
START
RECORDING

Circuits
CMSC250

What if T=1 and False =0?

• This is useful when we get to circuits
• What is AND, OR, and NOT?
• NOT = 1-x

𝒙𝒙 ~𝒙𝒙

F T
T F

𝒙𝒙 𝟏𝟏 − 𝒙𝒙

0 1
1 0

What if T=1 and False =0?

• What is AND, OR, NOT?
• AND = xy

𝒙𝒙 𝒚𝒚 𝒙𝒙𝒚𝒚

0 0 0

0 1 0

1 0 0

1 1 1

𝒙𝒙 𝒚𝒚 𝒙𝒙 ∧ 𝒚𝒚

F F F

F T F

T F F

T T T

What if T=1 and False =0?

• What is AND, OR, and NOT?
• OR = x+y? NO!

𝒙𝒙 𝒚𝒚 𝒙𝒙 + 𝒚𝒚

0 0 0

0 1 1

1 0 1

1 1 10

𝒙𝒙 𝒚𝒚 𝒙𝒙 ∨ 𝒚𝒚

F F F

F T T

T F T

T T T

What if T=1 and False =0?

• What is AND, OR, and NOT?
• OR = x+y-xy

𝒙𝒙 𝒚𝒚 𝒙𝒙 + 𝒚𝒚 𝒙𝒙 + 𝒚𝒚 − 𝐱𝐱𝐱𝐱

0 0 0 0

0 1 1 1

1 0 1 1

1 1 10 1

𝒙𝒙 𝒚𝒚 𝒙𝒙 ∨ 𝒚𝒚

F F F

F T T

T F T

T T T

Circuits

• We can build circuits for addition, multiplication, division, bit
shifting…

• Every logical operation we have learned (~,∧,∨) maps
straightforwardly to a tiny piece of hardware called a logical gate.

• These gates connect to each other to make arbitrarily complicated
circuits!

From a truth table to a formula

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

From a truth table to a formula

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

• Let us focus entirely on the rows that output 1!

Focusing on the 1st row…

p q r output

0 0 0 1

• Write a formula that is ’1’ only on inputs p =0, q = 0, r = 0.

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Focusing on the 1st row…

p q r output

0 0 0 1

• Write a simple formula that is ’1’ only on inputs p =0, q = 0, r = 0.

~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Focusing on the 4th row…

p q r output

0 1 1 1

• Same deal

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Focusing on the 4th row…

p q r output

0 1 1 1

• Same deal
~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Focusing on the 5th row…

p q r output

1 0 0 1

𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Focusing on the 8th row…

p q r output

1 1 1 1

𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

How do we combine those simple formulae?

𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟

𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟

~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟

~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟

How do we combine those simple formulae?

(𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)

(𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)

(~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)

(~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟) ∨
∨

∨

• Outputs 1 if and only if the truth table outputs 1!

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

How do we combine those simple formulae?

(𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)

(𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)

(~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)

(~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟) ∨
∨

∨

• Outputs 1 if and only if the truth table outputs 1!
• We want to do this in hardware!

p q r output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Logical gates

• The smallest pieces of hardware that we will examine are called
logical gates.

• Most gates for this course will take bits as inputs and will emit one bit
as output. (Not all gates have this property)

• Those gates can connect to each other in various different ways in
order to create more complex circuits

Gate

𝐼𝐼1
𝐼𝐼2
𝐼𝐼𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂

Our first gate

𝑨𝑨 𝒐𝒐𝒐𝒐𝒐𝒐
0 1

1 0

• This gate is known as the inverter.
• It corresponds exactly to the negation operation in propositional logic!

