K-maps and Sequential Circuits
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K-Maps

Previously in recitation, we looked at simplifying boolean expressions using
algebraic manipulation

Karnaugh Maps also simplify expressions in order to reduce the number of
gates and inputs

Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953
K-maps come from venn diagrams

Most people will use K-maps instead of boolean algebra when simplifying
K-maps do NOT always give the smallest circuit but they often do

The problem of getting the BEST circuit is thought to be hard



K-maps for 2 Variables

e The outputs of a truth table correspond with a
Karnaugh map entries




K-maps for 2 Variables

e We can simplify
the expression by
using the regions
shown here
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K-maps for 2 Variables Example AB 0O 1
e Without simplifying we can see that the output O nm

would be:
o 4B + AB 1o f\1)

e \We first translate the table to our k-map
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e Without simplifying we can see that the output
would be:
© AB + AB+ AB
e \We first translate the table to our k-map
e We now want to look at the relationships of the 1's
e Since we see thatthe I's have a B and A in
common

© AB + AB+ AB=A+B
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K-maps for 2 Variables Example

e Without simplifying we can see that the output
would be:
o AB + AB
e \We first translate the table to our k-map
e We now want to look at the relationships of the 1's
e Since we see that we have nothing in common the
simplest we can make this statement is
o AB + AB
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K-maps for 3 and 4 Variables

e Similarly we can extend this concept to more variables

e When we have more variables we have to “fold” the map in order to see the
relationships
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K-maps for 3 Variables Example

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
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1 1 1 0

aNDO 011110

Output: A+ B




K-maps for 3 Variables Example

A B C Output
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K-maps for 3 Variables Example

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0
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Sequential Circuits

e The digital circuits we looked at previously have been combinational
e Digital systems include a combinational circuit and storage elements
e These storage elements are described as sequential circuits
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SR Latch

e Two inputs
o S: Setting the Latch
o R: Resetting the latch
e The outputs of the latch are not uniquely determined by the current inputs
e When S is set to 1 momentarily, the latch ends up in state Q =1, regardless of
what state it was previously in
e Setting R to 1 momentarily forces the latch to state Q=0
e The circuit “remembers” whether S or R was last on
e Using this property, we can build computer memories
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Clocked SR Latches

e With the clock O, both AND gates output O, independent of S and R, and the
latch does not change state

e When the clock is 1, the effect of the AND gates vanishes and the latch relies
onSandR

Clock JL —¢
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Clocked D Latch

e What happens when S and R both equal 1?

e The circuit becomes nondeterministic when both R and S finally return to O

e The only consistent state for S=R=1is Q=Q = 0, but as soon as both inputs
return to O, the latch must jump to one of its two stable states

e The latch will jump to one of its stable states at random
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Clocked D Latch

e We resolve this issue by preventing it from ever happening

e We create a circuit that only has one input: D

e Because the input to the lower AND gate is always the complement of the
input to the upper one, the problem of both inputs being 1 never arises.

(9]
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Flip-Flops

e Sometimes we need to sample the value on a certain line at a particular instant
and store it

e The state transition during the clock transition from O to 1 or from 1to O instead
of when the clock is 1

e This is called a Flip-Flop
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Flip-Flops

e Flip-flops can be combined in groups to create registers, which hold data types
larger than 1 bit in length

e Eight flip-flops can be put together to form an 8-bit storage register

e The register accepts an 8-bit input value when the clock transitions

e TJo implement a register, all the clock lines are connected to the same input
signal

e Each register will accept the new 8-bit data value on the input bus



