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Discrete Probability
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Axiomatic Definitions, 
Basic Problems with Cards



Informal Definition of Probability

• Probability that blah happens: 
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Informal Definition of Probability

• Probability that blah happens: 
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• This definition is owed to Andrey Kolmogorov, 
and assumes that all possibilities are equally likely!

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
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• Experiment #1: Tossing the same coin 3 times.
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First Examples

• Experiment #1: Tossing the same coin 3 times.
• What is the probability that I don’t get any heads?
• Why?

• Set of different events?
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• Set of events with no heads:
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First Examples

• Experiment #1: Tossing the same coin 3 times.
• What is the probability that I don’t get any heads?
• Why?

• Set of different events?
• {𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻,𝑻𝑻𝑻𝑻𝑻𝑻} (8 of them)

• Set of events with no heads:
• {𝑻𝑻𝑻𝑻𝑻𝑻} (1 of them)

• Hence the answer: 
1
8

1
3

1
8

1
9

Something 
else

Implicit assumption: all individual outcomes 
(HHH, HHT, HTH, ….) are considered equally 
likely (probability 1/8)
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Practice

• Experiment #2: I roll two dice.
• Probability that I hit seven = ?
• Why?

• Set of different events?
• { 1, 1 , 1, 2 , … , (6, 1)} (36 of them)

• Set of events where we hit 7.
• { 2, 5 , 5, 2 , 3, 4 , 4, 3 , 1, 6 , (6, 1)} (6 of them)

• Hence the answer: 
6
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Practice

• Experiment #2: I roll two dice.
• Probability that I hit seven = ?
• Why?

• Set of different events?
• { 1, 1 , 1, 2 , … , (6, 1)} (36 of them)

• Set of events where we hit 7.
• { 2, 5 , 5, 2 , 3, 4 , 4, 3 , 1, 6 , (6, 1)}(6 of them)

• Hence the answer: 6
36

= 1
6

• Probability that I hit two= ?
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Practice

• Experiment #2: I roll two dice.
• Probability that I hit seven = ?
• Why?

• Set of different events?
• { 1, 1 , 1, 2 , … , (6, 1)} (36 of them)

• Set of events where we hit 7.
• { 2, 5 , 5, 2 , 3, 4 , 4, 3 , 1, 6 , (6, 1)}(6 of them)

• Hence the answer: 6
36

= 1
6

• Probability that I hit two= ?
• Same procedure

1
12

1
6

7
12

Something 
else

1
12

1
6

7
12

Something 
else

1
36



Poker Practice

• Full deck = 52 cards, 13 of each suit:



Poker Practice

• Full deck = 52 cards, 13 of each suit:
• Flush: 5 cards of the same suit

• What is the probability of getting a flush?
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• How many 5-card hands are there? 
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Probability of a Flush

• How many 5-card hands are there? 52
5

• How many 5-card hands are flushes? 
• Choose a suit in one of 4 ways…
• Given suit choose any 5 cards out of 13…
• So 𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏

𝟓𝟓
• So, probability of being dealt a flush is

𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏
𝟓𝟓

52
5
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Probability of a Flush

• Probability of being dealt a flush is

𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏
𝟓𝟓

52
5

• How likely is this?
• Not at all likely: ≈ 0.002 = 0.2%
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• Straights are 5 cards of consecutive rank
• Ace can be either end (high or low)
• No wrap-arounds (e.g Q K A 2 3, suits don’t matter)
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• What is the probability that we are dealt a straight?
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• Pick lower rank in 10 ways (A-10)
• Pick a suit in 4 ways
• Pick the 4 subsequent cards from any suit in 𝟒𝟒𝟒𝟒 ways



Likelihood of a Straight

• Straights are 5 cards of consecutive rank
• Ace can be either end (high or low)
• No wrap-arounds (e.g Q K A 2 3, suits don’t matter)

• What is the probability that we are dealt a straight?