• Where 1, set True.
• Where 0, set False

A out

Our second gate

𝑝𝑝

𝑞𝑞
𝑟𝑟

𝒑𝒑 𝒒𝒒 𝒓𝒓
0 0 0

0 1 0

1 0 0

1 1 1

• Corresponds to:

Conjunction Disjunction

Our second gate (AND gate)

𝑝𝑝

𝑞𝑞
𝑟𝑟

𝒑𝒑 𝒒𝒒 𝒓𝒓
0 0 0

0 1 0

1 0 0

1 1 1

• Corresponds to:

Conjunction Disjunction

Our second gate (AND gate)

𝑝𝑝

𝑞𝑞
𝑟𝑟

𝒑𝒑 𝒒𝒒 𝒓𝒓
0 0 0

0 1 0

1 0 0

1 1 1

• Corresponds to:

Conjunction Disjunction

Our third gate (OR gate)

𝑝𝑝

𝑞𝑞
𝑟𝑟

𝒑𝒑 𝒒𝒒 𝒓𝒓
0 0 0

0 1 1

1 0 1

1 1 1

• Corresponds to logical disjunction (OR)

Our fourth and fifth gate (NAND and NOR gate)

𝑝𝑝

𝑞𝑞
𝑟𝑟

𝒑𝒑 𝒒𝒒 𝒓𝒓
0 0 1

0 1 0

1 0 0

1 1 0

𝑝𝑝

𝑞𝑞
𝑟𝑟

𝒑𝒑 𝒒𝒒 𝒓𝒓
0 0 1

0 1 1

1 0 1

1 1 0

Exercises

• Which boolean function does this circuit correspond to?

𝑝𝑝
𝑠𝑠

𝑟𝑟 𝑞𝑞

Exercises

• Which boolean function does this circuit correspond to?

𝑝𝑝
𝑠𝑠

𝑟𝑟 𝑞𝑞

𝑝𝑝 ∧ 𝑠𝑠 ∨ 𝑟𝑟

Exercises

• And this?

Exercises

• And this?

𝑚𝑚 ∧ 𝑛𝑛 ∨ (∼ 𝑘𝑘 ∧ 𝑙𝑙)

And this?

And this?

(𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ) ∧ (𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))

𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠

𝑘𝑘 ∧ ℓ

(𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))

𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ

𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ
∧ (𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))

And this?

(𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ) ∧ (𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))

𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠

𝑘𝑘 ∧ ℓ

(𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))

𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ

𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ
∧ (𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))

Can we make this
circuit cheaper?

Simplifying the circuit…

(𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑘𝑘 ∧ ℓ) ∧ (𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ 𝑚𝑚))
≡ 𝑟𝑟 ∧ 𝑞𝑞 ∧ 𝑠𝑠 ∨ ((𝑘𝑘 ∧ ℓ) ∧ 𝑚𝑚)

New circuit: Three gates Old circuit: Five gates

Exercises

1. Which logical expression is computed by the following circuit?

Exercises

1. Which logical expression is computed by the following circuit?
2. Simplify the circuit as much as possible!

Coming back to our original formula…

(𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)(𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)(~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)(~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟) ∨ ∨ ∨

(𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)(𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)(~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)(~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟) ∨ ∨ ∨
• For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Coming back to our original formula…

(𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)(𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)(~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)(~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟) ∨ ∨ ∨
• For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Circuit 1

Circuit 2

Circuit 3

Circuit 4

Coming back to our original formula…

Circuit 1

(~𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)

𝑝𝑝

𝑞𝑞

𝑟𝑟

Circuit 2

𝑝𝑝

𝑞𝑞

𝑟𝑟

(~𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)

Circuit 3
(𝑝𝑝 ∧ ~𝑞𝑞 ∧ ~𝑟𝑟)

𝑝𝑝

𝑞𝑞

𝑟𝑟

Circuit 4

𝑝𝑝

𝑞𝑞

𝑟𝑟

(𝑝𝑝 ∧ 𝑞𝑞 ∧ 𝑟𝑟)

Building Adder Circuits

• We want to build circuits that add arbitrarily large binary numbers.
• E.g

10011001
+00110011

11001100

Inputs

Output

Half-Adder

• A half-adder is a circuit that adds two bits together!

