
K-maps and Sequential Circuits

250H

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

● Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

● Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953
● K-maps come from venn diagrams

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

● Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953
● K-maps come from venn diagrams
● Most people will use K-maps instead of boolean algebra when simplifying

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

● Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953
● K-maps come from venn diagrams
● Most people will use K-maps instead of boolean algebra when simplifying
● K-maps do NOT always give the smallest circuit but they often do

K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

● Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953
● K-maps come from venn diagrams
● Most people will use K-maps instead of boolean algebra when simplifying
● K-maps do NOT always give the smallest circuit but they often do
● The problem of getting the BEST circuit is thought to be hard

K-maps for 2 Variables

● The outputs of a truth table correspond with a
Karnaugh map entries

A B Output

0 0 o1

0 1 o2

1 0 o3

1 1 o4

o1 o2

o3 o4

K-maps for 2 Variables

● We can simplify
the expression by
using the regions
shown here

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

A B Output

0 0 0

0 1 1

1 0 0

1 1 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map

A B Output

0 0 0

0 1 1

1 0 0

1 1 1

0 1

0 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s A B Output

0 0 0

0 1 1

1 0 0

1 1 1

0 1

0 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s
● Since we see that the 1’s have a B in common

○

A B Output

0 0 0

0 1 1

1 0 0

1 1 1

0 1

0 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

A B Output

0 0 0

0 1 1

1 0 1

1 1 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map

A B Output

0 0 0

0 1 1

1 0 1

1 1 1

0 1

1 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s A B Output

0 0 0

0 1 1

1 0 1

1 1 1

0 1

1 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s
● Since we see that the 1’s have a B and A in

common
○

A B Output

0 0 0

0 1 1

1 0 1

1 1 1

0 1

1 1

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

0 1

1 0

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s A B Output

0 0 0

0 1 1

1 0 1

1 1 0

0 1

1 0

K-maps for 2 Variables Example

● Without simplifying we can see that the output
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s
● Since we see that we have nothing in common the

simplest we can make this statement is
○

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

0 1

1 0

K-maps for 3 and 4 Variables

● Similarly we can extend this concept to more variables

K-maps for 3 and 4 Variables

● Similarly we can extend this concept to more variables
● When we have more variables we have to “fold” the map in order to see the

relationships

K-maps for 3 and 4 Variables

● Similarly we can extend this concept to more variables
● When we have more variables we have to “fold” the map in order to see the

relationships

Three Variables:

K-maps for 3 and 4 Variables

● Similarly we can extend this concept to more variables
● When we have more variables we have to “fold” the map in order to see the

relationships

Four Variables:

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

1 1 1 1

1 1 0 0

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

1 1 1 1

1 1 0 0

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

1 1 1 1

1 1 0 0

Output:

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1

1 1 0 1

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1

1 1 0 1

K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1

1 1 0 1

Output:

Sequential Circuits

● The digital circuits we looked at previously have been combinational

Sequential Circuits

● The digital circuits we looked at previously have been combinational
● Digital systems include a combinational circuit and storage elements

Sequential Circuits

● The digital circuits we looked at previously have been combinational
● Digital systems include a combinational circuit and storage elements
● These storage elements are described as sequential circuits

SR Latch

● To create a 1-bit memory, we need a circuit to remember a previous input value

SR Latch

● To create a 1-bit memory, we need a circuit to remember a previous input value
● We can construct this with two NOR gates

SR Latch

● To create a 1-bit memory, we need a circuit to remember a previous input value
● We can construct this with two NOR gates

SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs

SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of

what state it was previously in

SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of

what state it was previously in
● Setting R to 1 momentarily forces the latch to state Q = 0

SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of

what state it was previously in
● Setting R to 1 momentarily forces the latch to state Q = 0
● The circuit ‘‘remembers’’ whether S or R was last on

SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of

what state it was previously in
● Setting R to 1 momentarily forces the latch to state Q = 0
● The circuit ‘‘remembers’’ whether S or R was last on
● Using this property, we can build computer memories