• As before, #possible 5-card hands = 52
5

• To find out the #straights:
• Pick lower rank in 10 ways (A-10)
• Pick a suit in 4 ways
• Pick the 4 subsequent cards from any suit in 𝟒𝟒𝟒𝟒 ways

That’s 10 ∗ 45 ways. 
So, probability of a 

straight = 10∗4
5

52
5
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https://en.wikipedia.org/wiki/Poker_probability


Caveat on Flushes

• Wikipedia says we’re wrong about flushes!
• Formally, our flushes included (for example) 3h 4h 5h 6h 7h

• Hands like these are called straight flushes and Wikipedia does not include 
them.

https://en.wikipedia.org/wiki/Poker_probability


Caveat on Flushes

• Wikipedia says we’re wrong about flushes!
• Formally, our flushes included (for example) 3h 4h 5h 6h 7h

• Hands like these are called straight flushes and Wikipedia does not include them.
• How many straight flushes are there?

https://en.wikipedia.org/wiki/Poker_probability


Caveat on Flushes

• Wikipedia says we’re wrong about flushes!
• Formally, our flushes included (for example) 3h 4h 5h 6h 7h

• Hands like these are called straight flushes and Wikipedia does not include them.
• How many straight flushes are there?
• 40. Here’s why:

• Pick rank: A through 10 (higher ranks don’t allow straights) in 10 ways
• Pick suit in 4 ways

https://en.wikipedia.org/wiki/Poker_probability


Probability of Non-Straight Flush…

4 ∗ 13
5 − 40

52
5

= 0.001965

• This is how Wikipedia defines the probability of a flush. 

https://en.wikipedia.org/wiki/Poker_probability


Probability of a Straight Flush…

40
52
5

= 0.0000138517



Probability of a Straight Flush…

40
52
5

= 0.0000138517

The expected # hands you need to play to get a straight flush is then  

⌈
1

0.0000138517
⌉ = 72,194



Same Caveat for Straights

• From the #straights we computed we will have to subtract the 40 
possible straight flushes to get…

10 ∗ 45 − 40
52
5

= 0.003925



Same Caveat

• From the #straights we computed we will have to subtract the 40 
possible straight flushes to get…

10∗45−40
52
5

= 0.003925 > 0.001965 = probability of flush

• Flushes, being more rare, beat straights in poker. 
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• Try to calculate the probability of a pair!
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• Try to calculate the probability of a pair!
• Perhaps you thought of the problem like this:

• The denominator will be 52
5 (easy), so let’s focus on the numerator:

1. First choose rank in 13 ways.

2. Then, choose two of four suits in 4
2 = 6 ways.

3. Then, choose 3 cards out of 50 in 50
3 ways.
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• Try to calculate the probability of a pair!
• Perhaps you thought of the problem like this:

• The denominator will be 52
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1. First choose rank in 13 ways.

2. Then, choose two of four suits in 4
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3. Then, choose 3 cards out of 50 in 50
3 ways.
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Probability of a Pair

• Try to calculate the probability of a pair!
• Perhaps you thought of the problem like this:

• The denominator will be 52
5 (easy), so let’s focus on the numerator:

1. First choose rank in 13 ways.

2. Then, choose two of four suits in 4
2 = 6 ways.

3. Then, choose 3 cards out of 50 in 50
3 ways.

• So, probability =

Numerator: 13 × 6 ×
50
3

13 × 6 × 50
3

52
5

Is this accurate?

Yes No

Severe 
overcount!
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• In the computation before, we included:
• 2-of-a-kind
• 3-of-a-kind
• 4-of-a-kind
• Full House



Don’t Count Better Hands!