𝑋𝑋
+ 𝑌𝑌
𝐶𝐶 𝑆𝑆

• (Remember: 𝐶𝐶 is the carry bit.)
• Let’s try to build a circuit that computes both S and C!

Truth table

X Y S C

0 0 ? ?

0 1 ? ?

1 0 ? ?

1 1 ? ?

Truth table

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth table

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

X

Y

C

S

Truth table

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

X
Y

S

XOR Gate
(“Exclusive OR)

X

Y

C

S

Making XOR cheaper

• First, let’s convince ourselves that

(𝑥𝑥 ⊕ 𝑦𝑦) ≡ (𝑥𝑥 ∧ ~𝑦𝑦) ∨ ~𝑥𝑥 ∧ 𝑦𝑦 ≡ (𝑥𝑥 ∨ 𝑦𝑦) ∧ (~ 𝑥𝑥 ∧ 𝑦𝑦)

Making XOR cheaper

• First, let’s convince ourselves that

(𝑥𝑥 ⊕ 𝑦𝑦) ≡ (𝑥𝑥 ∧ ~𝑦𝑦) ∨ ~𝑥𝑥 ∧ 𝑦𝑦 ≡ (𝑥𝑥 ∨ 𝑦𝑦) ∧ (~ 𝑥𝑥 ∧ 𝑦𝑦)

≡𝑥𝑥
𝑦𝑦

𝑥𝑥

𝑦𝑦
≡

Making XOR cheaper

• First, let’s convince ourselves that

(𝑥𝑥 ⊕ 𝑦𝑦) ≡ (𝑥𝑥 ∧ ~𝑦𝑦) ∨ ~𝑥𝑥 ∧ 𝑦𝑦 ≡ (𝑥𝑥 ∨ 𝑦𝑦) ∧ (~ 𝑥𝑥 ∧ 𝑦𝑦)

≡𝑥𝑥
𝑦𝑦

𝑥𝑥
𝑦𝑦

Making XOR cheaper

• First, let’s convince ourselves that

(𝑥𝑥 ⊕ 𝑦𝑦) ≡ (𝑥𝑥 ∧ ~𝑦𝑦) ∨ ~𝑥𝑥 ∧ 𝑦𝑦 ≡ (𝑥𝑥 ∨ 𝑦𝑦) ∧ (~ 𝑥𝑥 ∧ 𝑦𝑦)

≡𝑥𝑥
𝑦𝑦

From five gates to four!
𝑥𝑥
𝑦𝑦

Optimizing Half Adder

• We can now optimize the Half Adder.
• We won’t just use simplified XOR, but also leverage simplified XOR to

re-use the AND gate used to compute the carry bit 𝐶𝐶!

𝑋𝑋
𝑌𝑌

𝐶𝐶 = 𝑋𝑋 ∧ 𝑌𝑌

𝑆𝑆 = 𝑋𝑋 ⊕ 𝑌𝑌 ≡
(𝑋𝑋 ∨ 𝑌𝑌) ∧ (~ 𝑋𝑋 ∧ 𝑌𝑌)

Half Adder Abstraction

𝑋𝑋
𝑌𝑌 𝐶𝐶

𝑆𝑆

4 gates, instead of 6 for the previous one!

Half Adder Abstraction

𝑋𝑋

𝑌𝑌

𝐶𝐶

𝑆𝑆
Half-Adder

Full-Adder

• Now, let’s consider the complete case, where we want to build a
circuit that computes the sum of two 2-digit binary numbers:

• To do this, we also need the ability to add 3 digits, because:

P Q
+ W X
C S1 S2

C1

P Q
+ W X
C S1 S2

Full-Adder

• Now, let’s consider the complete case, where we want to build a
circuit that computes the sum of two 2-digit binary numbers:

• To do this, we also need the ability to add 3 digits, because:

