250H

- Quantification expresses the extent to which a predicate is true over a range of elements
 - English: all, some, many, none, and few

- Quantification expresses the extent to which a predicate is true over a range of elements
 - English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called *predicate* calculus

- Quantification expresses the extent to which a predicate is true over a range of elements
 - English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called *predicate calculus*
- The universal and existential quantifiers are the most used quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
 - English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called *predicate* calculus
- The universal and existential quantifiers are the most used quantifiers
- We can define many different quantifiers such as
 - There are exactly two
 - There are no more than three
 - There are at least 100

- Quantification expresses the extent to which a predicate is true over a range of elements
 - English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called *predicate calculus*
- The universal and existential quantifiers are the most used quantifiers
- We can define many different quantifiers such as
 - There are exactly two
 - There are no more than three
 - There are at least 100
- We also have the Uniqueness Quantifier
 - "There exists a unique x such that P (x) is true."
 - There is exactly one
 - There is one and only one.

• Def: The universal quantification of P (x) is the statement

"P (x) for all values of x in the domain."

• Def: The universal quantification of P (x) is the statement

"P (x) for all values of x in the domain."

• The notation $\forall x P(x)$ denotes the universal quantification of P(x). Here \forall is called the *universal quantifier*.

• Def: The universal quantification of P (x) is the statement

"P(x) for all values of x in the domain."

- The notation $\forall x P(x)$ denotes the universal quantification of P(x). Here \forall is called the *universal quantifier*.
- We read $\forall x P(x)$ as "for all x P(x)" or "for every x P(x)." An element for which P(x) is false is called a **counterexample** of $\forall x P(x)$.

• Def: The universal quantification of P (x) is the statement

"P (x) for all values of x in the domain."

- The notation $\forall x P(x)$ denotes the universal quantification of P(x). Here \forall is called the *universal quantifier*.
- We read $\forall x P(x)$ as "for all x P(x)" or "for every x P(x)." An element for which P(x) is false is called a **counterexample** of $\forall x P(x)$.
- Other ways of saying for all or for every
 - o all of
 - for each
 - given any
 - for arbitrary
 - \circ for each

Existential Quantification

• Def: The existential quantification of P (x) is the proposition

"There exists an element x in the domain such that P (x)."

Existential Quantification

• Def: The existential quantification of P (x) is the proposition

"There exists an element x in the domain such that P(x)."

• We use the notation $\exists xP(x)$ for the *existential quantification* of P(x). Here \exists is called the existential quantifier.

Existential Quantification

• Def: The existential quantification of P (x) is the proposition

"There exists an element x in the domain such that P(x)."

- We use the notation $\exists xP(x)$ for the *existential quantification* of P(x). Here \exists is called the existential quantifier.
- Other ways of saying there exists
 - for some
 - for at least one
 - \circ there is

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
 - $\circ \quad \forall n (n + 9 > n):$
 - \forall n (2n ≤ 3n):

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
 - \circ \forall n (n + 9 > n): True
 - \forall n (2n ≤ 3n): False (Counter Example: n = -1 2 ≤ -3)

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
 - \circ \forall n (n + 9 > n): True
 - \forall n (2n ≤ 3n): False (Counter Example: n = -1 2 ≤ -3)
- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
 - ∃ n (2n = 3n):
 - **∃** n (n² + 1= −n):

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
 - \circ \forall n (n + 9 > n): True
 - \forall n (2n ≤ 3n): False (Counter Example: n = -1 2 ≤ -3)
- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
 - ∃ n (2n = 3n): True (n=0)
 - $\exists n (n^2 + 1 = -n)$: False

Statement	When True?	When False?
∀xP (x)	P (x) is true for every x	There is an x for which $P(x)$ is false.
∃xP(x)	There is an x for which P (x) is true	P (x) is false for every x

Statement	When True?	When False?
∀xP (x)	P (x) is true for every x	There is an x for which $P(x)$ is false.
Э xР (x)	There is an x for which P (x) is true	P (x) is false for every x