• In the computation before, we included:
• 2-of-a-kind
• 3-of-a-kind
• 4-of-a-kind
• Full House

• To properly compute, we would have to subtract all better hands 
possible with at least one pair.
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Joint Probability (“AND” of Two Events)

• The probability that two events A and B occur simultaneously is 
known as the joint probability of A and B and is denoted in a number 
of ways:

• 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) (Most useful from a set-theoretic perspective; we’ll be using this)
• 𝑃𝑃(𝐴𝐴,𝐵𝐵) (One sees this a lot in Physics books)
• 𝑃𝑃(𝐴𝐴𝐵𝐵) (Perhaps most convenient, therefore most common)
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• Probability that the first die is at most a 2 and the second one is 5 or 6

• # outcomes of die roll is 6
• # outcomes where first die is at most 2 is 2
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Calculating Joints

• Probability that the first coin toss is heads and the second coin toss is tails
• Probability that the first die is at most a 2 and the second one is 5 or 6

• # outcomes of die roll is 6
• # outcomes where first die is at most 2 is 2

• Hence, probability of first die roll being at most 2 is 1
3

• Similarly, probability of second die roll being 5 or 6 is 1
3
.

• Hence, probability that both events happen (joint probability) is 1
9
.

1
2

×
1
2



Calculating Joints

• Jason’s going to flip a coin and then pick a card from a 52-card deck.
• Probability that the coin is heads and the card has rank 8?
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Calculating Joints

• Jason’s going to flip a coin and then pick a card from a 52-card deck
• Probability that the coin is heads and the card has rank 8?

• This is because 𝑃𝑃 𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎 = 𝐻𝐻 = 1
2

and 𝑃𝑃 𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐_𝑐𝑐𝑡𝑡𝑎𝑎𝑟𝑟 = 8 = 4
52

= 1
13

• So their joint probability is 1
2

× 1
13

= 1
26

1
2

1
26

1
32

Something 
else



The Law of Joint Probability

𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃 𝐵𝐵

𝑃𝑃 𝐴𝐴1 ∩ 𝐴𝐴2 ∩ ⋯∩ 𝐴𝐴𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
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The Law of Joint Probability

𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃 𝐵𝐵

𝑃𝑃 𝐴𝐴1 ∩ 𝐴𝐴2 ∩ ⋯∩ 𝐴𝐴𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝐴𝐴𝑖𝑖)

• Unfortunately, this “law” is not always applicable! 
• It is applicable only when all the different events 𝐴𝐴𝑖𝑖 are independent

(sometimes called marginally independent) of each other.
• Let’s look at an example.
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• Probability that a die is even and that it is 2.
• Probability that the die is even = 1

2
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???
• NO!

• What is the probability that the die is even and the die is 2?

1
2

1
4

1
5

1
6



Set-Theoretic Interpretation

• Notice that the event A: “Die roll is even” is a superset of the event B: 
“Die roll comes 2”

• Die roll even
• Die roll comes 2
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Set-Theoretic Interpretation

• Notice that the event A: “Die roll is even” is a superset of the event B: 
“Die roll comes 2”

• Since 𝐴𝐴 ∩ 𝐵𝐵 = 𝐴𝐴,𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 = 1
6

• Die roll even
• Die roll comes 2

1

2

3

4

5

6
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• The University of Southern North Dakota offers a Discrete Mathematics 
Course where the possible grades are A through G. (No + or -)
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Calculating Joints

• The University of Southern North Dakota offers a Discrete Mathematics 
Course where the possible grades are A through G. (No + or -)

• What is the probability that Jason gets both an A and a G in that course?
• Clearly, it can’t be

(probability Jason gets an A) X (probability Jason gets a B) =
𝟏𝟏
𝟕𝟕

×
𝟏𝟏
𝟕𝟕

=
𝟏𝟏
𝟒𝟒𝟒𝟒

• It is 0. Those two events cannot happen jointly!
• Events such as these are called disjoint or mutually disjoint.

https://en.wikipedia.org/wiki/Hoople,_North_Dakota


Set-Theoretic Interpretation

• A = “Jason gets an A in USND’s 250”
• G=“Jason gets a G in USND’s 250”

A G



Set-Theoretic Interpretation

• A = “Jason gets an A in USND’s 250”
• G=“Jason gets a G in USND’s 250”