P Q
+ W X
C S1 S2

C1

P Q
+ W X
C S1 S2

We will call a circuit
that adds 3 bits a full
adder

We could do the truth table….
P Q W X C S1 S2

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

P Q
+ W X

C S1 S2

We could do the truth table….
P Q W X C S1 S2

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

P Q
+ W X

C S1 S2

But it’s time
consuming and we
are all busy people

Constructing a Full-Adder in another way

• We need to build a circuit that computes the sum of 3 digits, e.g P + Q
+ R

• Step 1: Compute with a half-adder:

P
+ Q
C1S1

𝑃𝑃

𝑄𝑄

𝐶𝐶1

𝑆𝑆1
Half-Adder

Constructing a Full Adder

• Step 2: Compute with another half-adder:

𝑃𝑃

𝑄𝑄

𝐶𝐶1

𝑆𝑆1
Half-Adder

S1

+ R
C2S

𝑃𝑃

𝑄𝑄

𝐶𝐶1

𝑆𝑆1
Half-Adder

𝑅𝑅 Half-Adder

𝐶𝐶2

𝑆𝑆

Constructing a full-adder

• Step 3: Combine 𝐶𝐶1 and 𝐶𝐶2 with an OR gate to yield the final carry bit
𝐶𝐶.

𝑃𝑃

𝑄𝑄

𝐶𝐶1

𝑆𝑆1
Half-Adder

𝑅𝑅 Half-Adder

𝐶𝐶2

𝑆𝑆

𝐶𝐶

Constructing a full-adder

• Step 3: Combine 𝐶𝐶1 and 𝐶𝐶2 with an OR gate to yield the final carry bit
𝐶𝐶.

• Why did we choose an OR gate to combine the “intermediate”
carries 𝐶𝐶1 and 𝐶𝐶2?

𝑃𝑃

𝑄𝑄

𝐶𝐶1

𝑆𝑆1
Half-Adder

𝑅𝑅 Half-Adder

𝐶𝐶2

𝑆𝑆

𝐶𝐶

Constructing a full-adder

• Step 3: Combine 𝐶𝐶1 and 𝐶𝐶2 with an OR gate to yield the final carry bit
𝐶𝐶.

𝑃𝑃

𝑄𝑄

𝐶𝐶1

𝑆𝑆1
Half-Adder

𝑅𝑅 Half-Adder

𝐶𝐶2

𝑆𝑆

𝐶𝐶

Abstraction
time!

Full Adder Black Box

• 3 inputs, 2 outputs

Full Adder
𝑃𝑃

𝑄𝑄

𝑅𝑅

𝑆𝑆

𝐶𝐶

2-bit adder

• However, we still have not solved our original problem, which is to
construct a circuit that adds 2-bit numbers!

• So, we need a circuit that takes 4 inputs and emits 3 outputs:

P Q
+ W X
C S1 S2

2-bit adder
𝑄𝑄
𝑋𝑋
𝑃𝑃
𝑊𝑊

𝑆𝑆2
𝑆𝑆1

𝐶𝐶

Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

C1

P Q
+ W X
C S1 S2

Half-Adder
𝑄𝑄
𝑋𝑋

𝑆𝑆2

𝐶𝐶1

Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

• Step 2 (and final): Connect Half-Adder and new inputs to Full-adder
appropriately to produce final circuit.

C1

P Q
+ W X
C S1 S2

Half-Adder
𝑄𝑄
𝑋𝑋

𝑆𝑆2
𝐶𝐶1

𝑃𝑃
𝑊𝑊 Full-Adder

𝑆𝑆1
𝐶𝐶

Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

• Step 2 (and final): Connect Half-Adder and new inputs to Full-adder
appropriately to produce final circuit.

