START

RECORDING

Logic Began with Aristotle

• Whiggish History: He invented sets, boolean logic, and quantifiers.

Logic Began with Aristotle

- Whiggish History: He invented sets, boolean logic, and quantifiers.
- True History: Approximations of the above.

• He sought to show some sentences true because of their FORM independent of their CONTENT.

- He sought to show some sentences true because of their FORM independent of their CONTENT.
- Alice got an A in 250H OR Alice DID NOT get an A in 250H

- He sought to show some sentences true because of their FORM independent of their CONTENT.
- Alice got an A in 250H OR Alice DID NOT get an A in 250H
 - This is true whether or not Alice got an A in 250H.
- More generally, if S is any statement then S or NOT S

is true.

- He sought to show some sentences true because of their FORM independent of their CONTENT.
- Alice got an A in 250H OR Alice DID NOT get an A in 250H
 - This is true whether or not Alice got an A in 250H.
- More generally, if S is any statement then S or NOT S

is true.

- Aristotle and others thought that using Logic they could settle arguments in philosophy and other fields.
- We know better.

Module 1: Propositional Logic

- The most elementary kind of logic in Computer Science
- Also known as Boolean Logic, by virtue of *George Boole* (1815 1864)

Propositional Symbols

- The building blocks of propositional logic.
- Think of them as **bits** or **boxes** that hold a value of 1 (True) or 0 (False)
- Denoted using a lowercase English letter (p, q, ..., z)

• A proposition is a statement that HAS a truth value.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)
 - Bill is taller than Emily.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)
 - Bill is taller than Emily.
 - IS proposition. Also its TRUE.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)
 - Bill is taller than Emily.
 - IS proposition. Also its TRUE.
 - Bill got B's in two courses in Logic as an undergraduate.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)
 - Bill is taller than Emily.
 - IS proposition. Also its TRUE.
 - Bill got B's in two courses in Logic as an undergraduate.
 - IS a proposition whether or not it is true.

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)
 - Bill is taller than Emily.
 - IS proposition. Also its TRUE.
 - Bill got B's in two courses in Logic as an undergraduate.
 - IS a proposition whether or not it is true.
 - 2 + 2 = 5

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
 - Bill is tall.
 - NOT a proposition since its not well defined.
 - Emily is short.
 - NOT a proposition since its not well defined.
 - (Emily is not short. Everyone taller is just freakishly tall.)
 - Bill is taller than Emily.
 - IS proposition. Also its TRUE.
 - Bill got B's in two courses in Logic as an undergraduate.
 - IS a proposition whether or not it is true.
 - 2 + 2 = 5
 - YES its a proposition. Its FALSE.

Operations in Boolean logic

- There are three basic operations in boolean logic
 - Conjunction (AND)
 - Disjunction (OR)
 - Negation (NOT)
- Other operations can be defined in terms of those three.

Negation (NOT, \sim , \neg)

р	~p
F	Τ
Τ	F

Conjunction (^)

р	q	$p \land q$
F	F	F
F	Т	F
Т	F	F
Т	Т	Τ

Conjunction (^)

р	Q	$p \wedge (\sim q)$
F	F	?
F	Т	?
т	F	?
Т	Т	?

р	q	$p \wedge (\sim q)$
F	F	
F	Т	
Т	F	
Т	Т	

р	q	$p \wedge (\sim q)$
F	F	F
F	Т	
Т	F	
Т	Т	

р	q	$p \wedge (\sim q)$
F	F	F
F	Т	F
Т	F	
Т	Т	

р	Q	$p \wedge (\sim q)$
F	F	F
F	Т	F
Т	F	Τ
Т	Т	

р	q	$p \wedge (\sim q)$
F	F	F
F	Т	F
Т	F	Τ
Т	Т	F

Disjunction

р	Q	$p \lor q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Disjunction

р	q	$p \lor (p \land q)$
F	F	?
F	Т	?
Т	F	?
Т	Т	?