• Note that 𝐴𝐴 ∩ 𝐺𝐺 = ∅, so there are no common outcomes.
• So 𝑃𝑃(𝐴𝐴 ∩ 𝐺𝐺) = 0

A G



Calculating Joints

• I have my original die again.
• Probability that it comes up 1, 2 or 3 = 1

2

• Probability that it comes up 3, 4 or 5 = 1
2

• What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?
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Calculating Joints

• I have my original die again.
• Probability that it comes up 1, 2 or 3 = 1

2

• Probability that it comes up 3, 4 or 5 = 1
2

• What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

• Note that the only common outcome between the two events is 3, which can 
come up only once out of six possibilities.

1
6

1
5

1
4

1
3



Set-Theoretic Interpretation

• Let A = dice comes up 1, 2, or 3
• Let B = dice comes up 3, 4, or 5
• Let C = dice comes up 1, 2, 3, 4, 5 OR 6

A B
1

2

3

4

5 6

C



Set-Theoretic Interpretation

• Let A = dice comes up 1, 2, or 3
• Let B = dice comes up 3, 4, or 5
• Let C = dice comes up 1, 2, 3, 4, 5 OR 6

• Then, probability that the dice comes up 3 = 1
6

A B
1

2

3

4

5 6

C



Dependent and Independent Events



Independent Events (informally)

• Two events are independent if one does not influence the other.



Independent Events (informally)

• Two events are independent if one does not influence the other.
• Examples:

• The event E1 = “first coin toss” and E2 = “second coin toss”
• With the same die, the events E1 = “roll 1”, E2 = “roll 2”, E3 = “roll 3”
• Jason flips a coin and then picks a card. 



Independent Events (informally)

• Two events are independent if one does not influence the other.
• Examples:

• The event E1 = “first coin toss” and E2 = “second coin toss”
• With the same die, the events E1 = “roll 1”, E2 = “roll 2”, E3 = “roll 3”
• Jason flips a coin and then picks a card. 

• Counter-examples:
• E1 = “Die is even”, E2=“Die is 6”
• E1= “Grade in 250”  and “Passing 250”
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• Two events are independent if one does not influence the other.
• This definition is a but too informal, so mathematicians tend to avoid it.



Law of Joint Probability (informally)

• Two events are independent if one does not influence the other.
• This definition is a but too informal, so mathematicians tend to avoid it.

• Formally, we define that 𝐴𝐴 and 𝐵𝐵 are independent if

𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵)
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Disjoint Independent Both Neither
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Recap: “Disjoint” vs “Independent”

• Friends don’t let friends get confused between “disjoint” and 
“independent”!

Disjoint Independent

Has a set-theoretic interpretation! Has a causality interpretation!

Means that 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 0 Means that 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵)
Means that 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃(𝐵𝐵) Means that 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 −

𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵)



Disjoint Probability (“OR” of Two Events)

• Jason rolls two dice.
• What is the probability that he rolls a 7 or a 9?



Disjoint Probability (“OR” of Two Events)

• Jason rolls two dice.
• What is the probability that he rolls a 7 or a 9?
• #Ways to roll a 7 is 6.
• #Ways to roll a 9 is 4: (6, 3), (5, 4), (4, 5), (3, 6)
• #Ways to roll a 7 OR a 9 is then 10.
• Therefore, the probability is  10

36
= 5

18
• Key: Rolling a 7 and a 9 are disjoint events.
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• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart
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• Probability of drawing a face card (J, Q, K) or a heart

• Are these disjoint?
• NO, for example, Queen of hearts
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• NO, for example, Queen of hearts

• How big is 𝐹𝐹𝑡𝑡𝑐𝑐𝑝𝑝_𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐 ∪ 𝐻𝐻𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝 (abbrv. 𝐹𝐹, 𝐻𝐻 below)?
• Use law of inclusion / exclusion!