C1

P Q
+ W X
C S1 S2

Half-Adder
𝑄𝑄
𝑋𝑋

𝑆𝑆2
𝐶𝐶1

𝑃𝑃
𝑊𝑊 Full-Adder

𝑆𝑆1
𝐶𝐶

2-bit adder

Constructing a 3-bit adder (messy)

C2 C1

A P Q
+ B W X
C3 S1S2 S3

Half-Adder
𝑄𝑄
𝑋𝑋

𝑆𝑆3𝐶𝐶1
𝑃𝑃
𝑊𝑊 Full-Adder

𝑆𝑆2
𝐶𝐶2

𝐴𝐴
𝐵𝐵 Full-Adder

𝑆𝑆1
𝐶𝐶3

Constructing a 3-bit adder (neat)

C2 C1

A P Q
+ B W X
C3 S1S2 S3

𝑄𝑄
𝑋𝑋

𝑆𝑆3

𝑃𝑃
𝑊𝑊

𝑆𝑆2
𝐶𝐶2

𝐴𝐴
𝐵𝐵 Full-Adder

𝑆𝑆1
𝐶𝐶3

2-bit adder

Constructing an n-bit adder (messy)

⋮

𝐴𝐴1
𝐵𝐵1
𝐴𝐴2
𝐵𝐵2

𝐴𝐴𝑛𝑛−1

𝐵𝐵𝑛𝑛−1
𝐴𝐴𝑛𝑛

𝐵𝐵𝑛𝑛

HA
𝑆𝑆1

FA
𝑆𝑆2

𝐶𝐶1

𝐶𝐶2

⋮
𝐶𝐶𝑛𝑛−2

⋮
𝑆𝑆𝑛𝑛−1

𝐶𝐶𝑛𝑛−1
𝑆𝑆𝑛𝑛
𝐶𝐶𝑛𝑛

• We have 𝒏𝒏 − 𝟏𝟏 full adders
• How many XOR gates do we have?

FA

FA

Constructing an n-bit adder (neat)

⋮

𝐴𝐴1
𝐵𝐵1
𝐴𝐴2
𝐵𝐵2

𝐴𝐴𝑛𝑛−1

𝐵𝐵𝑛𝑛−1
𝐴𝐴𝑛𝑛

𝐵𝐵𝑛𝑛

𝑆𝑆1

𝑆𝑆2

⋮
𝑆𝑆𝑛𝑛−1

𝐶𝐶𝑛𝑛−1

𝑆𝑆𝑛𝑛
𝐶𝐶𝑛𝑛FA

(n-1)-bit adder

Other numeric functions

• Addition (have done)
• Multiplication
• Division
• Primality test (test whether a number is prime)

• There are circuits for all of these!
• Computers actually work this way at the base level: they consist of gates.

Fun exercise

• Input: number in binary

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

Circuit
𝐵𝐵1
𝐵𝐵0

𝑈𝑈1
𝑈𝑈0

𝑈𝑈2

First micro-circuit

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝑼𝟐𝟐 = 𝑩𝑩𝟏𝟏 ∧ 𝑩𝑩𝟎𝟎
𝑩𝑩𝟏𝟏
𝑩𝑩𝟎𝟎

𝑼𝑼𝟐𝟐

Second micro-circuit

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝑼𝟏𝟏 = (𝑩𝑩𝟏𝟏∧∼ 𝑩𝑩𝟎𝟎) ∨ (𝑩𝑩𝟏𝟏 ∧ 𝑩𝑩𝟎𝟎)

Second micro-circuit

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝑼𝟏𝟏 = (𝑩𝑩𝟏𝟏∧∼ 𝑩𝑩𝟎𝟎) ∨ (𝑩𝑩𝟏𝟏 ∧ 𝑩𝑩𝟎𝟎) = 𝑩𝑩𝟏𝟏
(from distributive law of conjunction over disjunction!)