р	q	$p \lor (p \land q)$
F	F	
F	Т	
τ	F	
τ	Т	

р	q	$p \lor (p \land q)$
F	F	F
F	Т	
Τ	F	
τ	Т	

р	Q	$p \lor (p \land q)$
F	F	F
F	Т	F
Τ	F	
Т	Т	
• Fill-in the following truth table:

р	q	$p \lor (p \land q)$
F	F	F
F	Т	F
Т	F	Т
Т	Т	

• Fill-in the following truth table:

р	Q	$p \lor (p \land q)$
F	F	F
F	Т	F
Т	F	Τ
Т	Т	Τ

• Fill-in the following truth table:

p	q	$p \lor (p \land q)$
F	F	F
F	Т	F
Т	F	Т
Т	Т	Т

• Anything interesting here?

• Fill-in the following truth table:

• Anything interesting here?

Implication

• We want to formalize IF P THEN Q.

Implication

- We want to formalize IF P THEN Q.
- WARNING: This will NOT be like how we use implication IRL.
 - IRL we use implication to mean that P really helps you to establish Q.
 - That will not be the case here.

- Is the following true:
 - If the moon is made of green cheese then 2 + 2 = 5

- Is the following true:
 - If the moon is made of green cheese then 2 + 2 = 5
 - YES this is true. From a FALSE statement you can derive anything.

- Is the following true:
 - If the moon is made of green cheese then 2 + 2 = 5
 - YES this is true. From a FALSE statement you can derive anything.
 - If the moon is made of green cheese then 2 + 2 = 4

- Is the following true:
 - If the moon is made of green cheese then 2 + 2 = 5
 - YES this is true. From a FALSE statement you can derive anything.
 - If the moon is made of green cheese then 2 + 2 = 4
 - YES this is true. From a FALSE statement you can derive anything.

- Is the following true:
 - If the moon is made of green cheese then 2 + 2 = 5
 - YES this is true. From a FALSE statement you can derive anything.
 - If the moon is made of green cheese then 2 + 2 = 4
 - YES this is true. From a FALSE statement you can derive anything.
- UPSHOT: In truth table for $p \to q$ whenever p is FALSE $p \to q$ will be TRUE

• If 2 + 2 = 4 then Bill is teaching Ramsey Theory this semester.

- If 2 + 2 = 4 then Bill is teaching Ramsey Theory this semester.
 - TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.

- If 2 + 2 = 4 then Bill is teaching Ramsey Theory this semester.
 - TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.
- UPSHOT: In truth table for $p \rightarrow q$ whenever q is TRUE $p \rightarrow q$ will be TRUE

- If 2 + 2 = 4 then Bill is teaching Ramsey Theory this semester.
 - TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.
- UPSHOT: In truth table for $p \rightarrow q$ whenever q is TRUE $p \rightarrow q$ will be TRUE
- What case is left?
 - If 2 + 2 = 4 then Emily is 6 feet tall.

- If 2 + 2 = 4 then Bill is teaching Ramsey Theory this semester.
 - TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.
- UPSHOT: In truth table for $p \rightarrow q$ whenever q is TRUE $p \rightarrow q$ will be TRUE
- What case is left?
 - If 2 + 2 = 4 then Emily is 6 feet tall.
 - FALSE- a TRUE statement cannot imply a FALSE statement.

Truth Table for Implication (\Longrightarrow)

• "If --then"

р	q	$p \Rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Bi-conditional (\Leftrightarrow)

• "If and only if"

р	q	$p \Leftrightarrow q$
F	F	Т
F	Τ	F
Т	F	F
Τ	Τ	Τ

Practice

• Fill in the following truth tables:

р	$p \Rightarrow (\sim p)$
F	?
Т	?

р	q	r	$(p \land q) \Rightarrow r$
F	F	F	?
F	F	Т	?
F	Т	F	?
F	Т	Т	?
Τ	F	F	?
Τ	F	Т	?
Τ	Т	F	?
Τ	Т	Т	?

Contradictions / Tautologies

- Examine the statements:
 - $p \land (\sim p)$
 - $p \vee (\sim p)$
- What can you say about those statements?

STOP RECORDING