𝐹𝐹 ∪ 𝐻𝐻 = 𝐹𝐹 + 𝐻𝐻 − 𝐹𝐹 ∩ 𝐻𝐻 = 12 + 13 − 𝟏𝟏 = 𝟐𝟐𝟐𝟐



Disjoint Probability (“OR”)

• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart

• Are these disjoint?
• NO, for example, Queen of hearts

• How big is 𝐹𝐹𝑡𝑡𝑐𝑐𝑝𝑝_𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐 ∪ 𝐻𝐻𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝 (abbrv. 𝐹𝐹, 𝐻𝐻 below)?
• Use law of inclusion / exclusion!

𝐹𝐹 ∪ 𝐻𝐻 = 𝐹𝐹 + 𝐻𝐻 − 𝐹𝐹 ∩ 𝐻𝐻 = 12 + 13 − 𝟏𝟏 = 𝟐𝟐𝟐𝟐

• So probability = 22
52

= 11
26

.



Alternative Viewpoint

• 𝑃𝑃 𝐹𝐹 = 12
52

• 𝑃𝑃 𝐻𝐻 = 13
52

• 𝑃𝑃 𝐹𝐹 ∩ 𝐻𝐻 = 3
52

• 𝑃𝑃 𝐹𝐹 ∪ 𝐻𝐻 = 𝑃𝑃 𝐹𝐹 + 𝑃𝑃 𝐻𝐻 − 𝑃𝑃(𝐹𝐹 ∩ 𝐻𝐻)



Alternative Viewpoint

• 𝑃𝑃 𝐹𝐹 = 12
52

• 𝑃𝑃 𝐻𝐻 = 13
52

• 𝑃𝑃 𝐹𝐹 ∩ 𝐻𝐻 = 3
52

• 𝑃𝑃 𝐹𝐹 ∪ 𝐻𝐻 = 𝑃𝑃 𝐹𝐹 + 𝑃𝑃 𝐻𝐻 − 𝑃𝑃(𝐹𝐹 ∩ 𝐻𝐻)

• We can also do:
13
4

4
1

4
2 ∗ 43

52
5



Probability of Unions

𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 − 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵
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• If A and B are independent, we have
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• If A and B are disjoint, we have

𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵



Probability of Unions of 3 Sets

𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 + 𝑃𝑃 𝐶𝐶
− 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 − 𝑃𝑃 𝐵𝐵 ∩ 𝐶𝐶 − 𝑃𝑃 𝐴𝐴 ∩ 𝐶𝐶

+𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)



Probability of Unions of 3 Sets

𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 + 𝑃𝑃 𝐶𝐶
− 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 − 𝑃𝑃 𝐵𝐵 ∩ 𝐶𝐶 − 𝑃𝑃 𝐴𝐴 ∩ 𝐶𝐶

+𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)

• If A, B and C are pairwise independent , we have :
𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 + 𝑃𝑃 𝐶𝐶 − 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃 𝐵𝐵 − 𝑃𝑃 𝐵𝐵 ⋅ 𝑃𝑃 𝐶𝐶 −

𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃 𝐶𝐶 + 𝑃𝑃 𝐴𝐴 ⋅ 𝐵𝐵 ⋅ 𝐶𝐶



Probability of Unions of 3 Sets

𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 + 𝑃𝑃 𝐶𝐶
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+𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)

• If A, B and C are pairwise independent , we have :
𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 + 𝑃𝑃 𝐶𝐶 − 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃 𝐵𝐵 − 𝑃𝑃 𝐵𝐵 ⋅ 𝑃𝑃 𝐶𝐶 −
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clearly 𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶 = ∅), we have
𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 + 𝑃𝑃 𝐶𝐶



Conditional Probability and Bayes’ Law
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b) Equally likely?
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Conditional Probability

• If A occurs, then is B  
a) More likely?
b) Equally likely?
c) Less likely?

• Any of these could happen, it depends on the relationship
between A and B.

𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐵𝐵
OR OR OR …



Examples

• We roll two dice
• Event A = “Sum of the dice 𝑆𝑆 ≡ 0 (𝑚𝑚𝑝𝑝𝑐𝑐 4)”

• Note that 𝑃𝑃 𝐴𝐴 = 9
36

= 1
4
, since we have nine rolls of the dice that sum to a 

multiple of 4:
(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
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• However, once B occurs, instead of 36 outcomes, we now have… 6 
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• Only 2 of them are outcomes that correspond to A.
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• Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
• Outcomes of rolling two dice: (1, 1), (1, 2), …., (6, 5), (6, 6)

• As discussed, 𝑃𝑃 𝐴𝐴 = 9
36

= 1
4

• However, once B occurs, instead of 36 outcomes, we now have… 6 
outcomes.

• Only 2 of them are outcomes that correspond to A.

• Therefore, the probability of A given B is  
2
6

= 1
3
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• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8”
• Event B = “ First die is 4” 



Examples

• We once again two roll dice
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• If B happens, what is your intuition about the probability of A?
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• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8”
• Event B = “ First die is 4” 

• If B happens, what is your intuition about the probability of A?

Go up Go down Stay the 
same

Unknown to 
science



Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8”
• Event B = “ First die is 4” 

• If B happens, what is your intuition about the probability of A?

Go up Go down Stay the 
same

Unknown to 
science

Let’s see if 
your 
intuition 
was correct!



Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8” 𝑃𝑃 𝐴𝐴 = ? (work on it)
• Event B = “ First die is 4” 



Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8” 𝑃𝑃 𝐴𝐴 = 15

36
= 5

12
• Event B = “First die is a 4”



Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8” 𝑃𝑃 𝐴𝐴 = 15

36
= 5

12

• Event B = “First die is a 4” 𝑃𝑃 𝐵𝐵 = 1
6



Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8” 𝑃𝑃 𝐴𝐴 = 15

36
= 5

12

• Event B = “First die is a 4” 𝑃𝑃 𝐵𝐵 = 1
6

• Prob of A given B = Prob second dice is 4, 5, or 6 = 3
6

= 1
2

> 5
12

Go up Go down Stay the 
same

Unknown to 
science

By just 1
12

…



Conditional Probability

• Let 𝛢𝛢,𝛣𝛣 be two events. The conditional probability of A given B, 
denoted 𝑃𝑃(𝐴𝐴 | 𝐵𝐵) is defined as follows:

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)



Re-Thinking Independent Events

• Alternative definition of independent events: Two events A and B 
will be called marginally independent, or just independent for short, if 
and only if

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴)



Re-Thinking Independent Events

• Alternative definition of independent events: Two events A and B 
will be called marginally independent, or just independent for short, if 
and only if

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴)

• Applying the definition of 𝑃𝑃(𝐴𝐴|𝐵𝐵) we have: 
• 𝑃𝑃(𝐴𝐴∩𝐵𝐵)

𝑃𝑃(𝐵𝐵)
= 𝑃𝑃 𝐴𝐴 ⇒ 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵), which is a relationship we had 

reached earlier when discussing the joint probability.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• I pick either one of them with probability 1
2

and roll it.
• What’s the probability that the die comes up 6? (work on this yourselves 

NOW)



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• I pick either one of them with probability 1

2
• What’s the probability that the die comes up 6? (work on this yourselves NOW)

𝑃𝑃 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6 = 𝑃𝑃(𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6,𝐷𝐷𝑝𝑝𝑝𝑝 = 6) + 𝑃𝑃(𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6,𝐷𝐷𝑝𝑝𝑝𝑝 = 10) =

= 𝑃𝑃 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6 𝐷𝐷𝑝𝑝𝑝𝑝 = 6 × 𝑃𝑃 𝐷𝐷𝑝𝑝𝑝𝑝 = 6 + 𝑃𝑃 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6|𝐷𝐷𝑝𝑝𝑝𝑝 = 10 × 𝑃𝑃 𝐷𝐷𝑝𝑝𝑝𝑝 = 10
=