Precedence

- The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional calculus
 - $\forall xP(x) \lor Q(x)$ is the disjunction of $\forall xP(x)$ and Q(x).
 - it means ($\forall x P(x)$) $\lor Q(x) NOT \forall x(P(x) \lor Q(x))$

Negating Quantified Expressions

Negation	Equivalent Statement	When Is Negation True?	When False?
¬∃хР(х)	∀x¬P (x)	For every x, P (x) is false	There is an x for which P (x) is true
ר∀xP (x)	∃х¬Р(х)	There is an x for which $P(x)$ is false	P (x) is true for every x

• Nested Quantifiers

- \circ $\,$ $\,$ One quantifier is within the scope of another $\,$

 - - $Q(x) = \exists yP(x, y)$
 - $\circ \qquad \mathsf{P}(\mathsf{x},\!\mathsf{y}) = \mathsf{x} + \mathsf{y} = \mathsf{0}$
- Everything within the scope of the quantifier acts like a propositional function

• Nested Quantifiers

- One quantifier is within the scope of another

 - - $Q(x) = \exists yP(x, y)$
 - $\circ \qquad \mathsf{P}(\mathsf{x},\mathsf{y}) = \mathsf{x} + \mathsf{y} = \mathsf{0}$
- Everything within the scope of the quantifier acts like a propositional function
- Logic to English:
 - $\circ \qquad \forall x \forall y(x + y = y + x)$
 - x + y = y + x for all real numbers x and y
 - $\circ \qquad \forall x \forall y \forall z(x + (y + z) = (x + y) + z)$
 - x + (y + z) = (x + y) + z for all real numbers x, y, and z

Nested Quantifiers

- One quantifier is within the scope of another
 - $\forall x \exists y(x + y = 0)$
 - - $Q(x) = \exists yP(x, y)$
 - $\circ \qquad \mathsf{P}(\mathsf{x},\!\mathsf{y}) = \mathsf{x} + \mathsf{y} = \mathsf{0}$
- Everything within the scope of the quantifier acts like a propositional function
- Logic to English:
 - $\circ \qquad \forall x \forall y(x + y = y + x)$
 - x + y = y + x for all real numbers x and y
 - $\circ \qquad \forall \, x \, \forall \, y \, \forall \, z(x + (y + z) = (x + y) + z)$
 - x + (y + z) = (x + y) + z for all real numbers x, y, and z
- It might be helpful to think of this like a nested loop
 - $\circ \quad \forall x \exists y P (x, y)$
 - Loop through the values for x
 - \circ \quad For each x we loop through the values for y

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x.

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P (x, y)$ and $\forall x \exists y P (x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x.
 - \circ There must be a particular value of y for which P (x, y) is true regardless of the choice of x.

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P (x, y)$ and $\forall x \exists y P (x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x.
 - \circ There must be a particular value of y for which P (x, y) is true regardless of the choice of x.
 - $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which P(x, y) is true

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P (x, y)$ and $\forall x \exists y P (x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x.
 - \circ There must be a particular value of y for which P (x, y) is true regardless of the choice of x.
 - $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which P(x, y) is true
 - No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which P (x, y) is true

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P (x, y)$ and $\forall x \exists y P (x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x.
 - \circ There must be a particular value of y for which P (x, y) is true regardless of the choice of x.
 - $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which P(x, y) is true
 - No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which P (x, y) is true
 - $\forall x \exists y P(x, y)$: y can depend on x
 - **a** $\exists y \forall x P (x, y): y \text{ is a constant independent of x}$

Statement	When True?	When False?
∀ x ∀ yP (x, y) ∀ y ∀ xP (x, y)	P (x, y) is true for every pair x, y	There is a pair x, y for which P (x, y) is false
∀x∃yP (x, y)	For every x there is a y for which P (x, y) is true	There is an x such that P (x, y) is false for every y
∃ x ∀ yP (x, y)	There is an x for which P (x, y) is true for every y	For every x there is a y for which P (x, y) is false
∃ x ∃ yP (x, y) ∃ y ∃ xP (x, y)	There is a pair x, y for which P (x, y) is true	P (x, y) is false for every pair x, y