions \mathbb{N} to EVENS is countable. Then can list them out f_1, f_2, \ldots

Thm The set of all functions from \mathbb{N} to EVENS is uncountable. **Pf**

Assume, BWOC, set of functions $\ensuremath{\mathbb{N}}$ to EVENS is countable.

Then can list them out f_1, f_2, \ldots

Consider the function

$$F(x)=f_x(x)+1.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm The set of all functions from \mathbb{N} to EVENS is uncountable. **Pf**

Assume, BWOC, set of functions \mathbb{N} to EVENS is countable. Then can list them out f_1, f_2, \ldots . Consider the function

$$F(x)=f_x(x)+1.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

CAN'T USE THIS! F is not from \mathbb{N} to EVENS. What to do?

Thm The set of all functions from \mathbb{N} to EVENS is uncountable. **Pf**

Assume, BWOC, set of functions \mathbb{N} to EVENS is countable. Then can list them out f_1, f_2, \ldots . Consider the function

$$F(x)=f_x(x)+1.$$

CAN'T USE THIS! F is not from \mathbb{N} to EVENS. What to do?

$$F(x)=f_x(x)+2.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thm The set of all functions from $\ensuremath{\mathbb{N}}$ to SQUARES is uncountable.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm The set of all functions from $\mathbb N$ to SQUARES is uncountable. Pf

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable. **Pf**

Assume, BWOC, set of all functions $\ensuremath{\mathbb{N}}$ to SQUARES is countable.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable. **Pf**

Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable. **Pf**

Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots

We want to define F so that $F(x) \neq f_x(x)$ AND F(x) is a square.

$$F(x) = (f_x(x) + 1)^2$$

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable. **Pf**

Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots

We want to define F so that $F(x) \neq f_x(x)$ AND F(x) is a square.

$$F(x) = (f_x(x) + 1)^2$$

ション ふゆ アメビア メロア しょうくり

Make sure this is not $f_x(x)$: $(f_x(x) + 1)^2 = f_x(x)^2 + 2f_x(x) + 1$

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable. **Pf**

Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots

We want to define F so that $F(x) \neq f_x(x)$ AND F(x) is a square.

$$F(x) = (f_x(x) + 1)^2$$

Make sure this is not $f_x(x)$: $(f_x(x) + 1)^2 = f_x(x)^2 + 2f_x(x) + 1$ IF $f_x(x)^2 + 2f_x(x) + 1 = f_x(x)$ then $f_x(x)^2 + f_x(x) + 1 = 0$

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable. **Pf**

Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots

We want to define F so that $F(x) \neq f_x(x)$ AND F(x) is a square.

$$F(x) = (f_x(x) + 1)^2$$

Make sure this is not $f_x(x)$: $(f_x(x) + 1)^2 = f_x(x)^2 + 2f_x(x) + 1$ IF $f_x(x)^2 + 2f_x(x) + 1 = f_x(x)$ then $f_x(x)^2 + f_x(x) + 1 = 0$ Only has complex solutions, so can't happen.

The set of constant functions is countable since here they are: $f_1(x) = 1$ $f_2(x) = 2$ etc.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The set of constant functions is countable since here they are: $f_1(x) = 1$ $f_2(x) = 2$ etc.

What goes wrong if we try to prove that the set of constant functions is uncountable?

The set of constant functions is countable since here they are: $f_1(x) = 1$ $f_2(x) = 2$ etc.

What goes wrong if we try to prove that the set of constant functions is uncountable?

$$F(x)=f_x(x)+1.$$

The set of constant functions is countable since here they are: $f_1(x) = 1$ $f_2(x) = 2$

etc.

What goes wrong if we try to prove that the set of constant functions is uncountable?

$$F(x)=f_x(x)+1.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1) F is NOT on the list. Good!

The set of constant functions is countable since here they are: $f_1(x) - 1$

$$f_1(x) = 1$$

 $f_2(x) = 2$

etc.

What goes wrong if we try to prove that the set of constant functions is uncountable?

$$F(x)=f_x(x)+1.$$

ション ふゆ アメビア メロア しょうくり

1) F is NOT on the list. Good!

2) But F is not constant. So proof fails.

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of ${\ensuremath{\mathbb Q}}$ can be described with FINITE number of bits.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

R, $\{f : \mathbb{N} \to \mathbb{N}\}$, Every element of *R* requires an INFINITE number of bits to represent.

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

R, $\{f : \mathbb{N} \to \mathbb{N}\}$, Every element of *R* requires an INFINITE number of bits to represent. NOT quite right: Some elements of *R* are easy to describe, e.g., -3, $\frac{5}{12}$.

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

 $R, \{f: \mathbb{N} \to \mathbb{N}\},\$

Every element of R requires an INFINITE number of bits to represent.

NOT quite right: Some elements of *R* are easy to describe, e.g., -3, $\frac{5}{12}$.

But **most** elements of R require and infinite number of bits.

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

 $R, \{f: \mathbb{N} \to \mathbb{N}\},\$

Every element of R requires an INFINITE number of bits to represent.

NOT quite right: Some elements of *R* are easy to describe, e.g., -3, $\frac{5}{12}$.

But **most** elements of R require and infinite number of bits.

Rule of Thumb

Let A be an infinite set.

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

 $R, \{f: \mathbb{N} \to \mathbb{N}\},\$

Every element of R requires an INFINITE number of bits to represent.

NOT quite right: Some elements of *R* are easy to describe, e.g., -3, $\frac{5}{12}$.

But **most** elements of R require and infinite number of bits.

Rule of Thumb

Let A be an infinite set.

If every element of A can be represented with a finite number of bits then A is countable

 $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.

 $R, \{f: \mathbb{N} \to \mathbb{N}\},\$

Every element of R requires an INFINITE number of bits to represent.

NOT quite right: Some elements of *R* are easy to describe, e.g., -3, $\frac{5}{12}$.

But **most** elements of R require and infinite number of bits.

Rule of Thumb

Let A be an infinite set.

- If every element of A can be represented with a finite number of bits then A is countable
- If an infinite number of elements of A require an infinite number of bits to be represented, then A is NOT countable.