=
1
6

×
1
2

+
1

10
×

1
2

=
1

12
+

1
20

=
2

15
≈ 0.1333 …



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9

and the six-sided die with prob 4
9

.
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• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9

and the six-sided die with prob 4
9

.
• Intuitively, will the probability that I come up with a 6…



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9

and the six-sided die with prob 4
9

.
• Intuitively, will the probability that I come up with a 6…

Go up Go down Stay the 
same



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9

and the six-sided die with prob 4
9

.
• Intuitively, will the probability that I come up with a 6…

Go up Go down Stay the 
same

Let’s see if your 
intuition was 
correct!



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• Now we change the problem so that we pick the ten-sided die with prob 5
9

and 
the six-sided die with prob 4

9
.

• What’s the probability that I come up with a 6? 

𝑃𝑃 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6 = 𝑃𝑃(𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6,𝐷𝐷𝑝𝑝𝑝𝑝 = 6) + 𝑃𝑃(𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6,𝐷𝐷𝑝𝑝𝑝𝑝 = 10) =

= 𝑃𝑃 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6 𝐷𝐷𝑝𝑝𝑝𝑝 = 6 × 𝑃𝑃 𝐷𝐷𝑝𝑝𝑝𝑝 = 6 + 𝑃𝑃 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 = 6,𝐷𝐷𝑝𝑝𝑝𝑝 = 10 × 𝑃𝑃 𝐷𝐷𝑝𝑝𝑝𝑝 = 10 =

=
1
6

×
4
9

+
1

10
×

5
9

=
2

27
+

1
18

=
7

54
≈ 0.130 < 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏



Bayes’ Law

• Suppose A and B are events in a sample space Ω. Then, the following 
is an identity:

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐵𝐵|𝐴𝐴)
𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

known as Bayes’ Law



Questions

• If 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴), is it the case that 𝑃𝑃(𝐵𝐵|𝐴𝐴) = 𝑃𝑃(𝐵𝐵)?

Yes No



Questions

• If 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴), is it the case that 𝑃𝑃(𝐵𝐵|𝐴𝐴) = 𝑃𝑃(𝐵𝐵)?

• Substituting 𝑃𝑃(𝐴𝐴|𝐵𝐵) with 𝑃𝑃(𝐴𝐴) in the formulation of Bayes’ Law, we 
have:

𝑃𝑃 𝐴𝐴 = 𝑃𝑃 𝐵𝐵 𝐴𝐴) ⋅
𝑃𝑃 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 1 =
𝑃𝑃 𝐵𝐵 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵)

Yes No



Questions

• If 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴), is it the case that 𝑃𝑃(𝐵𝐵|𝐴𝐴) = 𝑃𝑃(𝐵𝐵)?

• Substituting 𝑃𝑃(𝐴𝐴|𝐵𝐵) with 𝑃𝑃(𝐴𝐴) in the formulation of Bayes’ Law, we 
have:

𝑃𝑃 𝐴𝐴 = 𝑃𝑃 𝐵𝐵 𝐴𝐴) ⋅
𝑃𝑃 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 1 =
𝑃𝑃 𝐵𝐵 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵)

Yes No (A ind B) iff (B ind
A)



Questions

• If 𝑃𝑃 𝐵𝐵 = 0, then is 𝑃𝑃 𝐴𝐴 𝐵𝐵 also 0?

Yes No



Questions

• If 𝑃𝑃 𝐵𝐵 = 0, then is 𝑃𝑃 𝐴𝐴 𝐵𝐵 also 0?

• It is undefined, since 𝑃𝑃 𝐴𝐴 | 𝐵𝐵 = 𝑃𝑃 𝐵𝐵 𝐴𝐴) ⋅ 𝑃𝑃 𝐴𝐴
𝑃𝑃 𝐵𝐵

Yes No
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