Clocked SR Latches

● We might need to prevent the latch from changing state except at certain
specified times

Clocked SR Latches

● We might need to prevent the latch from changing state except at certain
specified times

● We can modify the SR Latch slightly to get a clocked SR latch

Clocked SR Latches

● We might need to prevent the latch from changing state except at certain
specified times

● We can modify the SR Latch slightly to get a clocked SR latch

Clocked SR Latches

● We might need to prevent the latch from changing state except at certain
specified times

● We can modify the SR Latch slightly to get a clocked SR latch
● The circuit has an additional input for the clock and is normally set to 0

Clocked SR Latches

● We might need to prevent the latch from changing state except at certain
specified times

● We can modify the SR Latch slightly to get a clocked SR latch
● The circuit has an additional input for the clock and is normally set to 0
● With the clock 0, both AND gates output 0, independent of S and R, and the

latch does not change state

Clocked SR Latches

● With the clock 0, both AND gates output 0, independent of S and R, and the
latch does not change state

● When the clock is 1, the effect of the AND gates vanishes and the latch relies
on S and R

Clocked D Latch

● What happens when S and R both equal 1?

Clocked D Latch

● What happens when S and R both equal 1?
● The circuit becomes nondeterministic when both R and S finally return to 0

Clocked D Latch

● What happens when S and R both equal 1?
● The circuit becomes nondeterministic when both R and S finally return to 0
● The only consistent state for S = R = 1 is Q = Q = 0, but as soon as both inputs

return to 0, the latch must jump to one of its two stable states

Clocked D Latch

● What happens when S and R both equal 1?
● The circuit becomes nondeterministic when both R and S finally return to 0
● The only consistent state for S = R = 1 is Q = Q = 0, but as soon as both inputs

return to 0, the latch must jump to one of its two stable states
● The latch will jump to one of its stable states at random

Clocked D Latch

● We resolve this issue by preventing it from ever happening
● We create a circuit that only has one input: D
● Because the input to the lower AND gate is always the complement of the

input to the upper one, the problem of both inputs being 1 never arises.

Flip-Flops

● Sometimes we need to sample the value on a certain line at a particular instant
and store it

Flip-Flops

● Sometimes we need to sample the value on a certain line at a particular instant
and store it

● The state transition during the clock transition from 0 to 1 or from 1 to 0 instead
of when the clock is 1

Flip-Flops

● Sometimes we need to sample the value on a certain line at a particular instant
and store it

● The state transition during the clock transition from 0 to 1 or from 1 to 0 instead
of when the clock is 1

● This is called a Flip-Flop

Flip-Flops

● Sometimes we need to sample the value on a certain line at a particular instant
and store it

● The state transition during the clock transition from 0 to 1 or from 1 to 0 instead
of when the clock is 1

● This is called a Flip-Flop

Flip-Flops

● Flip-flops can be combined in groups to create registers, which hold data types
larger than 1 bit in length

Flip-Flops

● Flip-flops can be combined in groups to create registers, which hold data types
larger than 1 bit in length

● Eight flip-flops can be put together to form an 8-bit storage register

Flip-Flops

● Flip-flops can be combined in groups to create registers, which hold data types
larger than 1 bit in length

● Eight flip-flops can be put together to form an 8-bit storage register
● The register accepts an 8-bit input value when the clock transitions

Flip-Flops

● Flip-flops can be combined in groups to create registers, which hold data types
larger than 1 bit in length

● Eight flip-flops can be put together to form an 8-bit storage register
● The register accepts an 8-bit input value when the clock transitions
● To implement a register, all the clock lines are connected to the same input

signal

Flip-Flops

● Flip-flops can be combined in groups to create registers, which hold data types
larger than 1 bit in length

● Eight flip-flops can be put together to form an 8-bit storage register
● The register accepts an 8-bit input value when the clock transitions
● To implement a register, all the clock lines are connected to the same input

signal
● Each register will accept the new 8-bit data value on the input bus