𝑩𝑩𝟏𝟏 𝑼𝑼𝟏𝟏

Third micro-circuit

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝑼𝟎𝟎 = (∼ 𝑩𝑩𝟏𝟏∧ 𝑩𝑩𝟎𝟎) ∨ (𝑩𝑩𝟏𝟏 ∧∼ 𝑩𝑩𝟎𝟎) ∨ (𝑩𝑩𝟏𝟏 ∧ 𝑩𝑩𝟎𝟎)

Third micro-circuit

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

𝑼𝑼𝟎𝟎 = (∼ 𝑩𝑩𝟏𝟏∧ 𝑩𝑩𝟎𝟎) ∨ (𝑩𝑩𝟏𝟏 ∧∼ 𝑩𝑩𝟎𝟎) ∨ (𝑩𝑩𝟏𝟏 ∧ 𝑩𝑩𝟎𝟎) = (∼ 𝑩𝑩𝟏𝟏∧ 𝑩𝑩𝟎𝟎) ∨ 𝑩𝑩𝟏𝟏 = (∼ 𝑩𝑩𝟏𝟏 ∨ 𝑩𝑩𝟏𝟏) ∧ (𝑩𝑩𝟎𝟎∨ 𝑩𝑩𝟏𝟏) = 𝑩𝑩𝟎𝟎 ∨ 𝑩𝑩𝟏𝟏

𝑩𝑩𝟏𝟏
𝑩𝑩𝟎𝟎

𝑼𝑼𝟎𝟎

Final circuit

𝑩𝑩𝟏𝟏
𝑩𝑩𝟎𝟎

𝑼𝑼𝟎𝟎

𝑼𝑼𝟏𝟏

𝑼𝑼𝟐𝟐

𝑩𝑩𝟏𝟏 𝑩𝑩𝟎𝟎 𝑼𝑼𝟐𝟐 𝑼𝑼𝟏𝟏 𝑼𝑼𝟎𝟎

0 0 0 0 0

0 1 0 0 1

1 0 0 1 1

1 1 1 1 1

STOP
RECORDING

	Slide Number 1
	��Circuits��CMSC250��
	What if T=1 and False =0?
	What if T=1 and False =0?
	What if T=1 and False =0?
	What if T=1 and False =0?
	Circuits
	From a truth table to a formula
	From a truth table to a formula
	Focusing on the 1st row…
	Focusing on the 1st row…
	Focusing on the 4th row…
	Focusing on the 4th row…
	Focusing on the 5th row…
	Focusing on the 8th row…
	How do we combine those simple formulae?
	How do we combine those simple formulae?
	How do we combine those simple formulae?
	Logical gates
	Our first gate
	Our second gate
	Our second gate (AND gate)
	Our second gate (AND gate)
	Our third gate (OR gate)
	Our fourth and fifth gate (NAND and NOR gate)
	Exercises
	Exercises
	Exercises
	Exercises
	And this?
	And this?
	And this?
	Simplifying the circuit…
	Exercises
	Exercises
	Coming back to our original formula…
	Coming back to our original formula…
	Slide Number 38
	Circuit 1
	Circuit 2
	Circuit 3
	Circuit 4
	Building Adder Circuits
	Half-Adder
	Truth table
	Truth table
	Truth table
	Truth table
	Making XOR cheaper
	Making XOR cheaper
	Making XOR cheaper
	Making XOR cheaper
	Optimizing Half Adder
	Half Adder Abstraction
	Half Adder Abstraction
	Full-Adder
	Full-Adder
	We could do the truth table….
	We could do the truth table….
	Constructing a Full-Adder in another way
	Constructing a Full Adder
	Constructing a full-adder
	Constructing a full-adder
	Constructing a full-adder
	Full Adder Black Box
	2-bit adder
	Constructing a 2-bit adder
	Constructing a 2-bit adder
	Constructing a 2-bit adder
	Constructing a 3-bit adder (messy)
	Constructing a 3-bit adder (neat)
	Constructing an n-bit adder (messy)
	Constructing an n-bit adder (neat)
	Other numeric functions
	Fun exercise
	First micro-circuit
	Second micro-circuit
	Second micro-circuit
	Third micro-circuit
	Third micro-circuit
	Final circuit
	Slide Number 82

